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Abstract

In this paper, we first review the idea of teleoreactive
logic programs. While teleoreactive logic programs
previously had to be entered by hand or learned from
problem solving, we present a new way of acquiring
the programs without problem solving. The learning
system observes the primitive skill traces of an expert
working on a known problem, and learns new higher
level skills based on this information. We explain in de-
tail the algorithm used for learning by observation and
provide initial results in two different domains. Finally,
we review some related work and conclude with future
directions of research.

1. Introduction
Humans acquire knowledge in various ways. On their own,
they learn how to achieve a goal by trying different ap-
proaches and solving problems. They can also learn without
solving problems, by observing others. This is extremely
useful because one can absorb knowledge that other peo-
ple have discovered through trial and error, without repeat-
ing their efforts. For physical activities, teaching often in-
volves demonstrating a particular set of behaviors, allowing
the learners to acquire new skills by observing the expert’s
actions. This ability is particularly important during early
stages of learning, when people are acquiring many essential
skills for the first time, building off of some basic knowledge
about actions at the primitive level.

Our research on learning by observation builds on this
intuition. We have developed an architecture (Choi et al.,
2004) that supports hierarchical representations of knowl-
edge as well as selection and execution of skills in a physical
environment. Programs coded using the architecture have
solved problems in pole balancing, Blocks World, Free-
Cell solitaire, Tower of Hanoi, and in-city driving domains.
While successful, these programs were developed through
careful fabrication by humans and required many man-hours
to produce. Therefore, we augmented the system with learn-
ing capabilities, and the ability to do problem solving to
learn successful programs (Choi & Langley, 2005). The sys-
tem can acquire knowledge from a single instance of prob-
lem solving for a particular goal, but sometimes must per-
form search through the problem space when given a non-
trivial goal to achieve. The new ability to learn by observa-

tion allows us to “teach” the system by showing it a success-
ful way to accomplish the goal and having it learn from that,
thus eliminating the expensive search for a solution.

In this paper, we first briefly review the notion of tele-
oreactive logic programs and their interpretation. We then
present the new learning method with initial experimental
results. Finally, we discuss related work and conclude with
future directions of research.

2. Teleoreactive Logic Programs
As noted above, our approach revolves around a representa-
tional formalism called teleoreactive logic programs, which
incorporates ideas from logic programming, reactive con-
trol, and hierarchical task networks, and is designed to sup-
port the execution and acquisition of complex procedures.
A teleoreactive logic program consists of two knowledge
bases. The first specifies a set of concepts that recognize
classes of situations in the environment and describe them at
higher levels of abstraction. A second knowledge base con-
tains a hierarchical set of skills that the agent can execute in
the world.

2.1. Representation of Knowledge

Concepts in our framework provide the agent with a hier-
archical language to describe its beliefs about the environ-
ment. The concept definitions are stored in a conceptual
long-term memory, with a syntax similar to Horn clauses.
The lowest-level concepts (e.g., on in Table 1) are tests
against the agent’s perceptual input from the environment,
while other concepts (e.g., clear and unstackable in Ta-
ble 1) build more complex ideas on top of these.

Skills describe the actions or subskills to execute under
certain conditions. Each primitive skill clause has a head
that specifies its name and arguments, a set of typed vari-
ables, a single start condition, a set of effects, and a set of ex-
ecutable actions, each marked by an asterisk. More complex
skills can be created by substituting an ordered list of sub-
skills for the set of executable actions. Taken together, skill
definitions constitute a skill hierarchy, where each higher-
level skill describes a reactive, partial plan composed of sub-
skills. Table 2 shows some of the primitive skills for the
Blocks World.



Table 1: Examples of concepts from the Blocks World.

(on (?blk1 ?blk2)
:percepts ((block ?blk1 x ?x1 y ?y1)

(block ?blk2 x ?x2 y ?y2 h ?h))
:tests ((equal ?x1 ?x2)

(>= ?y1 ?y2)
(<= ?y1 (+ ?y2 ?h)))

:excludes ((clear ?blk2)))

(clear (?block)
:percepts ((block ?block))
:negatives ((on ?other ?block))
:excludes ((on ?other ?block)))

(unstackable (?block ?from)
:percepts ((block ?block) (block ?from))
:positives ((on ?block ?from)

(clear ?block) (hand-empty)))

2.2. Inference and Execution
At the beginning of each cycle, the system receives the up-
dated contents of its perceptual buffer, which contains low-
level sensory data on objects within the agent’s field of per-
ception. These perceptual elements initiate inference by in-
voking categorization based on concept definitions. At first,
primitive concepts at the lowest level are instantiated di-
rectly from perceptual elements and their numeric attributes.
An instance of a concept combines the head of the con-
cept with the names of specific objects in the environment
to which it applies. In a given state, a single concept may
apply to more than one object or set of objects, resulting in
multiple instances. After the primitive concepts are deter-
mined from the perceptual elements, higher-level concepts
are inferred based on the instances of the primitive and other
complex concepts by which they are defined. As a result,
the whole hierarchy of concepts is instantiated through this
bottom-up matching starting from low-level sensory inputs.
Concept instances are not transferred across cycles; there-
fore, the matching process is repeated on every cycle, build-
ing from the updated perceptual buffer.

Agents have their highest-level intentions stored in the
skill short-term memory. On each cycle, the agent finds all
of the executable paths through the skill hierarchy that start
from the highest-level intentions specified. Note that a skill
path is not about a course of action over time; it describes the
hierarchical context from the highest-level intention down
to the corresponding low-level, directly executable actions.
The applicability of each skill path is dependent on the ap-
plicability of every skill on that path. An individual skill is
deemed applicable when all of its preconditions are satis-
fied based on environment information given by the entries
in the perceptual buffer and the conceptual short-term mem-
ory. For reactivity, the system executes the first (leftmost)
skill path that it finds to be applicable.

2.3. Problem Solving and Learning
Teleoreactive logic programs can be written manually, but
the process is time consuming and prone to error. There-
fore, our system has been augmented with a problem solver
that chains primitive skills to solve novel tasks and a learn-

Table 2: Some primitive skills for the Blocks World domain.

(unstack (?block ?from)
:percepts ((block ?block ypos ?ypos)

(block ?from))
:start ((unstackable ?block ?from))
:effects ((clear ?from)

(holding ?block))
:actions ((*grasp ?block)

(*v-move ?block (+ ?ypos 10))))

(stack (?block ?to)
:percepts ((block ?block)

(block ?to x ?x y ?y h ?h))
:start ((stackable ?block ?to))
:effects ((on ?block ?to)

(hand-empty))
:actions ((*h-move ?block ?x)

(*v-move ?block (+ ?y ?h))
(*ungrasp ?block)))

ing method that composes the solutions into executable pro-
grams. These mechanisms operate interleaved with the exe-
cution process, with the problem solver being invoked when-
ever the agent encounters an impasse with no applicable skill
paths. Our system uses a variant of means-ends analysis
(Newell et al., 1960), which chains backward from the given
goal.

Each reasoning step can involve two different forms of
chaining, depending on the type of knowledge used for the
particular step. Skill chaining is used when the system has
a skill that accomplishes the current subgoal, but the pre-
condition of that skill is not met. The system first tries to
achieve the precondition by executing another known skill
or through problem solving, and then comes back to execute
the original skill and thereby achieve the subgoal. Concept
chaining is used when the system does not have any skill
clause that achieves the current goal directly. The system
uses the concept definition of the current goal to decompose
the problem into subgoals, and then tries to achieve all of the
subgoals that are not already satisfied in the environment.
The results at each step are stored in a goal stack.

When the system finds an applicable skill clause that will
achieve the current subgoal, it executes the skill. Whenever
a subgoal is achieved by such executions, the system imme-
diately learns a new skill clause for it unless the new clause
would be equivalent to an existing one. Once the informa-
tion is stored, the system pops the subgoal and moves its at-
tention to the parent. If the parent goal involved skill chain-
ing, then the system executes the associated skill whose pre-
condition has just become true, which in turn invokes learn-
ing and popping. If the parent goal involved concept chain-
ing, one of the other unsatisfied subconcepts is pushed onto
the goal stack or, if none remain, then the parent is popped.
This process continues until the system achieves the top-
level goal and learns all the applicable skill clauses from the
particular solution path.



Table 3: Sample Blocks World input to the learning by ob-
servation method. The initial state for this problem has a
three-block tower with C on B on A, and the goal is to clear
block A. The numbers in the primitive skill instances are
unique identifiers assigned by the execution architecture to
each skill definition.

Goal:
(CLEAR A)

Primitive Sequence:
(((UNSTACK 1) C B) ((PUTDOWN 4) C T1)
((UNSTACK 1) B A))

Initial State:
((UNSTACKABLE C B) (HAND-EMPTY) (CLEAR C)
(ONTABLE A T1) (ON C B) (ON B A))

3. Learning by Observation
Although the system can learn using a single instance of
problem solving, the learning process can be extremely slow
for complicated goals. The agent must often perform an ex-
pensive search through the problem space, as well as the
physical execution of the selected actions, which, in some
domains like in-city driving, takes a significant time. In cer-
tain cases, we want to eliminate the search and speed the
learning process by presenting the agent with a known se-
quence of primitive skills that will achieve the goal.

3.1. Inputs to the Learning System
When learning by observation, the agent is given the goal
that the expert was working on, the sequence of primitive
actions performed by the expert to achieve the goal, and the
initial state of the environment. Table 3 shows an example of
the input for a simple problem in the Blocks World domain.

The goal is given as a single concept instance, specify-
ing both the concept and the objects to which it must apply.
This assumption distinguishes our method from behavioral
cloning (e.g., Sammut, 1996) and ensures that the system
learns a useful skill that can be executed to accomplish sim-
ilar goals in the future.

The actions taken by the expert are provided as an ordered
list of primitive skill instances. The actions should be lim-
ited to what is necessary to achieve the goal; there should be
no additional actions taken after the goal is achieved.

A state is given as the complete set of concept instances
that are true in the world at a given time. From the given
initial state, the learning agent can use the definitions of the
skills in its long-term memory to determine the successive
states.

3.2. Learning Algorithm
To start the learning process, the agent uses the initial state of
the environment, the sequence of primitives, and the defini-
tions of the primitive skills to construct a sequence of states
that parallels the sequence of primitives. Starting from the
initial state, the learning agent considers the expert’s first
primitive action and reconstructs the new state of the en-
vironment after execution of that skill. It then starts from

this new state and determines the third state by consider-
ing the effects of executing the second action, continuing in
this manner until it has examined all of the primitive skill
instances and constructed a complete sequence of states.

Once the state sequence has been determined, the agent
works backward to learn the relevant skills, first looking
at the overall goal and the final primitive skill executed.
The agent chooses between two different learning methods,
based on whether the final primitive skill directly achieves
the goal as one of its effects or not. This choice echoes the
choice between concept chaining and skill chaining in the
means-ends problem solver.

If the current skill does not contain the goal as one of its
effects, then it must achieve one of the goal’s subgoals in-
stead. The learning agent determines the possible subgoals
from the definition of the goal concept, and then looks back
through the state sequence to find the order in which the
expert achieved them. All of the primitive actions taken be-
tween the state when the second-to-last subgoal came true
and the final state (when the last subgoal came true) are
assumed to contribute directly to achieving the final sub-
goal. Pulling from the state and primitive action sequences,
the learning agent constructs subsequences of the states and
primitives that contribute to this subgoal. It then recursively
calls the learning process using the final subgoal as the over-
all goal and these subsequences as the complete primitive
and state sequences.

The same process is repeated going all the way back
through the sequences, finding the order in which the other
subgoals came true and how they were achieved. After the
primitive sequence is emptied and all of the recursive calls
for learning on subgoals have returned, the agent learns a
skill to achieve the overall goal by placing all of the subgoal-
achieving skills in the order they occurred into the subskills
field of the new skill, similar to concept chaining in the prob-
lem solver. Any subgoals that were already true in the initial
state become the preconditions for executing this skill.

If, instead, the current skill does directly contain the goal
as one of its effects, then the agent learns a new skill with
the goal concept as its head, the precondition of the final
skill as its precondition, and a single subskill which is that
final primitive.1 The actual addition of skills to the agent’s
memory occurs through existing mechanisms, which already
avoid adding duplicate identical skills.

After learning this skill, the agent moves on to the next
earlier action performed by the expert. The agent now con-
siders the precondition of the skill it has just processed and
pops the top level off of the state and primitive skill se-
quences, recursively calling the learning process as if the
precondition had been the expert’s original goal. Like the
assumption that the goal only becomes true in the final state,
the learning algorithm assumes that the precondition only
becomes true in the next-to-final state (now the final state
in the new sequence). If the precondition had been true ear-
lier, the expert should have executed the final goal-achieving
skill as soon as it was possible.

1For the distinction between this learned skill and the primitive
skill it is built on, see Choi & Langley (2005).



Table 4: Two of the higher-level skills in the Blocks World
domain, as learned by observation.

UNSTACKABLE (?B ?A) id: 6
:percepts ((BLOCK ?A) (BLOCK ?B))
:start ((ON ?B ?A) (CLEAR ?B))
:ordered ((HAND-EMPTY))

HAND-EMPTY NIL id: 5
:percepts ((BLOCK ?B) (TABLE ?T1))
:start ((PUTDOWNABLE ?B ?T1))
:ordered ((PUTDOWN ?B ?T1))

If the level popped from the primitive sequence was the
last remaining element and the list is now empty, the recur-
sive learning process halts and returns to a higher level. In
this case the expert did nothing to achieve the current pre-
condition, so the agent learning by observation has no evi-
dence from which it can learn a skill for achieving the pre-
condition.

On the other hand, when the new shorter sequence is not
empty, the expert must have done some work to achieve the
precondition of the current primitive skill. After making the
recursive call and learning a new skill that achieves the pre-
condition, the learning agent adds an additional skill that
achieves the current goal by composing the precondition-
achieving skill with current primitive skill. This step is anal-
ogous to the skill chaining performed by the problem solver.

4. Preliminary Results
At this stage, the learning by observation method has shown
promising early results in the two domains it has been tested
on. It is already a viable alternative to programming tele-
oreactive logic programs by hand or using more expensive
problem solving to learn relevant skills, and has even been
able to provide results in a complex domain in which means-
ends problem solving by itself cannot perform consistently.

4.1. Blocks World
In the Blocks World domain that has been used for examples
throughout this paper, the learning by observation method
works as expected, learning complex skills that can be ex-
ecuted directly or used to facilitate further problem solv-
ing. To obtain training examples, we first ran the backward
chaining problem solver on problems for which it can find
suitable solutions, and saved the successful trace of the prim-
itive skills it executed in achieving the goal. After starting
fresh with only primitive skills and just learning by obser-
vation from these traces, the agent acquires a set of skills
identical to the ones learned during problem solving. Ta-
ble 4 shows the first two skills acquired when learning by
observation from the sample input shown in Table 3.

4.2. Depots
The Depots domain is a more complicated domain intro-
duced in the Third International Planning Competition in
2002. With crates that can be loaded into trucks and driven
to different locations where they are unloaded and stacked

onto pallets, it combines attributes of Blocks World with Lo-
gistics planning. Because of the high number of objects in
a typical problem and the corresponding number of possible
actions in each state, this domain has proven challenging to
code for by hand or to use wth the existing problem solver
to obtain executable skills.

Provided with a successful trace for a problem in the do-
main, however, the system can learn by observation and ob-
tain skills that can then be executed directly to solve the
same and similar problems, or used to make future problem
solving faster and more successful.

5. Related Research
Building a physical agent with the ability to learn skills and
control policies from its experiences has always been a need
in the field of artificial intelligence. A common approach to
this problem has been to focus on learning from delayed ex-
ternal rewards. Some methods (e.g., Moriarty et al., 1999)
search through the space of the policies directly, whereas
others (e.g., Kaelbling et al., 1996) estimate value functions
for state-action pairs. Unlike our new approach which ad-
dresses learning from observed behaviors of an expert, these
methods are based on exploration and learning from trial and
error.

There are a few frameworks which learn control policies
from observed behaviors. One of the main streams of this
research is known as behavioral cloning. The behavioral
cloning framework observes traces of an expert’s behavior,
transforms them into supervised training cases and extracts
operational models of the skills. This approach typically
casts learned knowledge as decision trees that are used to
decide which actions to take based on sensor input (e.g.,
Sammut, 1996; Urbancic & Bratko, 1994). In contrast to
the main work in behavioral cloning, our system associates
actions with a hierarchical structure of goals, learning skills
that are robust and sufficiently general to apply in multiple
contexts.

One similar approach that incorporates hierarchical
knowledge of the goals that actions are working towards is
presented by Könik and Laird (2004). While their system re-
lies on the expert to annotate the observation traces with the
goal that each step helps to achieve, ours requires only the
overall goal to be given, and uses its knowledge of the con-
cept and skill hierarchies to determine the current subgoals
at each step.

Other work on learning skills by observing behaviors of
an expert mostly rely on domain knowledge for interpreting
the observed traces. Explanation-based learning (e.g., Segre,
1987), learning apprentices (e.g., Mitchell et al., 1985), and
programming by demonstration (e.g., Cypher, 1993; Kaiser
& Kreuziger, 1994) are examples of this category. In pro-
gramming by demonstration, in addition to the demonstra-
tion trace itself, the expert needs to tell the system what
relations have been maintained and/or achieved during the
task. Tecuci’s (1998) Disciple approach to building agents
is similar in this regard, since the system must give the agent
explanations as well as the examples. While the method we
have introduced here is similar to explanation-based learn-
ing in that it relies on background knowledge provided to



the system (Ellman, 1989), our system does not depend on
deductive proof that each training case is an example of the
target concept, and makes no associated guarantees.

6. Directions for Future Research
While our method already shows promising preliminary re-
sults in multiple domains, our work in this area has just be-
gun. Future research should test learning by observation in
additional problems and domains to ensure the accuracy and
robustness of the method and implementation. Obtaining
experimental results verifying the advantages of learning by
observation will also be important.

With the basic functionality working well, future work
should integrate the learning by observation method into a
more complete system for mixed-initiative problem solving.
Combining learning by observation with other methods of
problem solving can allow the system to work more quickly
and in more complex domains than could be handled by the
other methods alone. When the system encounters a prob-
lem that it cannot solve on its own, it can request a working
trace from the human expert guiding the system. After learn-
ing the necessary skills from this trace, the system should be
able to solve future problems of similar complexity.

7. Concluding Remarks
In this paper, we have presented a new way of acquiring
teleoreactive logic programs. After a brief review of such
programs and the architecture that supports them, we ex-
plained our motivations for reducing search in problem solv-
ing and proposed the idea of learning by observation of an
expert’s action trace. We explained the details of the algo-
rithm and promising early results of its learning capabilities
in two different domains, along with its capacity to utilize
those learned structures on later tasks.

Teleoreactive logic programs are a variant of logic pro-
grams which support both goal-driven and reactive execu-
tions. The approach we presented here incorporates ideas
from earlier work on behavioral cloning and learning by ob-
servation, but is unique in the sense that it uses hierarchical
goal information in addition to the trace of actions involved
to achieve it. Our work in this particular direction is still in
the early stages, and we expect to report more results in near
future.
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