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introduction

• learning programming is difficult

• novice programmers need help

‣ how do we help the users?



helping users

• novice programmers usually understand syntax at the lexical level

• we want them to start understanding the syntax at the pragmatic and 
semantic level

• usually, we have only the results of their programming exercises

• to help them better we need to see their process and interactions

‣ using formative data, we can help the novices while they are learning

• need to present information to them at the right time



getting formative data

• compile time segments (CTSs)

• differentials between consecutive versions of the AST

• generated at each compile cycle

• compiler output

‣ allow us to find errors and identify areas where user needs help



types of data

• compile time analysis of CTSs

• differentials in constructs

• compiler output

• construct differentials and compiler output



compile time analysis of CTSs

• number of compiles

• LOC

• number of errors

• degree of completion

types of data
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differentials in constructs

• changes in expressions

• LOC

types of data
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compiler output

• difference between compiler output between CTSs

• shows where students make mistakes

types of data

errors and warning though 37 
compiles of a student



construct diffs and compiler output

• relationships between CTSs and compiler output

• particular compile error can be mapped onto a change in code

types of data



ontology

• record interactions between user and IDE

• compiled, debugged, ran

‣ allows us to recognize SRL patterns



data analysis

• using SRL patterns

• CTS analysis results

‣ opportunities for user interaction initiation

• try to find a place where user has finished a task or is unsure how 
to continue

★ students stop to verify code they’ve written (compilation)



current work

• MI-EDNA

• Learning Data Structures with Java



future work

• determine the types of interactions that are suited to help users in 
this domain

• implement IDE that allows us to observe user interactions

• implement IDE that allows us to initiate MI interactions
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