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Abstract 

This paper presents a mixed-initiative approach to rule 
refinement in which a subject matter expert 
collaborates with a learning agent to refine the agent’s 
knowledge base. This approach is implemented in the 
Disciple learning agent shell and has been evaluated in 
several agent training experiments performed by 
subject matter experts at the US Army War College.  

1 Introduction  

Our research addresses the problem of developing 
knowledge-based agents that incorporate the subject 
matter expertise of human experts. Our approach is to 
develop a learning and problem solving agent, called 
Disciple, which can be directly taught by a subject 
matter expert by explaining it how to solve specific 
problems, and by critiquing its attempts to solve new 
problems (Tecuci 1998).  
 The knowledge base of a Disciple agent is 
structured into an object ontology that contains a 
hierarchical description of the objects and features 
from an application domain, and a set of task 
reduction rules and solution composition rules 
expressed with these objects.  
 To teach the Disciple agent, the expert defines 
specific problems and helps the agent to understand 
each reasoning step toward their solutions. From each 
new reasoning step and its explanation, Disciple learns 
a general problem solving rule. However, the rules 
learned by the agent are generally incomplete and 
need to be refined. The main reason for this situation 
is that subject matter experts usually express their 
knowledge informally, in natural language, using 
visual representations and common sense reasoning, 
often omitting essential details that are implicit in 
human communication. By contrast, the knowledge of 
an agent must be represented in a formal, precise and 
fairly complete way. The consequence of this 
                                                 
Copyright © 2005, American Association for Artificial Intelligence  
 (www.aaai.org). All rights reserved. 

mismatch is that an expert’s knowledge is only 
partially expressed in the agent's knowledge base. 
Therefore the agent's problem solving rules need to be 
continuously refined in order to better characterize the 
subtle distinctions that experts make in their domain.  
 Rule refinement involves a mixed-initiative 
interaction, because neither the expert nor the agent 
can solve this problem independently. On one hand, 
the expert has the knowledge that needs to be 
incorporated into the agent’s knowledge base, but he 
is not familiar with the agent’s formal knowledge 
representation. On the other hand, the agent does not 
know the subtle distinctions from the application 
domain, but it incorporates methods to acquire and 
formalize the expert’s knowledge.  
 In this paper we present a mixed-initiative assistant 
that supports a subject matter expert in refining the 
rules from the agent’s large knowledge base. In this 
process the responsibility is divided between the 
expert and the agent, such that each performs the tasks 
for which he has the best capability. The next section 
presents a brief overview of the rule learning and 
refinement process. Then the following sections 
provide more details on some of the developed 
methods.  

2 Rule Learning and Refinement 

The rule learning and refinement process in Disciple is 
based on the observation that it is difficult for a 
subject matter expert to work directly with formal 
rules. It is much easier for the expert to analyze 
specific examples, to accept them as correct, or to 
reject them as incorrect, and to provide explanations 
of his decisions.  
 In order to illustrate the rule learning process let us 
consider the development of an agent that can assist a 
student to select a PhD advisor. A fragment of the 
object ontology of this agent is shown in Figure 1. 
This object ontology will be used as a generalization 
hierarchy for learning. 



To teach this agent, the expert formulates a problem 
solving task, such as “Determine a PhD advisor for 
Tom Evan.” Then, using the task reduction paradigm, 
the expert successively reduces this task to simpler 
tasks, guided by questions and answers, as illustrated 
by the task reduction step from Figure 2.  

From each such task reduction step, Disciple learns a 
general task reduction rule, by using a mixed initiative 
approach, as described in (Tecuci et al. 2004). Figure 
3, for instance, shows the rule learned from the 
example in Figure 2. These rules learned by Disciple 
have an IF-THEN part that preserves the expert’s 
language from the example, and a main condition 
which specifies the values of the rule’s variables for 
which the rule generates a correct task reduction step. 

The rule in Figure 3, however, is only partially 
learned. Therefore, instead of a single applicability 
condition it includes a version space for the final 
condition to be learned, based on additional examples 
and their explanations (Tecuci et al. 2002). This 
version space is characterized by a plausible upper 
bound (PUB), which is based on a maximal 
generalization of the example in Figure 2, and by a 
plausible lower bound (PLB), which is based on a 
minimal generalization of the example that does not 
contain any instance (Tecuci et al. 2005). For 
example, the PLB condition requires ?O1 to be a PhD 
advisor who has as employer ?O4 (that has to be a 
university) and has as position ?O5 (that has to be a 
tenured position). In addition, ?O2 has to be a PhD 
student and ?O3 has to be Artificial Intelligence. 
 Although partially learned, the rule in Figure 3 may 
be used in problem solving when either its PLB 
condition or its PUB condition is satisfied, as 
summarized in Figure 4. Indeed, let us assume that, 
after having learned the rule from Figure 3, Disciple 
attempts to “Determine whether Mark White can be a PhD 
advisor for Tom Evan in Information Security.” Because the 
PUB condition of the rule from Figure 3 is satisfied 
for this task, Disciple applies it and proposes the 
reduction to the expert: “Determine whether Mark White 
would be a good PhD advisor for Tom Evan in Information 
Security.” If the expert accepts this solution, then the 
PLB condition is generalized to cover it. However, the 
expert rejects it, explaining that “Mark White is likely to 
move to Stanford University.” Consequently, Disciple 
adds an except-when condition to the rule which takes 
the form shown in Figure 5. From now on the rule will 
be applicable if its main condition is satisfied and its 
except-when condition is not satisfied. 
 During rule refinement the ontology may also need 
to be extended with new elements present in the 
explanations of the examples. In this mixed-initiative 
process, the expert and the agent share representations, 
communicate naturally through the use of specific 
examples and explanations, coordinate their actions, 
take initiative and release control to identify the 

Task: Determine whether John Smith can be a PhD advisor for 
Tom Evan in Artificial Intelligence.

Subtask: Determine whether John Smith would be a good PhD
advisor for Tom Evan in Artificial Intelligence.

Question: Is John Smith likely to stay on the faculty of George
Mason University for the duration of Tom Evan’s dissertation? 
Answer: Yes, because John Smith has a tenured position.

Figure 2: Task reduction example

MAIN CONDITION
?O1  is     PUB (PhD_advisor)      PLB (PhD_advisor)

has_as_employer ?O4 
has_as_position ?O5 

?O2 is    PUB (person)                PLB (PhD_student)
?O3 is    PUB (research_area)    PLB (Artificial_Intelligence)
?O4 is    PUB (employer)            PLB (university)
?O5 is    PUB (position)              PLB (tenured_position)

IF: Determine whether ?O1 can be a PhD advisor for ?O2 in ?O3 

THEN: Determine whether ?O1 would be a good PhD advisor for 
?O2 in ?O3

Question: Is ?O1 likely to stay on the faculty of ?O4 for the 
duration of ?O2 's dissertation? 
Answer: Yes, because ?O1 has a ?O5 

Positive Example: (?O1=John_Smith ?O2=Tom_Evan
?O3=Artificial_Intelligence ?O4=George_Mason_University
?O5=tenured_position)

Figure 3: Rule learned from the example in Fig. 2
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necessary refinements for the rules, as discussed in the 
next section. 

3 A Mixed-Initiative Approach to Rule 
Refinement 

The refinement of the agent’s rules by a subject matter 
expert is a difficult and complex process, especially 
because the expert has no or little knowledge 
engineering experience. Moreover, an expert does not 
have a complete understanding of how the knowledge 
is represented in the agent’s knowledge base.  
 Therefore, it is difficult for a subject matter expert 
to work directly with formal rules, and to analyze their 
correctness. However, it is much easier for the expert 
to critique specific examples and to provide a 
justification of his critique. Figure 6 summarizes a 
mixed-initiative approach in which the Disciple agent 
collaborates with the subject matter expert in refining 
the rules from its knowledge base. This process 
involves several component agents that closely 
interact with each other to help the expert in the 
refinement of the rules.   

3.1 Discovering Incomplete Rules 

In expressing their knowledge, domain experts use 
common sense and often omit details that are implicit 
in human communication. Therefore an agent will 
learn rules from partially explained examples. To 
alleviate this problem we have developed the Rule 
Analyzer which continuously analyzes the rules and 
guides the expert to provide more complete 

explanations (see phase 1 in Figure 6: Discovering 
Incomplete Rules).  
 The Rule Analyzer agent takes the initiative to 
analyze the rules after each modification, to determine 
whether they need further refinement. First, the Rule 
Analyzer performs a structural analysis of the rule, 
checking if the values of its output variables (i.e. the 
variables from the question, answer and THEN tasks) 
can be obtained from the values of the variables of the 
IF task. Then, the Rule Analyzer checks how the rule 
will apply during problem solving and determines if 
there are too many instances of the rule and which are 
the under-constrained variables.  
 The Rule Analyzer combines the results of the 
performed checks and displays a list of plausible 
problems and their suggested solutions to the expert. 
This process keeps the expert informed and assures 
that a better rule is learned from the very beginning. 
The Rule Analyzer is invoked both during the initial 
phase of rule learning and during rule refinement 
based on additional positive and negative examples.  

3.2 Guiding the Rule Refinement Process 

When the Disciple agent solves a given problem it 
shows to the expert the entire reasoning tree. 
However, the reasoning tree is generally very large, 
and can contain hundreds, even thousands of problem 
solving steps (a problem solving step corresponds to 
the application of a rule in a specific situation). 
 To address this problem, we have developed several 
rule refinement wizards that guide the expert in 
understanding, navigating and refining a complex 
reasoning tree, by focusing the expert on those steps 
of the agent’s reasoning process that require expert’s 
analysis. These are steps generated by using highly 
incomplete rules, or the plausible upper bound 
conditions of partially incomplete rules (see phase 2 in 
Figure 6: Guiding the Rule Refinement Process).   

Analyzing and Refining a Reasoning Sub-Tree  
During the refinement of a complex reasoning tree, the 
expert usually has to navigate through the entire tree 
to see if other reasoning steps need refinement. This 
process is very tedious and time consuming, and the 
expert needs to pay a lot of attention to follow each 
node in the tree, in order to identify the next steps that 
need to be refined.  
 We have developed a wizard that helps the expert to 
analyze a reasoning sub-tree of a problem solving 
node, after it was refined. After the expert critiques a 
problem solving step (example), the Analyze Sub-Tree 
wizard will indicate to the expert the next step that 
needs to be refined in that sub-tree. The wizard checks 
each of these reasoning steps and signals to the expert 
the problems found, helping him in the refinement 
process.  

MAIN CONDITION
?O1  is     PUB (PhD_advisor)      PLB (PhD_advisor)

has_as_employer ?O4 
has_as_position ?O5 

?O2 is    PUB (person)                PLB (PhD_student)
?O3 is    PUB (research_area)    PLB (Artificial_Intelligence)
?O4 is    PUB (employer)            PLB (university)
?O5 is    PUB (position)              PLB (tenured_position)

EXCEPT WHEN CONDITION
?O1 is    PUB (person)               PLB (PhD_advisor)

is_likely_to_move_to ?O6
?O6 is    PUB (employer)           PLB (university)

IF: Determine whether ?O1 can be a PhD advisor for ?O2 in ?O3 

THEN: Determine whether ?O1 would be a good PhD advisor for 
?O2 in ?O3

Question: Is ?O1 likely to stay on the faculty of ?O4 for the 
duration of ?O2 's dissertation? 
Answer: Yes, because ?O1 has a ?O5 

Positive Example: (?O1=John_Smith ?O2=Tom_Evan
?O3=Artificial_Intelligence ?O4=George_Mason_University
?O5=tenured_position)
Negative Example: (?O1=Mark_White ?O2=Tom_Evan
?O3=Information_Security ?O4=George_Mason_University
?O5=tenured_position ?O6=Stanford_University)

Figure 5: Rule refined with a negative example



 This significantly reduces the time spent by the 
expert searching for the steps that need to be refined, 
and also assures that reasoning steps that need 
refinement will not be omitted, offering to the expert 
an interactive framework that guides him through this 
process of rule refinement.  
 Another feature of the Analyze Sub-Tree wizard 
consists in keeping the current state of refinement in 
which the expert is working. For instance, the expert 
may inspect another reasoning step, to review some 
information, and then may return to the interrupted 
stage, to continue the refinement from where it was 
left. We plan to extend this wizard by ordering the 
suggestions made to the expert based on their 
expected impact during rule refinement, showing first 
the most critical reasoning steps that must be critiqued 
by the expert. 

Analyzing Other Applications of a Rule 
After the expert analyzes an example generated by a 
rule, and the system refines the rule based on the 
example and its explanation of success or failure, the 
reasoning tree is dynamically updated and the rule is 
applied to other reasoning steps.  
 We have developed a wizard to guide the expert in 
analyzing the similar cases from the current reasoning 
tree, facilitating the refinement of the applied rule. The 
Rule Applications wizard conducts an analysis of the 
rule corresponding to the example just refined and 
suggests the next application of the rule that needs to 
be analyzed by the expert, indicating the identified 
problems and proposing suggestions for refinement. 
 We plan to extend this wizard by taking into 
account the level of similarity between the current 

example and the proposed similar cases. This option 
will be very useful when there are many similar cases, 
and we would prefer to show just a few significantly 
different examples which are representative for the 
entire set. 
Rule Refinement Using Sub-Tree Validation 
We are also developing a wizard to allow the expert to 
analyze a reasoning sub-tree of a node and specify that 
all its reasoning steps are correct. As a consequence, 
all the applicable rules will be generalized with the 
corresponding examples. The current Sub-Tree 
Validation has the disadvantage that it will not 
guarantee that the expert had the opportunity to see the 
content of the validated sub-tree.  
 In order to constrain and at the same time to help 
the expert in analyzing the desired sub-tree, this sub-
tree will be extracted and shown in a separate viewer, 
then the expert will be asked to confirm it. We 
propose to develop a method that will analyze the 
entire sub-tree and determine if it is suitable for 
automatic validation, signaling warnings about 
potential problems identified by the Rule Analyzer.  

3.3 Refinement of the Rule’s Conditions 

As shown in Figure 5, a rule has a complex structure. 
The rule is applied when its main condition is satisfied 
and none of its except-when conditions are satisfied. 
When the expert selects a task reduction step 
(example) to analyze, the Explanation Generation 
agent interacts with him to critique the example and 
then the Rule Refinement agent updates the rule 
accordingly.  
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refined rules based 
on several methods

Guiding the Rule 
Refinement Process

Focus the expert 
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Figure 6: A Mixed-Initiative Integrated Approach to Rule Refinement
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 For instance, when the expert rejects a reduction 
generated by a rule and provides explanations of why 
the reduction is wrong, the agent must refine the 
conditions of the rule (see phase 3 in Figure 6: 
Refinement of the Rule’s Conditions). One strategy is 
to specialize the upper bound of the main condition to 
no longer cover that reduction. Another strategy is to 
generalize the lower bound of one of the except-when 
conditions to cover that reduction. Yet another 
strategy is to create a new except-when condition. If 
the types of explanations elicited from the expert do 
not allow the agent to choose between competing 
strategies, the Rule Refinement agent uses a lazy 
refinement method, postponing the decision until more 
cases are analyzed by the expert, as discussed in the 
next section.  

3.4 Lazy Rule Refinement 

After analyzing a task reduction step generated by the 
agent, the expert may decide to update it. If the expert 
adds an explanation to the task reduction step then the 
agent refines the corresponding rule with a 
generalization of that explanation. However, if the 
expert deletes an explanation, or changes one of the 
rule’s tasks, the question, or the answer, then it is not 
clear whether the rule should be updated, or a new 
rule should be learned from the modified example. All 
depends on whether the modification makes sense for 
the previous examples from which the rule was 
learned (Boicu et al. 2005). 
 However, many of these examples may not be 
accessible in the context of the current problem and 
situation. Therefore, we have developed a lazy rule 
refinement method in which the agent creates a new 
version of the rule corresponding to the modified 
example, but it also keeps the old, unchanged version, 
linked to this new version. In order to avoid the 
generation of very similar solutions by different 
versions of a rule, the agent generates first the 
solutions corresponding to the newest version. 
Solutions corresponding to the older versions are 
considered only if they are different from those 
generated by the more recent versions of the rule.  
 If in a future refinement session the expert confirms 
an example generated by a previous version of the 
rule, then this becomes an independent rule and is 
removed from the linked list. On the other hand, if the 
examples generated by the previous versions are 
rejected, they will be used to specialize the conditions 
of these rule versions. When the conditions of these 
previous rule versions become empty, the rules are 
deleted from the knowledge base.  
 This lazy refinement method allows the 
modification of a learned rule, or the learning of a 
closely related rule, without requiring the expert to 
perform an analysis of the rule’s representative 
examples at the time of the modification. Instead, this 

analysis is postponed until the agent applies the rule in 
problem solving (see phase 4 in Figure 6: Lazy Rule 
Refinement Using Chains of Versions).  

3.5 Exception-Based Learning 

For a complex application domain, some of expert’s 
knowledge may not be expressible in the agent's 
representation language. As a consequence, the rules 
learned by the agent may accumulate exceptions 
(Tecuci 1998; Wrobel 1994). These exceptions may 
indicate missing or partially represented ontological 
knowledge (see Figure 1), and may be used to extend 
the agent’s representation language, in order to better 
characterize the subtle distinctions that experts make 
in their domain.  
 To address this issue, we have developed an 
Exception-Based Learning Assistant that interacts 
with the subject matter expert to comparatively 
analyze the negative exceptions and the positive 
examples of a rule, in order to discover extensions to 
the ontology (such as new features and/or new facts of 
the form “object feature value”) that will eliminate the 
exceptions of the rule (Boicu and Tecuci, 2004). 
 These representation extensions will lead to the 
improvement of the rules and the elimination of their 
exceptions (see phase 5 in Figure 6: Exception-Based 
Learning). 
 The component agents described above are 
integrated into the Rule Refinement module. They 
complement each other and create an integrated 
mixed-initiative approach to the rule refinement 
problem in an evolving representation space, resulting 
in improved problem solving rules, which will assure 
a higher degree of correctness of the solutions 
generated by the agent.  

4 Conclusions and Future Research 

 The knowledge-base refinement problem is 
addressed by several systems to modify an initial 
imperfect knowledge-base to become consistent with 
empirical data, like KR-FOCL (Pazzani and Brunk 
1991), EITHER (Mooney and Ourston 1994), 
ODYSSEUS (Wilkins 1990), KRUST (Craw 1997), 
MOBAL (Wrobel 1994), TEIRESIAS (Davis 1982). 
Most of these systems correct propositional Horn-
clause theories, by adding or deleting rule antecedents, 
and by learning or deleting rules, to correctly classify 
a given set of examples and they are mostly automatic.   
 However, in this paper we have presented a mixed-
initiative approach to this problem, in which the expert 
and the agent collaborate to make the necessary 
refinements to the rules learned by the agent assuring 
a better accuracy and problem solving performance.  
 We plan to improve the mixed-initiative interaction 
between the component agents involved during the 



rule refinement process and the expert, such that the 
process is more natural and the expert is offered more 
guidance during the most difficult phases.  
 We also plan to learn a user profile in which to 
incorporate the user’s knowledge engineering 
experience, so that the agents can adapt their behavior 
using this information. The profile will be 
incrementally developed to include also the user’s 
problem solving knowledge, his assumptions, 
preferences and biases which can be acquired from the 
user or inferred from his behavior.  
 The user’s knowledge engineering experience will 
have an important role for the type of operations that 
the user may perform in the rule refinement process. 
There will be a limited type and number of operations 
that a subject matter expert with no knowledge 
engineering experience can perform, while a user with 
more knowledge engineering experience will be able 
to perform more difficult refinement operations. 
 For a subject matter expert with no knowledge 
engineering experience, we plan to use a strategy that 
hides all the formal aspects, and concentrates only on 
judging specific examples of a rule, based on which 
the agent refines the rule internally. However, the 
disadvantage of such a strategy is that it generally 
requires more examples, and a longer refinement time. 
Therefore, for a user who has more knowledge 
engineering experience the refinement strategies can 
be more complex and should allow a direct interaction 
with the rule that generated the analyzed example. 
Such strategies reduce the refinement time, but may 
generate errors if incorrectly used. 
 We also plan to develop methods for learning meta-
rules that will represent the user’s preferences among 
competing applicable rules. This feature will be very 
useful when the agent’s knowledge base is very large 
and many rules are applicable for a given input task.  
 Preliminary versions of the methods discussed in 
this paper have been implemented in the Disciple 
system, and have been successfully evaluated in 
several knowledge acquisition experiments performed 
at the US Army War College in the context of the 
center of gravity determination and intelligence 
analysis (Tecuci et al. 2005).  
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