
Recognizing Opportunities for Mixed-Initiative
Interactions in Novice Programming

Liam Doherty, Patrick Lougheed, David Brokenshire, Mayo Jordanov, Shilpi Rao,
Jurika Shakya, and Vive Kumar

Simon Fraser University, Surrey Campus

introduction

• learning programming is difficult

• novice programmers need help

‣ how do we help the users?

helping users

• novice programmers usually understand syntax at the lexical level

• we want them to start understanding the syntax at the pragmatic and
semantic level

• usually, we have only the results of their programming exercises

• to help them better we need to see their process and interactions

‣ using formative data, we can help the novices while they are learning

• need to present information to them at the right time

getting formative data

• compile time segments (CTSs)

• differentials between consecutive versions of the AST

• generated at each compile cycle

• compiler output

‣ allow us to find errors and identify areas where user needs help

types of data

• compile time analysis of CTSs

• differentials in constructs

• compiler output

• construct differentials and compiler output

compile time analysis of CTSs

• number of compiles

• LOC

• number of errors

• degree of completion

types of data

Frequency of compiles

0

5

10

15

20

25

30

of compiles

#
 o

f
s
tu

d
e
n

ts

Series1 20 25 20 17 12 2

1 to 10 11 to 20 21 to 30 31 to 40 41 - 50 51 - 72

average compiles: 11 to 20
extreme: 72 in 90 minutes

differentials in constructs

• changes in expressions

• LOC

types of data

STUDENT 1

0

20

40

60

80

100

120

140

160

C
om

pi
le

 V
er

.1

C
om

pi
le

 V
er

.3

C
om

pi
le

 V
er

.5

C
om

pi
le

 V
er

.7

C
om

pi
le

 V
er

.9

C
om

pi
le

 V
er

.1
1

C
om

pi
le

 V
er

.1
3

C
om

pi
le

 V
er

.1
5

C
om

pi
le

 V
er

.1
7

C
om

pi
le

 V
er

.1
9

C
om

pi
le

 V
er

.2
1

C
om

pi
le

 V
er

.2
3

C
om

pi
le

 V
er

.2
5

C
om

pi
le

 V
er

.2
7

C
om

pi
le

 V
er

.2
9

C
om

pi
le

 V
er

.3
1

C
om

pi
le

 V
er

.3
3

C
om

pi
le

 V
er

.3
5

C
om

pi
le

 V
er

.3
7

No. of Compiles

Li
ne

s
of

 C
od

e

changes in LOC of a
student

compiler output

• difference between compiler output between CTSs

• shows where students make mistakes

types of data

errors and warning though 37
compiles of a student

construct diffs and compiler output

• relationships between CTSs and compiler output

• particular compile error can be mapped onto a change in code

types of data

ontology

• record interactions between user and IDE

• compiled, debugged, ran

‣ allows us to recognize SRL patterns

data analysis

• using SRL patterns

• CTS analysis results

‣ opportunities for user interaction initiation

• try to find a place where user has finished a task or is unsure how
to continue

★ students stop to verify code they’ve written (compilation)

current work

• MI-EDNA

• Learning Data Structures with Java

future work

• determine the types of interactions that are suited to help users in
this domain

• implement IDE that allows us to observe user interactions

• implement IDE that allows us to initiate MI interactions

thanks

Research funded by NSERC (Lornet) and SSHRC-INE (Learning Kit)

