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MULTISTRATEGY LEARNING
SUMMARY 

This tutorial presents an overview of methods, systems and applications of multistrategy learning. Multistrategy learning is concerned with developing learning systems that integrate two or more inferential and/or computational strategies. For example, a multistrategy system may combine empirical induction with explanation-based learning, symbolic and neural net learning, deduction with abduction and analogy, quantitative and qualitative discovery, symbolic and genetic algorithm-based learning. Due to the complementary nature of various strategies, multistrategy learning systems have a potential for a wide range of applications. This tutorial describes representative multistrategy learning systems, and their applications in areas such as automated knowledge acquisition, planning, scheduling, manufacturing, technical and medical decision making, and computer vision.

OUTLINE
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1. Multistrategy Concept Learning:

Methods, Systems and Applications

1.1 The class of learning tasks
1.2 Integration of empirical inductive learning and explanation-based learning

1.3 Integration of empirical inductive learning, expla​nation-based learning, and learning by analogy

1.4 Integration of genetic algorithm-based learning and symbolic empirical inductive learning

1.1 Multistrategy Concept Learning

The Class of Learning Tasks

INPUT:
one or more positive and/or negative examples of a concept

BK:
a weak, incomplete, partially incorrect,       or complete domain theory (DT)

GOAL:
learn a concept description characterizing the example(s) 


 and consistent with the DT 



    by combining several learning strategies

Illustration of a Learning Task

INPUT: examples of the CUP concept
cup(o1)  color(o1, white), shape(o1, cyl), volume(o1, 8), made-from(o1, plastic), light-mat(plastic),           has-handle(o1), has-flat-bottom(o1), 
up-concave(o1).

BK:
a theory of vessels (domain rules)
cup(x)  liftable(x), stable(x), open-vessel(x).

liftable(x)  light(x), graspable(x).

stable(x)  has-flat-bottom(x).

GOAL: learn an operational concept description of CUP
cup(x)  made-from(x, plastic), light-mat(plastic), graspable(x), has-flat-bottom(x), up-concave(o1).

1.2 Integration of 

Empirical InductiVE LEARNING

and Explanation-Based LEARNING

• Empirical Inductive Learning (EIL)

• Explanation-Based Learning (EBL)

• Complementary nature of EIL and EBL

• Types of integration of EIL and EBL

Empirical Inductive Learning

• Compares the examples in terms of their similarities and differences, and creates a generalized description of the similarities of the positive examples

• Is data intensive (requires many examples)

• Performs well in knowledge-weak domains

Positive examples of cups:
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Negative examples of cups:
N1 [image: image3.wmf] ...

Description of the cup concept:
has-handle(x), ...

Explanation-Based Learning

• Proves that the training example is an instance   of the target concept and generalizes the proof

• Is knowledge intensive (requires a complete DT)

• Needs only one example

Prove that o1 is a CUP:



Generalize the proof:
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• "has-handle(o1)" is needed to prove "cup(o1)"
• the material the cup is made

• "color(o1,white)" is not needed to prove "cup(o1)"
from need not be "plastic"

Complementary nature of

EIL and EBL
[image: image5.wmf]Examples

EIL

EBL

MSL

Domain

many

weak

one

complete

several

incomplete

or partially

incorrect

(EIL+EBL)

Theory

is enough

needs

Effect on

system's

behavior

improves

competence

improves

efficiency

improves

competence

 & efficiency

Types of

inference

induction

deduction

induction and

   deduction

to be


MSL methods integrating EIL and EBL

• Explanation before induction

• Induction over explanations

• Combining EBL with Version Spaces
• Induction over unexplained

• Guiding induction by domain theories

EXPLANATION BEFORE INDUCTION
OCCAM (Pazzani, 1988, 1990)

OCCAM is a schema-based system that learns to predict the outcome of events by applying EBL or EIL, depending on the available background knowledge and examples. It may answer questions about the outcome of hypothetical events.

A learned economic sanctions schema:

When a country threatens a wealthy country by refusing to sell a commodity, then the sanctions will fail because an alternative supplier will want to make a large profit by selling the commodity at a premium.

Integration of EBL and EIL in OCCAM
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Induction Over Explanations (IOE)

WYL (Flann and Dietterich, 1989)

Limitations of EBL
• The learned concept might be too specific because it is a generalization of a single example

• Requires a complete DT

IOE
• Learns from a set of positive examples

• May discover concept features that are not explained by the DT (i.e. incomplete DT)

The IOE Method

• Build an explanation tree for each example

• Find the largest common subtree

• Apply EBL to generalize the subtree and retain the leaves as an intermediate   concept description (ICD) 

• Specialize ICD to reflect the similarities between the training examples:


- replace variables with constants (e.g. v = c)


- introduce equality constraints (e.g. v1 = v2)

Illustration

Explanation tree for example1:
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Explanation tree for example2:
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Generalization of the common subtree:
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Specialization of ICD:

in example1:
(y = plastic)

in example2:
(y = plastic)

in ICD:

(y = plastic)

Learned concept:

cup(x)  made-from(x, plastic), light-mat(plastic), graspable(x), 


has-flat-bottom(x), up-concave(x).

Combining EBL with Version Spaces (EBL-VS)

(Hirsh, 1989, 1990)

Limitations of IOE
• Learns only from positive examples

• Needs an "almost" complete domain theory (DT)

EBL-VS

• Learns from positive and negative examples

• Can learn with an incomplete DT

• Can learn with a special type of incorrect DT

• Can learn with different amounts of knowledge, from knowledge-free to knowledge-rich

The EBL-VS Method

• Apply EBL to generalize the positive and       the negative examples

• Replace each example that has been generalized with its generalization

• Apply the version space method (or              the incremental version space merging method) to the new set of examples

Induction Over Unexplained (IOU)

(Mooney and Ourston, 1989)

Limitations of EBL-VS

• Assumes that at least one generalization      of an example is correct and complete

IOU

• DT could be incomplete but correct


- the explanation-based generalization        



of an example may be incomplete


- the DT may explain negative examples

• Learns concepts with both explainable      and conventional aspects

The IOU Method

• Apply EBL to generalize each positive example

• Disjunctively combine these generalizations (this is the explanatory component Ce)
• Disregard negative examples not satisfying   Ce and remove the features mentioned in     Ce  from all the examples
• Apply EIL to determine a generalization of     the reduced set of simplified examples

(this is the nonexplanatory component Cn)

The learned concept is Ce & Cn
Illustration

Positive examples of cups: Cup1, Cup2

Negative examples: Shot-Glass1, Mug1, Can1

Domain Theory: incomplete (contains a definition of 


drinking vessels but no definition of cups)
Ce =
has-flat-bottom(x) & light(x) & up-concave(x) &


{[width(x,small) & insulating(x)] ⁄ has-handle(x)}

Ce covers Cup1, Cup2, Shot-Glass1, Mug1 but not Can1
Cn = volume(x,small)

Cn covers Cup1, Cup2 but not Shot-Glass1, Mug1

C = Ce & Cn
Guiding Induction by Domain Theory

The ENIGMA System

(Bergadano, Giordana, Saitta et al. 1988, 1990)

Limitations of IOU

• DT rules have to be correct

• Examples have to be noise-free

ENIGMA

• DT rules could be partially incorrect

• Examples may be noisy

The Learning Method

(trades-off the use of DT rules against the coverage of examples)

• Successively specialize the abstract definition D of the concept to be learned by applying DT rules

• Whenever a specialization of the definition D contains operational predicates, compare it with the examples to identify the covered and the uncovered ones

• Decide between performing:


- a DT-based deductive specialization of D

- an example-based inductive modification of D

The learned concept is a disjunction of leaves of the specialization tree built.

Examples (4 pos, 4 neg)* 
Positive example4 (p4):
Cup(o4) 
light(o4), support(o4, b), body(o4, a), above(a, b), up-concave(o4).
Domain Theory
Cup(x)  Liftable(x), Stable(x), Open-vessel(x).

Liftable(x)  light(x), has-handle(x).

Stable(x)  has-flat-bottom(x).

Stable(x)  body(x, y), support(x, z), above(y, z).

Open-vessel(x)  up-concave(x).

DT: - overly specific (explains only p1 and p2)


- overly general (explains n3)
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The Learned Concept

Cup(x) 
light(x), has-flat-bottom(x), 


   has-small-bottom(x).

Covers p1, p3

Cup(x) 
light(x), body(x, y), support(x, z), above(y, z), up-concave(x).

Covers p2, p4

Application of ENIGMA

(Bergadano et al. 1990)
• Diagnosis of faults in electro-mechanical devices through an analysis of their vibrations

• 209 examples and 6 classes

• Typical example: 20 to 60 noisy measurements taken in different points and conditions of the device

• A learned rule:

IF
the shaft rotating frequency is w0 and the harmonic   
at w0 has high intensity and the harmonic at 2w0 has 
high intensity in at least two measurements
THEN
the example is an instance of C1 (problems in the joint), 
C4 (basement distortion) or C5 (unbalance)
Comparison Between

the KB Learned by ENIGMA and

the Hand-coded KB of the Expert System MEPS
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1.3 INTEGRATION OF Empirical Inductive Learning, Explanation-based Learning,

and Learning by Analogy

DISCIPLE (Tecuci, 1988; Tecuci and Kodratoff, 1990)
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1.4 Integration of Genetic Algorithms and Symbolic Inductive Learning

GA-AQ (Vafaie and K.DeJong, 1991)
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Application:
Texture recognition







18 initial features, 9 final features

2. Multistrategy Knowledge Base Improvement (THEORY REVISION): Methods, Systems and Applications

2.1 The class of learning tasks
2.2 Cooperating learning modules

2.3 Integrating elementary inferences

2.4 Applying learning modules in a problem solving environment

2.5 Applying different computational strategies

2.1 Multistrategy Knowledge base improvement (Theory Revision)

The class of learning tasks
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Types of Theory Errors

(in a rule based system)
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2.2 CooperatiNG Learning Modules

(deduction, abduction and empirical induction)

EITHER (Mooney and Ourston, 1991)
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Positive and negative examples of cups

cup(o1) 
width(o1, small), light(o1), color(o1, red), styrofoam(o1), shape(o1, hem), has-flat-bottom(o1), up-concave(o1), volume(o1,8).

Imperfect Theory of Vessels

cup(x)  stable(x), liftable(x), open-vessel(x).

stable(x)  has-flat-bottom(x).

liftable(x)  light(x), graspable(x).

graspable(x)  has-handle(x).

graspable(x)  width(x, small), insulating(x).

insulating(x)  styrofoam(x).

insulating(x)  ceramic(x).

open-vessel(x)  up-concave(x).

Applications of EITHER

I. Molecular Biology: recognizing promoters        and splice-junctions in DNA sequences
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II. Plant Pathology: diagnosing soybean diseases

2.3 IntegratiNG Elementary Inferences

MTL-JT (Tecuci, 1993, 1994)

• Deep integration of learning strategies


integration of the elementary inferences that are employed by the single-strategy learning methods (e.g. deduction, analogy, empirical inductive prediction, abduction, deductive generalization, inductive generalization, inductive specialization, analogy-based generalization)

• Dynamic integration of learning strategies


the order and the type of the integrated strategies depend of the relationship between the input information, the background knowledge and the learning goal

• Different types of input


(e.g. facts, concept examples, problem solving episodes)

• Different types of DT knowledge pieces


(e.g. facts, examples, implicative relationships, plausible determinations)

Assumptions for the Developed

Framework and Method

Input:

• correct (noise free)

• one or several examples, facts, or problem solving episodes 

Knowledge Base:

• incomplete and/or partially incorrect

• may include a variety of knowledge types (facts, examples, implicative or causal relationships, hierarchies, etc.)

Learning Goal:

• extend, update and/or improve the KB so as to integrate new input information

An Illustration from the Domain of Geography

Knowledge Base

Facts:


terrain(Philippines, flat), rainfall(Philippines, heavy), water-in-soil(Philippines, high)

Examples (of fertile soil):


soil(Greece, fertile-soil)  soil(Greece, red-soil)


soil(Egypt, fertile-soil) terrain(Egypt, flat) & soil(Egypt, red-soil)

Plausible determination:


water-in-soil(x, z) <≈ rainfall(x, y)

Deductive rules:



soil(x, fertile-soil)  soil(x, loamy)


temperature(x, warm)  climate(x, subtropical)


temperature(x, warm)  climate(x, tropical)


grows(x, rice)  water-in-soil(x, high) & temperature(x, warm) & soil(x, fertile-soil)

Positive and negative examples of "grows(x, rice)"

Positive Example 1:


grows(Thailand, rice)  

rainfall(Thailand, heavy) & climate(Thailand, tropical) & soil(Thailand, red-soil) & terrain(Thailand, flat) & location(Thailand, SE-Asia)

Positive Example 2:


grows(Pakistan, rice)  

rainfall(Pakistan, heavy) & climate(Pakistan, subtropical) & soil(Pakistan, loamy) & terrain(Pakistan, flat) & location(Pakistan, SW-Asia)

Negative Example 3:


¬ grows(Jamaica, rice)  

rainfall(Jamaica, heavy) & climate(Jamaica, tropical) & soil(Jamaica, loamy) & 

terrain(Jamaica, abrupt) & location(Jamaica, Central-America)

The learned knowledge

Improved KB


New facts:



water-in-soil(Thailand, high), water-in-soil(Pakistan, high)


New plausible rule:



soil(x, fertile-soil)  soil(x, red-soil)


Specialized plausible determination:



water-in-soil(x, z) <≈ rainfall(x, y), terrain(x, flat)
Concept definitions


Operational definition of "grows(x, rice)":


grows(x, rice)  rainfall(x,heavy) & terrain(x,flat) & [climate(x,tropical) ⁄climate(x,subtropical)]

& [soil(x,red-soil) ۷soil(x,loamy)]


Abstract definition of "grows(x, rice)":


grows(x, rice)  water-in-soil(x, high) & temperature(x, warm) & soil(x, fertile-soil)


Abstraction of Example 1:


grows(Thailand, rice)  water-in-soil(Thailand, high) & temperature(Thailand, warm) & 


soil(Thailand, fertile-soil)

The Learning Method

• For the first positive example I1:


- build a plausible justification tree T of I1


- build the plausible generalization Tu of T


- generalize the KB so that to entail Tu

• For each new positive example Ii:


- generalize Tu so as to cover a plausible justification tree of Ii


- generalize the KB so that to entail the new Tu

• For each new negative example Ii:


- specialize Tu so as not to cover any plausible justification of Ii


- specialize the KB so that to entail the new Tu without entailing 


the previous Tu

• Learn different concept definitions:


- extract different concept definitions from the general 


justification tree Tu
Build a plausible justification of the first example


 EMBED Word.Picture.8  


Example 1:

grows(Thailand, rice) rainfall(Thailand, heavy) & soil(Thailand, red-soil) & terrain(Thailand, flat) & location(Thailand, SE-Asia) & climate(Thailand, tropical) 

Multitype generalization
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Build the plausible generalization Tu of T
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The plausible generalization tree

corresponding to the three input examples
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Features of the MTL-JT method

• Is general and extensible

• Integrates dynamically different elementary inferences

• Uses different types of generalizations

• Is able to learn from different types of input

• Is able to learn different types of knowledge

• Is supported by the research in Experimental Psychology

• Exhibits synergistic behavior

• May behave as any of the integrated strategies

2.4 APPLYING Learning Modules IN 

a Problem SolvING ENVIRONMENT

PRODIGY (Carbonell, Knoblock and Minton, 1989)

• Performance engine



Planner based on state space search

• Learning strategies



Explanation-based learning



Learning by analogy



Learning by abstraction



Learning by experimentation

• Applications



Machine-shop scheduling



High-level robotic planning

The PRODIGY Architecture
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Independent Learning Systems

in a Uniform Environment

MLT (LRI, ISoft, CGE-LdM, INRIA, BAe, Aberdeen, Turing Institute, GMD, Siemens, Coimbra, Forth)
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2.5 APPLYING DIFFERENT

COMPUTATIONAL STRATEGIES

(symbolic rules and neural networks) 

KBANN (Towell and Shavlik, 1991)
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Rules to Network Translator
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Network to Rules Translator
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Error Rates
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3. Summary, current trends

and frontier research

• Summary of application domains

• Issues in selecting a multistrategy



learning method

• Current trends in multistrategy learning

• Areas of frontier research

Summary of Application Domains

• Classification: DNA concepts (EITHER, KBANN)


texture recognition (AQ-GA, GA-AQ)

• Diagnosis: mechanical trouble-shooting (ENIGMA)


plant pathology (EITHER)

• Manufacturing: loudspeakers (DISCIPLE1)

• Planning: high-level robot planning (PRODIGY)

• Prediction: economic sanctions (OCCAM)

• Scheduling: machine-shop scheduling (PRODIGY)
• Critiquing: military courses of action (Disciple-COA)

• Identification: mil. center of gravity (Disciple-COG)

Some Issues in Selecting a

Multistrategy Learning Method

• Learning problem:
- concept learning


- theory revision
• Input data:
- positive examples only


- positive and negative examples


- noisy examples

• Domain theory:
- weak


- complete


- incomplete


- partially incorrect
Current Trends in MSL

• Comparisons of learning strategies

• New ways of integrating learning strategies

• Dealing with incomplete or noisy examples

• General frameworks for MSL

• Integration of MSL and knowledge acquisition

• Integration of MSL and problem solving

• Applications of MSL systems

FRONTIER RESEARCH

• Synergistic integration of a wide range of learning strategies

• The representation and use of learning goals in MSL systems

• Evaluation of the certainty of the learned knowledge

• Investigation of human learning as MSL

• More comprehensive theories of learning
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* Operational predicates start with a lower-case letter
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