Home
News
Publications
Members
Projects
Sponsors
Links
Directions

Research vision: agents taught by typical computer users

The Learning Agents Center conducts basic and applied research on the development of cognitive assistants that:

  • learn complex problem solving expertise directly from human experts,
  • support experts and non-experts in evidence-based problem solving and decision making,
  • teach their problem solving expertise to students.

Major research areas include instructable agents, evidence-based reasoning, multistrategy learning with an evolving knowledge representation, graphical user interfaces, integrated logic and probabilistic reasoning in uncertain and dynamic environments, mixed-initiative reasoning and collaborative problem solving, modeling experts’ reasoning, learning-based knowledge engineering, natural language processing, and intelligent tutoring systems.

The Center also has the mission of supporting teaching in its areas of expertise, particularly intelligent agents, machine learning, knowledge acquisition, artificial intelligence and its applications.

The Center is working toward a general theory of how subject matter experts (who do not have computer science or knowledge engineering experience) can directly develop knowledge-based agents that incorporate their expertise. The approach relies on developing powerful learning agents that can be taught by the experts in ways that are similar to how the experts would teach students or apprentices, by explaining problem solving examples, and by supervising and correcting their problem solving behavior. Because such agents learn to replicate the problem-solving behavior of their human experts, we have called them Disciple agents.

In the long term, the learning and evidence-based reasoning theory and technology developed in the center (called the “Disciple approach”) contributes to a new revolution in the use of computers by enabling typical computer users to develop their own cognitive assistants. Thus, non-computer scientists will no longer be only users of generic programs developed by others (such as word processors or Internet browsers), as they are today, but also agent developers themselves. They will be able to train their personal Disciple assistants to help them with their increasingly complex tasks in the knowledge society, which should have a significant beneficial impact on their work and life.

In the short term, the center follows a spiral approach toward its long term goal through successive cycles of:

  • basic and applied research on learning agents,
  • design and development of tools for building learning agents,
  • employment of these tools to develop agents for a wide variety of applications, and
  • transition of these agents to end-users.

Current and previous application domains include intelligence analysis, behavior modeling, military center of gravity determination, course of action critiquing, emergency response planning, education, financial services, medicine, as well as personalized training in these domains.