
Do Humans Adapt Their Emails So That Agents Can Understand?

Pragnesh Jay Modi, Kerry Hannan, Manuela Veloso
Computer Science Department

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh, PA 15213
{pmodi, khannan, veloso}@cs.cmu.edu

Abstract
Natural language processing is a difficult problem and is cur-
rently a technical barrier in building personal assistant agents
that aim to interact with humans in natural language. One
possible solution is to rely on humans to restrict or adapt their
language into more computer friendly ways. We study the
feasibility of this approach in the context of a personal assis-
tant agent that parses emails relevant to meeting scheduling
in order to assist the user in calendar management tasks. We
design an experiment in which humans are given email writ-
ing tasks and then given feedback on how well those emails
were understood by an agent. We wish to see if the humans
learn to adapt their email writing to what is understandable
by their agent.

Introduction
Personal agents are software assistants that aim to reduce
human cognitive load by automatically classifing, process-
ing and replying to incoming and outgoing emails on behalf
of their user (Maes 1994; Mitchell et al. 1994; Chalupsky
et al. 2001). Motivated by the high volume of email re-
lated to meeting scheduling, the CMRadar project (Modi et
al. 2004) is concerned with building agents to assist with
calendar management tasks in an office environment. Our
vision is that a CMRadar agent assists its user by process-
ing incoming and outgoing scheduling-related emails writ-
ten in natural language, negotiating and soliciting calendar
information from other users, and when appropriate, making
autonomous scheduling decisions.

As a first step of the process, a CMRadar agent must parse
an email written in natural language to create a machine-
readable logical representation in preparation for further
downstream processing. Natural language provides a great
deal of freedom in expressing information, arguably so
much so that constructing an agent to extract key pieces of
information from emails written in natural language is a very
difficult problem (Jurafsky & Martin 2000). This difficulty
creates a significant hurdle to building personal agents to as-
sist in meeting scheduling in an office environment.

Rather than attempting to build an agent that can cope
with a wide range of natural language input, in this pa-
per we investigate the opposite question of whether and to

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

what extent we can rely on the human to adapt to the lim-
ited capabilities of the agent. Indeed, the repetitive nature
of scheduling a meeting via email suggests that users could
perhaps learn to write meeting scheduling emails in a more
computer-friendly i.e. less ambiguous, format for an agent.

Zoltan-Ford (Zoltan-Ford 1991) investigates this question
in the context of users who make queries to a database in nat-
ural language. The author hypothesizes that techniques such
as modeling and shaping can be used to make human com-
puter users reduce the variability of their natural language
queries and hence increase the accuracy of the database
query processor in understanding them. Modeling refers to
the human tendency to mimic the language of those they
are communicating with, while shaping refers to the human
tendency to adapt their language based on past success and
failure at communicating (Zoltan-Ford 1984).

Following the work of Zoltan-Ford, we study whether hu-
man users who know that an agent will be reading their
emails learn to adapt the way they write based on feedback
(shaping). Many other successful systems have tried to capi-
talize on this sort of user-adaptability to put a smaller burden
on the part of the agent. These systems include informa-
tion retrieval from a database and IBMs scribble writing for
PDAs. Although one could provide the user with a manual
that describes acceptable input, it is well-known that there
are significant Human-Computer Interaction advantages to
letting users figure out these rules themselves.

We conduct an experimental study aimed at investigating
the feasibility of the above approach. We designed an ex-
periment in which humans were given the task of writing
meeting scheduling emails and then provided with feedback
on how well the agent understood their emails. Specifically,
after writing an email users are presented with a list of in-
formation the agent extracted from their email, which they
must then edit if anything is incorrect. The idea was that this
process will clue in the participant to the agents capabilities.
In this way, the user receives feedback about what the agent
can or cannot understand. Users are told in advance that
their goal is to write their emails in a way so as to minimize
the number of changes they have to make to the list of in-
formation extracted by the agent, but are not told explicitly
how to do so.

The results of our study are mixed. On the positive side,
we found that extraction errors made by the agent were re-

duced over time as the human test subject continued to in-
teract with the agent. On the negative side, there was sig-
nificant variance in the results. Our number of human test
subjects was limited which prevented obtaining statistically
significant data. In the remainder of this paper, we describe
our experimental design and the results obtained.

The CMRadar Agent
CMRadar is developed as a personalized agent that interacts
with other users or agents. It assumes that multiagent inter-
action in calendar meeting scheduling occurs through email
message exchange. The Extractor component of CMRadar
is responsible for parsing email messages into a logical rep-
resentation for further processing. This logical representa-
tion, which we call a Template, holds the key pieces of task-
relevant information contained in an email for the meeting
request or reply to a request. We first describe the Template
format and then the Extractor component.

Template Data Format

For communication with other agents or humans, templates
are converted to and from natural language emails using an
Extractor and Generator. An example Template is shown
in Figure 1. This Template representation is used internally
within the CMRadar agent for more complex downstream
reasoning about meetings. Fields in the template included
(but were not limited to):

• Start Time: Time the meeting starts.

• Start Date: Date the meeting starts.

• End Time: Time the meeting ends.

• End Date: Date the meeting ends.

• Purpose: Description of the meetings purpose.

• Duration: Duration of the meeting.

• Attendants: A list of people who will attend the meeting.

Extractor

The extractor used during this experiment was a pattern-
based parser written in Perl. A partial specification of this
parser is shown in Figure 2. The extractor searched through
a natural language email and its meta-data and attempted to
fill in the fields of a Template.

As a simplification to real life meeting scheduling, the
extractor only handled one possible start time/date and end
time/date. The extractor was developed and updated based
upon 2 practice trials of the experiment (described later)
to handle popular patterns that were not already accounted
for and were considered reasonable. The majority of these
updated patterns included variants of temporal expressions
such as noon 2pm, and 3:00PM. The goal of the extractor
was to be reasonable but not perfect. Temporal expressions
that were rejected include three thirty, and 13h40.

(template
(meeting-id MT5) (msg-id MGS1205)
(timestamp 2003-12-17[15:04 -0500])
(initiator sfs@cs.cmu.edu)
(duration 3600) (location NSH1305)
(time-slots

(time-slot
(earliest-start-time 2003-12-17[15:00 -0500])
(latest-finish-time 2003-12-17[16:00 -0500])
(start-time 2003-12-17[15:00 -0500])
(finish-time 2003-12-17[16:00 -0500])
(priority 1)
(status confirmed)))

(attendants
(attendant (id sfs@cs.cmu.edu) (level 1.0))
(attendant (id mmv@cs.cmu.edu) (level 1.0)))

(purposes
(purpose (predefined-kind project-meeting)

(description “Radar project meeting”)
(special-note nil))))

Figure 1: Example of a CMRadar template

duration: [“for” | “last”] <digits> [“hr(s)” | “min(s)”]
timeslots: [“at” | “before” | “after”] <time-exp>

: <time-exp> “to” <time-exp>
: <time-exp> “-” <time-exp> //ex: ”10:00 - 11:00”

time-exp: <1-2 digits>”:”<2 digits> //ex: ”10:00”, ”6:00”
: <1-2 digits>”:”<2 digits> <tag>
: <1-2 digits> <tag> // ex: ”10 am”, ”1 pm”

tag: [“am” | “a.m.” | “pm” | “p.m.”]

Figure 2: Example grammar rules for converting emails to
Templates.

Experiment Design
Test Subjects
Our results come from 19 subjects where the data was col-
lected over a period of 2 weeks. Subjects were solicited
through online bboards within Carnegie Mellon University.
Most participants were students, though the participant pool
included staff and faculty as well.

Procedure
To initiate the experiment, participants were given the URL
of the experiment website and allowed to read the instruc-
tions and to continue onto the tasks at their leisure. There
was no time limit and no restrictions on completing the tasks
in one single sitting. However, participants were randomly
given 1 of 10 tasks, one after the other, so taking time in be-
tween tasks required keeping an open browser window. The
experiment itself was written as a Java applet, so participants
could access the experiment from any computer supporting
a standard version of java and any java-enabled web browser
such as Internet Explorer or Mozilla. The experiment would
have a total of 4 windows for each task: instructions for the
experiment (window 1), a description of the task (window

Figure 3: Email Entry Form

Figure 4: Extraction Correction Form

2), a simulated email window (window 3), and finally an ed-
itable form for corrections (window 4). Participants were
always allowed to refer back to the experiment instructions,
the task description, and their original email when correcting
the extraction template.

Task Descriptions
Subject participants were given 10 sequential email writing
tasks. These tasks formulated the parameters of a scenario in
an office environment in which the user would be required
to write an email to other attendees in order to schedule a
meeting. The 10 tasks were presented in a randomized order
to each participant. Below is an example task given to a test
subject:

Example Task: Next Thursday, an important visitor
(stu@cmradar.org) is coming, and we’d like for you and
your colleague (chloe@cmradar.org) to meet with him. You
are too busy to meet in the morning on Thursday, so you will
have to try to schedule this meeting at another time.

Special care was taken to ensure that the task descriptions
did not force or lead the participant to write his or her email
in a particular syntax. First, participants were not permitted
to copy and paste the text from the task description. Sec-
ondly, no temporal expressions were explicitly mentioned in

any of the task description prose. If the task description were
to have included temporal expressions such as 3:00 PM, then
the participant might be less inclined to use other tempo-
ral expressions such as 3pm. Thus, no specific times were
mixed in the prose of the task descriptions.

After reading the task, the user was shown an email win-
dow in which to write her email in natural language form
(see Figure 3). The user was instructed that this email was
intended to be read by the other meeting participants and
also to be read by her agent.

Feedback to Subjects
After completing the email writing, participants were given
two types of feedback: a structured, editable template de-
scribing the information that was extracted from the email
and a score. We describe both forms of feedback below.

After each email writing task was completed, the user was
presented with the extraction template obtained by running
the Extractor engine on the email. As shown in Figure 4,
the extraction template had 2 columns: the left column con-
tained a list of all the fields the extractor was investigating,
while the right column contained the same items, but al-
lowed the participant to edit these fields to make corrections.
In this way, the user could see what the parser extracted and
their own correction side-by-side. The structure and syntax
of the displayed feedback were also carefully constructed
to avoid confusing the participant. For example, the dura-
tion of the proposed meeting was internally stored in sec-
onds. However, the parser would not accept the unlikely
description of a meeting lasting for 3600 seconds. Instead,
users were shown only expressions the parser could under-
stand (though the parser certainly understood more than it
displayed in the feedback to the user).

Participants were also given a score during the experi-
ment, which counted how many modifications to the extrac-
tion template a participant made. After correcting an extrac-
tion template, the user would be shown how many modifi-
cations he/she had just made, and how many modifications
have been made total. Along with this counter, an emoti-
con and color codings were added to enforce an excellent,
mediocre, or bad score. Below is are two examples of the
score given to a user.

Ex: You made 0 changes :-)
Ex: You made 2 changes :-(

Results
Our results count the number of changes that were made to
the extracted template. A change constitutes any kind of
edit a user makes to the extracted information. In the en-
tire extraction template, there were 8 changes that could be
made, detailed as follows: Start-Time, Start-Time AM/PM,
Start Date, End-Time, End-Time AM/PM, End Date, dura-
tion, and meeting attendants. Additional change categories
were added to account for the fact that a user may change
only a portion of these fields. The AM/PM field is espe-
cially susceptible to being wrong when the rest of the Start
time or End Time field is not since a user may not include
AM or PM in the original email.

Figure 5: Number of corrections made to all fields

Implicit in our experiment design was the assumption that
initially the humans would write their emails in a way in
which the Extractor agent would perform very poorly and
the user would need to make many changes. To our surprise,
we found that the number of errors made by the Extractor
were generally low, even initially. This was problematic for
determining if the number of changes would decrease dur-
ing the course of the experiment. However despite this, we
see in Figure 5, the number of changes that users made de-
creased over time. Halfway through the task experiment,
participants were 20% less likely to make a change to the
template than during the first half of the experiment.

We also investigate the changes users made based on par-
ticular fields. Figures 6, 7 and 8 show the number of cor-
rections made to the End-Time, Duration and AM/PM fields
respectively. We see a similar pattern of decreasing correc-
tions over time. This is especially clear with the AM/PM
field.

In all graphs, we see a spike in the number of changes
in the middle of the experiment, somewhere between Task
3 and 6. We hypothesize that this pattern is caused by test
subjects initially writing emails in a conservative way, then
“testing the boundries” of the agent by writing more cre-
atively. When the subject sees that the agent fails to extract
successfully, the subject goes back to what worked. Hence,
we see the spikes in the number of corrections.

On the negative side, we see that these results are not
statistically significant since the overall number of changes
made was rather low and the number of test subjects was
also low. Also, it is informative to view the results of a post-
experiment survey in which participants were asked a) how
satisfied they were with the performance of their agent at un-
derstanding their emails, and b) if they felt they had changed
the way they wrote their emails during the course of their
experiment. On a scale of 0 10 (0 being not satisfied at
all and 10 being completely satisfied), the average score
was 7.2 and 13 out of the 19 participants reported that they
did not change the way they wrote their email very much to

Figure 6: Number of corrections made to End-time field

Figure 7: Number of corrections made to duration field

accommodate for the email. We conclude that since users
were mostly satisfied with the performance of their agent,
it makes sense that many users would not have felt they
changed their writing style at all.

Conclusions
The conclusion to be drawn from this study is that limited
natural language capabilities may not be as significant a
problem in building personal assistant agents as perhaps ini-
tially thought. We saw that a simple parser agent performed
surprisingly well on emails that were written by humans. We
suspect the cause of this was that the humans knew in ad-
vance that the emails they write will be parsed by an agent
and so they wrote them in a simpler way than they otherwise
would. To confirm this hypothesis, a control case experi-
ment is needed in which emails written by humans who do
not know that an agent will be reading them are given to the
parser and its accuracy is compared to the results presented
here.

Figure 8: Number of corrections made to AM/PM field

Acknowledgements
This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under Con-
tract No. NBCHD030010. Any opinions, findings and con-
clusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the DARPA or the Department of Interior-National Busi-
ness Center (DOI-NBC).

References
Chalupsky, H.; Gil, Y.; Knoblock, C.; Lerman, K.; Oh,
J.; Pynadath, D.; Russ, T.; and Tambe, M. 2001. Elec-
tric elves: Applying agent technology to support human
organizations. In Proceedings of Innovative Applications
of Artificial Intelligence Conference.
Jurafsky, D., and Martin, J. H. 2000. Speech and Lan-
guage Processing: An Introduction to Natural Language
Processing, Speech Recognition, and Computational Lin-
guistics. Prentice-Hall.
Maes, P. 1994. Agents that reduce work and information
overload. Communications of the ACM 37(7).
Mitchell, T. M.; Caruana, R.; Freitag, D.; ott, J. M.; and
Zabowski, D. 1994. Experience with a learning personal
assistant. Communications of the ACM 37(7):80–91.
Modi, P. J.; Veloso, M.; Smith, S.; and Oh, J. 2004. Cm-
radar: A personal assistant agent for calendar management.
In Agent Oriented Information Systems, (AOIS) 2004.
Zoltan-Ford, E. 1984. Language shaping and modeling in
natural-language interactions with computers. Ph.D. Dis-
sertation, The Johns Hopkins University.
Zoltan-Ford, E. 1991. How to get people to say and
type what computeres can understand. In Int. Jour. Man-
Machine Studies, volume 34.

