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Abstract 
 
This thesis presents DISCIPLE, a system illustrating a theory and a methodology for 
learning expert knowledge.  DISCIPLE integrates a learning system and an empty 
expert system, both using the same knowledge base. It is provided with an initial 
domain theory and learns problem solving rules from the problem solving steps 
received from its expert user, during interactive problem solving sessions. In this 
way, DISCIPLE evolves from a helpful assistant in problem solving to a genuine 
expert. The problem solving method of DISCIPLE combines problem reduction, 
problem solving by constraints, and problem solving by analogy.  The learning 
method of DISCIPLE depends of its knowledge about the problem solving step (the 
example) from which it learns.  In the context of a complete theory about the 
example, DISCIPLE uses explanation-based learning to improve its performance.  
In the context of a weak theory about the example, it synergistically combines 
explanation-based learning, learning by analogy, and empirical learning, developing 
its competence.  In the context of an incomplete theory about the example, 
DISCIPLE learns by combining the above mentioned methods, improving both its 
competence and performance. 
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1. INTRODUCTION  
 
 The present success of Artificial Intelligence is mostly due to the 
knowledge-based systems which proved to be useful almost 
anywhere.  
 
 As the name suggests, the power of a knowledge-based system 
comes from its knowledge.  However, building a knowledge base for 
such a system is a very complex, time-consuming, and error-prone 
process.  Moreover, the resulting system lacks or has only poor 
abilities to update its knowledge or to acquire new knowledge.  
 This problem is largely recognized as the "knowledge acquisition 
bottleneck" of the knowledge-based systems ([Feigenbaum, 1977], 
[Michalski, 1986]).  
 
 Recent Machine Learning achievements ([Michalski, Carbonell 
& Mitchell, 1983, 1986], [Langley, 1987], [Laird, 1988]) offer new 
solutions to the knowledge acquisition problem and open a new area 
in the evolution of expert systems, that is, Expert Systems capable to 
automatically acquire knowledge and learn.  
 
 The Learning Apprentice Systems (LAS) are examples of such 
learning expert systems.  
 A Learning Apprentice System is an interactive knowledge-based 
consultant which is provided with an initial domain theory and is able 
to assimilate new problem-solving knowledge by observing and 
analyzing the problem solving steps contributed by its users through 
their normal use of the system [Mitchell & al. 1985].  
 
 Representative examples of this approach are the systems 
GENESIS [Mooney & DeJong, 1985] and LEAP [Mitchell & al. 
1985]. The domain of expertise of LEAP is the VLSI design and that 
of GENESIS is story understanding.  
 A common feature of LEAP and GENESIS is that they are based 
on a strong (complete) domain theory. Such a complete theory allows 
them to learn a general rule or schemata from a single example.  
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 Nevertheless, such beautifully tailored domains are seldom 
available. A typical real world domain theory is nonhomogeneous  in 
that it provides complete descriptions of some parts of the domain, 
and only incomplete or even poor (weak) descriptions of other parts 
of the domain.  
 A learning episode, however, uses only one part of the domain 
theory, and this part may have the features of a complete, incomplete 
or weak theory, even if, globally, the theory is nonhomogeneous.  
 Therefore, a learning apprentice system should be able to learn a 
general rule or concept not only when disposing of a complete theory 
about an example, but also when disposing of an incomplete or even 
weak theory about it.  
 
 The goal of this thesis was to develop a theory and methodology 
of expert knowledge acquisition in such nonhomogeneous domain 
theories.  
 The system illustrating this theory and methodology is called 
DISCIPLE.  
 
 DISCIPLE is an interactive system which integrates an empty 
expert system and a learning system. It is initially provided with 
elementary knowledge about an application domain (knowledge 
representing a nonhomogeneous theory of the domain) and learns 
problem solving rules from the problem solving steps received from 
its expert user, during interactive problem solving sessions. In this 
way, DISCIPLE evolves from a helpful assistant in problem solving 
to a genuine expert.  
 
 The problem solving method of DISCIPLE is based on problem 
reduction.  That is, a problem is solved by successively reducing it to 
simpler subproblems. This process continues until the initial problem 
is reduced to a set of elementary problems (i.e. problems with known 
solutions). Moreover, the problem to solve may be initially 
imprecisely formulated, becoming better and better formulated as the 
problem solving process advances. To this purpose, DISCIPLE 
formulates, propagates, and evaluates constraints. 



 

9 
 

 The knowledge base of DISCIPLE contains object descriptions, 
action models, problem reduction rules, and meta-rules.  
 
 The object descriptions and the action models are elementary 
knowledge about an application domain.  
 Using such elementary knowledge, DISCIPLE learns general 
problem reduction rules from examples of reductions provided by its 
user, during the normal use of the system.  
 The meta-rules, for choosing between the rules applicable to 
reduce a problem, have to be defined by the user, once such 
competing rules have been learned.  
 
 The method of learning a general problem solving rule from a 
particular solution indicated by the user (which constitutes an 
example of the rule) depends on the system's theory (knowledge) 
about the solution.  
 
 We have considered three types of theories: complete, weak, 
and incomplete.  
 A complete theory about an example consists of the complete 
descriptions of all the objects and actions contained in the example. 
 A weak theory about an example consists only of incomplete 
descriptions of the objects from this example. 
  The intermediate case, between a complete theory and a weak 
theory, is the incomplete theory. It contains incomplete descriptions 
of the objects and the actions from the example. Also, it may lack 
some object descriptions or action models. 
 
 In the case of a complete theory about the example, the learning 
method of DISCIPLE follows the explanation-based learning 
paradigm.  
 
 First, DISCIPLE proves that the solution indicated by the user is 
indeed a solution of the problem to solve. Then it generalizes the 
proof tree as much as possible so that the proof remains valid, and 
formulates the learned rule from this generalized proof.  
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 In the case of a weak theory about the solution indicated by the 
user, DISCIPLE learns interactively by synergistically combining 
explanation-based learning, learning by analogy, and empirical 
learning. 
  
 First DISCIPLE looks for a shallow explanation of user's 
solution.  Then it uses this explanation to formulate a reduced 
version space for the rule to be learned.  Each rule in this space 
covers only instances which are analogous with the user's solution. 
DISCIPLE carefully generates such analogous instances to be 
characterized as positive examples or as negative examples by the 
user. These are used to further narrow the version space until it 
contains only the rule illustrated by the user's solution. 
  
 In the case of an incomplete theory about the user's solution, 
DISCIPLE learns a general rule by combining the learning methods 
mentioned previously.  
 
 First, the system will construct an incomplete proof of the user's 
solution and will generalize it, as in a complete theory. This will 
allow DISCIPLE to define a reduced version space for the rule to be 
learned and to perform experiments, as in a weak theory. 
 
 It is interesting to notice that the effect of the learned rule on the 
future behavior of the system depends of the domain theory. In a 
complete theory, the learned rule improves the performance of the 
system, in a weak theory it develops its competence and, in an 
incomplete theory, it develops both its performance and competence.  
 
 Another effect of learning in the context of a weak theory or an 
incomplete theory is that of developing the domain theory.  
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 2. AN INTUITIVE VIEW OF DISCIPLE  
 
 2.1 The overall architecture of DISCIPLE  
 
 DISCIPLE illustrates an approach to the knowledge transfer 
from a human expert to an expert system.  
 We would like to allow the expert to introduce into the 
knowledge base of the system only that knowledge which he may 
easily formalize, and to enable the system to learn the rest of the 
necessary knowledge.  
 
 The overall architecture of DISCIPLE is presented in figure 2.1.  
 

Problem
Solver

Knowledge
Base

Learner

Problem
Solving

Area

Learning
Area

User

Figure 2.1. Overall architecture of DISCIPLE. 
The arrows indicate the main directions of information flow.  

 
 DISCIPLE is an interactive system which integrates an empty 
expert system and a learning system.  
 Initially, the human expert has to introduce into the knowledge 
base of the system a theory of the application domain, theory 
consisting of elementary knowledge about the domain.  
 Next, DISCIPLE may be used to interactively solve problems, 
according to the following scenario:  
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 The user gives DISCIPLE the problem to solve and the expert 
subsystem starts solving this problem by showing the user all the 
problem solving steps. The user may agree or reject them. Therefore, 
during the course of its functioning as an Expert System, DISCIPLE 
may encounter two situations.  
 Either the current problem-solving step (which we shall call 
partial solution) is accepted by the user. Then,  the current state of 
the knowledge base is judged as satisfactory, and no learning will 
take place.  
 Or it is unable to propose any partial solution (or the solution it 
proposes is rejected by the user).  Then, the user is compelled to give 
his own solution. Once this solution is given, a learning process will 
take place.  DISCIPLE will try to learn a general rule so that, when 
faced with problems similar with the current one (which it has been 
unable to solve), it will become able to propose a solution similar to 
the solution given by the user to the current problem. In this way, 
DISCIPLE progressively evolves from a helpful assistant in problem 
solving to a genuine expert.  
 
 In DISCIPLE we have adopted a problem reduction approach to 
problem solving.  That is, a problem is solved by successively 
reducing it to simpler subproblems. This process continues until the 
initial problem is reduced to a set of elementary problems, that is, 
problems with known solutions. Moreover, the problem to solve may 
be initially imprecisely formulated, becoming better and better 
formulated as the problem solving process advances.  
 Therefore, the task of the learning system is that of learning 
general problem reduction rules from examples.  
 
 2.2 DISCIPLE as an Expert System  
 2.2.1 Problems to solve with DISCIPLE  
 Problem Reduction is a general method, suitable for solving a 
large variety of problems.  
 In the following, however, we shall consider only problems of 
designing action plans for achieving partially specified goals.  These 
problems are similar to those solved by NOAH [Sacerdoti, 1975], 
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NONLIN [Tate, 1977], HILARE [Giralt & al. 1979], MOLGEN 
[Stefik, 1980], PLANX10 [Sridharan & Bresina, 1982], SIPE 
[Wilkins, 1984], and others.  
 
 An example of such a problem is the following one: 
  - given the incomplete specifications of a loudspeaker; 
  - design the actions needed to manufacture the loudspeaker.  
 
 This problem is solved by a successive decomposition of the 
complex operation of manufacturing the loudspeaker into simpler 
operations, and better defining these simpler operations by choosing 
tools, materials, or verifiers, which are in turn successively refined.  
 In this process, DISCIPLE will have to completely design the 
loudspeaker, as well as the tools needed to manufacture it.  
 
 
 2.2.2 Elementary knowledge about an application 
             domain  
 
 In order to be able to build a manufacturing technique for a 
loudspeaker, DISCIPLE needs various types of knowledge:  
 - knowledge about the components of the loudspeakers, about 
the tools and the materials one can use to manufacture loudspeakers;  
 - knowledge about the actions that may be performed to 
manufacture loudspeakers;  
 - knowledge about general technological solutions for the 
manufacturing of loudspeakers;  
 - knowledge to choose between various solutions of the 
problems to solve.  
 
 These types of knowledge are represented into the knowledge 
base of DISCIPLE in the form of object descriptions, action models, 
problem reduction rules, and meta-rules, respectively.  
 An object is described by specifying its relevant factual 
properties, as well as its relations with other objects, as illustrated in 
figure 2.2.  
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collector air-jet-device
REM OVES

ISA ISA

air-sucker ABSORBS

dust

. . .

. . . . . .

 
Figure 2.2. Object descriptions.  

 
 An action is described by specifying its name (as CLEAN in the 
example below), some of its cases (the object on which the action is 
performed, the instrument used, etc.), as well as the descriptions of these 
cases (which are always object descriptions): 

CLEAN OBJECT entrefer 
             WITH   air-sucker  

 Very important additional features of an action are its preconditions 
(i.e.  the states of the world in which the action may be executed) and 
effects (i.e. the states that will result after the execution of the action). 
The traditional action planning systems make intensive use of these 
features.  Nevertheless, when acquiring knowledge from an expert, 
requiring from him/her a complete description of the preconditions and 
effects of an action may quickly lead to a dead end in the relationship 
between system and human.  This is why the preconditions and the 
effects are only optional features of an action. As we shall see, 
DISCIPLE is built precisely in order to overcome this problem.  
 The object descriptions and the action models are elementary 
knowledge about the application domain.  
 Using such elementary knowledge, DISCIPLE learns general 
problem reduction rules from examples of reductions provided by its 
user.  
 The meta-rules, for choosing between the rules applicable to 
reduce a problem, are supposed to be defined by the user, once such 
competing rules have been learned.  
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 2.2.3 The problem solving method  
 
 Let us consider designing the manufacturing of some given 
loudspeaker.  
 We start with the following top-level operation, which can be seen as 
the current goal:  
 

MANUFACTURE OBJECT loudspeaker  
 

 DISCIPLE will try to solve this problem by successive decompositions 
and specializations, as illustrated in figure 2.3 and in figure 2.4.  

  
In order to solve the problem 
  MANUFACTURE OBJECT loudspeaker 
  solve the subproblems 
 1. MAKE OBJECT chassis-assembly 
    In order to solve this subproblem solve the sub-subproblems 
 1.1 FIX OBJECTS contacts ON chassis 
 1.2 MAKE OBJECT mechanical-chassis-assembly 
 1.3 FINISHING-OPERATIONS ON entrefer 
    In order to solve this subproblem solve the  sub-subproblems 
  1.3.1 CLEAN OBJECT entrefer 
  1.3.2 VERIFY OBJECT entrefer 
 2. MAKE OBJECT membrane-assembly 
 3. ASSEMBLE OBJECT chassis-assembly WITH membrane-assembly 
    In order to solve this subproblem solve the sub-subproblems 
 3.1 ATTACH OBJECT membrane-assembly ON chassis-assembly 
 3.2 ATTACH OBJECT ring ON chassis-membrane-assembly 
     In order to solve this subproblem solve the sub-subproblems 
  3.2.1 APPLY OBJECT mowicoll ON ring 
  3.2.2 PRESS OBJECT ring ON chassis-membrane-assembly 
  4. FINISHING-OPERATIONS ON loudspeaker 
 

Figure 2.3. Problem solving operations: 
decompositions of problems into simpler subproblems. 
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 In order to solve the problem 
  CLEAN OBJECT entrefer 
 solve the specialization 
  CLEAN OBJECT entrefer WITH air-jet-device 
 
 In order to solve the problem 
  CLEAN OBJECT entrefer WITH air-jet-device 
 solve the specialization 
  CLEAN OBJECT entrefer WITH air-sucker 
 
 In order to solve the problem 
  APPLY OBJECT mowicoll ON ring 
 solve the specialization 
  APPLY OBJECT mowicoll-C107 ON ring 
 

Figure 2.4. Problem solving operations: 
specializations of problems. 

 
  
 DISCIPLE will combine such decompositions and 
specializations building a problem solving tree like the one in figure 
2.5.  
 
 This process continues until all the leaves of the tree are 
elementary actions, that is, actions which may be executed by the 
entity manufacturing the loudspeaker.  
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M ANUFACTURE OBJECT loudspeaker

M AKE 
OBJECT 
chassis- 
assembly

M AKE 
OBJECT 
membrane- 
assembly

ASSEM BLE 
OBJECT 
chassis- 
assembly 
WITH 
membrane- 
assembly

FINISHING- 
OPERATIONS 
ON 
loudspeaker

FIX 
OBJECTS 
contacts 
ON 
chassis

M AKE 
OBJECT 
mechanical- 
chassis- 
assembly

FINISHING- 
OPERATIONS 
ON 
entrefer ATTACH 

OBJECT 
membrane- 
assembly 
ON 
chassis- 
assembly

ATTACH 
OBJECT 
ring 
ON 
chassis- 
membrane- 
assembly

CLEAN 
OBJECT 
entrefer

VERIFY 
OBJECT 
entrefer

CLEAN 
OBJECT 
entrefer 
WITH 
air-jet-device

APPLY 
OBJECT 
mowicoll 
ON 
ring

PRESS 
OBJECT 
ring 
ON 
chassis- 
membrane- 
assembly

CLEAN 
OBJECT 
entrefer 
WITH 
air-sucker

APPLY 
OBJECT 
mowicoll-C107 
ON 
ring

Figure 2.5. A problem solving tree. 
The tree was built by using the decompositions from 

figure 2.3 and the specializations from figure 2.4. 
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 This is a standard AND tree, the solution to the problem from 
the top of this tree consisting of the leaves of the tree.    
 That is, to manufacture the loudspeaker, one has to perform the 
following sequence of operations:  
 

 FIX OBJECTS contacts ON chassis 
 MAKE OBJECT mechanical-chassis-assembly 
 CLEAN OBJECT entrefer WITH air-sucker 
 VERIFY OBJECT entrefer 
 MAKE OBJECT membrane-assembly 
 ATTACH OBJECT membrane-assembly ON chassis-assembly 
 APPLY OBJECT mowicoll-C107 ON ring 
 PRESS OBJECT ring ON chassis-membrane-assembly 
 FINISHING-OPERATIONS ON loudspeaker 

 
 The decompositions and the specializations model in fact the 
main operations used in design, where one usually starts with a very 
general specification of an object and successively imposes different 
constraints on the specification and reduces object design to subparts 
design.  

 
 2.4 DISCIPLE as a Learning System  
 
 The reductions in figure 2.5 resulted from the application of 
reduction rules or were indicated by the user.  
 From each reduction (decomposition or specialization) indicated 
by the user, DISCIPLE will try to learn a general reduction rule.  
 Let us suppose, for instance, that DISCIPLE was not able to 
solve the problem:  
 
  ATTACH OBJECT ring ON chassis-membrane-assembly  
 
and that the solution was indicated by the user:  
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 Example 1:  
 Solve the problem 
   ATTACH OBJECT ring ON chassis-membrane-assembly 
  by solving the subproblems 
   APPLY OBJECT mowicoll ON ring 
   PRESS OBJECT ring ON chassis-membrane-assembly 
 
 Figure 2.6. A decomposition indicated by the user.  

 From this example, representing the decomposition of the 
problem of attaching two particular parts of the loudspeaker to a 
process of gluing, DISCIPLE learns a general decomposition rule 
indicating the conditions under which one may reduce an 
'attachment' problem to a process of gluing:  

        IF 
 condition 
   (x TYPE solid) & (y TYPE solid) & 
   (x PARTIALLY-FITS y) &  
  (z ISA adhesive) & (z TYPE fluid) & 
   (z GLUES x) & (z GLUES y) 
  THEN 
  solve the problem 
   ATTACH OBJECT x ON y 
  by solving the subproblems 
   APPLY OBJECT z ON x 
   PRESS OBJECT x ON y  
 
Figure 2.7. The general decomposition rule learned from Example 1: 
if 'x' and 'y' are two solid objects that partially fits each other, and 
there is a fluid adhesive 'z' that glues both 'x' and 'y', then one may 
attach 'x' on 'y' by first applying 'z' on 'x' and then pressing 'x' on 'y'. 
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 Once learned, this rule may be used to reduce other attachment 
problems to gluing processes.  For instance, it may be used to reduce 
the problem 
  
 ATTACH OBJECT membrane-assembly ON chassis-assembly  
 
from the problem solving tree in figure 2.5, to the following 
subproblems:  
 
 APPLY OBJECT neoprene ON membrane-assembly  
 PRESS OBJECT membrane-assembly ON chassis-assembly  
 
 As one may notice, the structure of the learned rule is identical 
with the structure of the example.  Therefore, rule learning is reduced 
to learning the features that the objects 'x', 'y', and 'z' should have so 
that the attachment of 'x' and 'y' to be reduced to a process of gluing 
them with 'z'.  That is, one should learn the concepts represented by 
these objects.  
 
 The method of learning this rule depends of the knowledge 
(theory) of the system about Example 1. 
 We have considered three types of theories: complete, weak, 
and incomplete.  
 
 A complete theory about Example 1 consists of the complete 
descriptions of all the objects and the actions of this example. 
  In this case, DISCIPLE uses an explanation-based learning 
method, being able to learn at once a general rule from Example 1 
alone.  
 
 A weak theory about Example 1 consists only of incomplete 
descriptions of the objects from this example.  It differs qualitatively 
from a complete theory in that it does not contain action models. 
  In this case, DISCIPLE uses an interactive learning method that  
synergistically combines explanation-based learning, learning by 
analogy, and empirical learning.  
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 The intermediate case, between a complete theory and a weak 
theory, is the incomplete theory. As compared to a complete theory, 
an incomplete theory may lack some object descriptions or action 
models.  Also, it may contain incomplete descriptions of objects and 
actions.  As compared to a weak theory, an incomplete theory 
contains action models, while a weak theory does not. 
  In this case, DISCIPLE learns the decomposition rule in figure 
2.7 by combining the method corresponding to the weak theory with 
the method corresponding to the complete theory.  
 
 Although, in each of the above cases, the system learns the same 
rule, this rule has a different impact on the future behavior of the 
system. In a complete theory, it improves the performance of the 
system, in a weak theory it develops the competence of the system, 
and, in an incomplete theory, it develops both the performance and 
the competence.  
 
 An important side effect of learning in the context of a weak 
theory or an incomplete theory is that of developing the domain 
theory.  
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 3. KNOWLEDGE REPRESENTATION  
 
 One of our prime concern was to define a knowledge 
representation and organization suitable for both problem solving 
and learning.  
 
 The knowledge base of DISCIPLE is organized around the 
notion of 'concept', supporting the fundamental operations with the 
concepts:  
 - comparing the generality of concepts; 
 - generalizing concepts; 
 - particularizing concepts. 
 The problem solving and learning mechanisms of DISCIPLE are 
based on these elementary operations.  
 
 The knowledge base contains object descriptions, action models, 
reduction rules, and meta-rules.  
 The object descriptions and the action models are concepts. The 
reduction rules and the meta-rules are more complex entities which 
are built with concepts.  
 
 In this section we define the notion of concept and the basic 
operations with concepts.  The reduction rules are defined in section 
4 and the meta-rules are defined in section 5.  
 
 
 3.1 Concepts  
 
 Let 'U' be a universe of instances.  
 An instance may represent an object, an action, a goal or a state.  
 Let 'SP' be a set of predicates over the universe 'U'. 
 Each predicate 'P' from 'SP' splits the set 'U' into two subsets: 
 

E = { e ∈ U | (P e) = TRUE }  
C = { c ∈ U | (P c) = FALSE } 
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 One says that the predicate 'P' asserts the concept representing 
the set of instances 'e' having the property 

'(P e) = TRUE'.  
 
 An instance 'e' from 'E' is called an example or a positive 
example of the concept asserted by 'P' (for short, the concept 'P'), 
and an instance 'c' from 'C' is called a counterexample or a negative 
example of the concept 'P'.  
 
 Let 'adhesive' be the concept representing the set of objects 
which could be used for gluing other objects.  
 
 To state that 'mowicoll' is a positive example of 'adhesive' one 
may write: 

(adhesive mowicoll) = TRUE 
or 

(mowicoll ISA adhesive)  
 
 To state that 'water' is a negative example of 'adhesive' one may 
write:  

(adhesive water) = FALSE 
or 

 NOT(water ISA adhesive)  
 
 
 3.2 Representation language 
  
 As in [Kodratoff & Ganascia, 1986], we define a representation 
language as follows:  
 
 Let 'V' be a countable set of variables.  
 
 Let FF = F0 U F1 U ...  U Fn U ...  be a family of functions, 
where 'Fn' is the set of functions of arity 'n' and 'F0' is the set of 
constants.  
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 The set of terms on 'V' and 'FF' is defined by:  
 - v ∈ V is a term;  
 - f(t1,...,tn) is a term if and only if f�Fn and t1,...,tn are terms.  
 Thus, the set of terms is the set of expressions built with 
functions of some arity, constants, and variables.  
 
 Let SP = SP0 U SP1 U ...  U SPn U ...  be a set of predicates, 
where 'SPn' is the set of predicates of arity 'n' and 'SP0' is the set of 
the constants 'TRUE' and 'FALSE'.  
 These predicates may be related by one or several generalization 
hierarchies as, for instance, the following one:  
 

object

ISA ISA

adhesive

ISA ISA

neoprene mowicoll

ISA

mowicoll-C107

ISA

. . .

. . .  
 
 Let 't1', ... , 'tn' be terms and 'p � SPn'. Then '(p t1 ...  tn)' and 
'NOT(p t1 ...  tn)' are called literals.  
 Because most of the used predicates are binary ones, we shall 
further write the literals in the following, more intuitive, form: 

'(t1 p t2)' 
  
 The predicates may have properties or may be related by 
theorems as, for instance, the following ones:  
   commutativity:  
   ∀x, ∀y  (x NEAR y) −−> (y NEAR x)  
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   transitivity: 
    ∀x, ∀y  (x ON y) & (y ON z) −−> (x ON z)  
 
   theorem:  
   ∀x, ∀y  (x ABSORBS y) −−> (x GETS y)  
 
 The quadruple (FF, SP, H, L) is called a representation 
language, where H is the set of the theorems and properties of the 
predicates, variables, and constants, and L is the set of the logical 
connectors 'AND' and 'NOT', and of the connectors for specifying 
action concepts.  
 
 3.3 Object concepts  
 
 The knowledge base of DISCIPLE contains generic object 
concepts which are represented into hierarchical semantic networks, 
as the one in figure 3.1.  
 

air-mover cleaner

ISA ISA ISA ISA

ventilator

dust

REM OVES

air-jet-device solvent

DISSOLVES

glueISA ISA ISA ISA

ABSORBS

air-sucker air-press alcohol acetone

emery-paper

ISA

 
Figure 3.1. A hierarchical representation of generic object concepts.  
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 In general, an object concept is defined as belonging to one or 
more super-concepts and having additional properties.  The value of 
a property may be a constant or another concept.  
 
 Other object concepts may be defined in terms of such generic 
object concepts as, for instance, the following one, denoted by the 
variable 'y':  
 
 (y ISA cleaner) & (y REMOVES glue) & 
  NOT(y DESTROYS membrane)  
 
 Two types of theorems are implicitly represented into the 
concept hierarchies.  
 One is the transitivity of 'ISA' as, for instance, 
  
 (alcohol ISA solvent) & (solvent ISA cleaner)  
                                                                     −−> (alcohol ISA cleaner)  
or 
 ∀x (x ISA ventilator) & (ventilator ISA air-mover) 
                                                                     −−> (x ISA air-mover)  
 
 The other theorem which is implicitly represented into the 
object hierarchies is the inheritance of properties from a more 
general concept to a less general one as, for instance, 
  
 (air-jet-device REMOVES dust) & (air-press ISA air-jet-device) 
                                                        −−> (air-press REMOVES dust)  
or 
 ∀x (x ISA air-sucker) & (air-sucker ABSORBS dust) 
                                                        −−> (x ABSORBS dust)  

 
 3.4 Action concepts  
 
 In DISCIPLE, an action concept is defined by specifying its name, 
some of its cases [Filmore, 1968] (the agent performing the action, the 
object on which the action is performed, the instrument used, etc.), as 
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well as the descriptions of these cases (which are always object 
descriptions). 
 
 For instance, the following action concept represents the set of all the 
cleaning actions where the object to be cleaned is an 'entrefer' and the 
instrument used is an 'air-sucker': 
 
 CLEAN OBJECT e WITH a 
  where (e ISA entrefer) & (a ISA air-sucker) 
 or  
 CLEAN OBJECT (entrefer e) 
                WITH   (air-sucker a)  
 
 Optional features of an action concept are its preconditions (i.e.  the 
states of the world in which the action may be executed) and effects (i.e. 
the states of the world that will result after the execution of the action). 
 For instance, the following is a "complete" description of the action 
'APPLY': 
 

Action Preconditions Effects

APPLY OBJECT z ON x (z TYPE fluid) & 
(z ADHERENT-ON x) & 
(x TYPE solid)

(z APPLIED-ON x)

 
  This action may be performed if and only if 'x' is a solid object 
and 'z' is a fluid object which is adherent on 'x'. As an effect of 
performing this action, 'z' will be applied on 'x'.  
 One may notice that the features of the objects are specified in 
the action's preconditions.  
 
 3.5 States and goals  
 
 A state of the world is a specification of all the objects and their 
current properties and relations.  
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 A goal is a desired partial specification of a world state.  That is, 
a goal is also a specification of objects.  
 
 For instance  
 (membrane-assembly ATTACHED-ON chassis-assembly)  
represents the goal of having the membrane-assembly attached on 
the chassis-assembly.  This goal is identified with the set of states in 
which this property holds.  
 
 
 3.6 Intuitive definition of generalization  
 
 Generalization is a fundamental property of a concept.  
 Intuitively, a concept 'P' is said to be more general than another 
concept 'Q' if 'P' takes the value TRUE in all the cases in  which 'Q'  
takes  the value  TRUE.  
 
 Let 'P' and 'Q' be the concepts representing the following sets of 
instances:  

{Ptrue} = { x | (P x) = TRUE }  
{Qtrue} = { x | (Q x) = TRUE }   

 
 One says that the concept 'P' is more general than the concept 
'Q' if and only if {Qtrue} is included into {Ptrue}.  
 
 Let 'mowicoll' be the set of adhesives of type mowicoll. The 
concept 'adhesive' is clearly more general than the concept 
'mowicoll'.  One may express it as follows:  

(mowicoll ISA adhesive)  
 
 Notice that this definition of generalization is extensional, based 
upon the instance sets of concepts.  It is useful in practice only for 
showing that 'Q' is not more general than 'P'.  Indeed, in such a 
situation, it is enough to find an instance 'x' such that  

(P x) = TRUE and (Q x) = FALSE  
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 In order to show that 'P' is more general than 'Q', this definition 
would require the computation of the (possible infinite) sets of the 
instances of 'P' and 'Q'.  
 However, in a representation language, one may define a more 
operational definition of the more general than relation, as will be 
shown in the next section. 
 
 
 3.7 Generalization in a representation language  
 
 The generalization is defined in terms of substitutions, as in 
[Kodratoff & Ganascia, 1986].  
 
 A substitution has the following form:  
 σ = (x1<−f1, ... , xn<−fn)  
 In DISCIPLE,  each 'xi' (i=1,...,n) is a variable or a concept and 
each 'fi' (i=1,...,n) is a term or a concept. 
  If 'xi' is a variable then 'fi' is a term, and if 'xi' is a concept then 
'fi' is a less general concept (according to a generalization hierarchy 
from the representation language).  
 
 If 'li' is a literal, then 'σli' is the literal obtained by substituting 
each 'xi' from 'li' with 'fi'.  
 
 
 3.7.1 Term generalization  
 
 We say that the term 't1' is more general than the term 't2' if 
there exists a substitution σ such that σt1=t2.  
 
 Let t1 = VOLUME-CYLINDER(r h) 
        t2 = VOLUME-CYLINDER(3 7) 
        σ = (r<−3, h<−7)  
             σt1 = t2 
         so 't1' is more general than 't2'  
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 This definition does not take into account the properties of the 
functions.  In general, however, one needs to use these properties to 
show that two terms are equal.  

 
 Let t1 = VOLUME-CUBOID(x y z) 
        t2 = VOLUME-CUBOID(x z y)  
 To show that these terms are equal one needs to use the axiom 
of commutativity of the arguments of the function VOLUME-
CUBOID.  
 
 Therefore, we say that the term 't1' is more general than the 
term 't2' iff there exist 't1"', 't2"', and a substitution σ, such that:    
 t1" = t1 
 t2" = t2 
 σt1"= t2" 
 
 Let 
 t1 = VOLUME-CUBOID(x y x) 
 t2 = VOLUME-CUBOID(5 5 7) 
 t1"= VOLUME-CUBOID(x x y) 
 σ = (x<−5, y<−7) 
 σt1"  =  t2. 
 Therefore, 't1' is more general than 't2'. 
 
 
 3.7.2 Literal generalization  
 
 The literal 'l1 = (p1 t11 ... t1n)' is more general than the literal 
'l2 = (p2 t21 ...  t2n)' if and only if there exist 'l1"', 'l2"', and 'σ' such 
that:  
 l1" = l1 
  l2" = l2 
  σl1"= l2"  
 If 'l1' is more general than 'l2' then 'p1 = p2' or 'p1' is more 
general than 'p2', according to a generalization hierarchy from the 
representation language.  
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 3.7.3 Conjunctive formula generalization  
 
 Let us consider two conjunctive formulas:  

A = A1 & A2 & ... & An  
B = B1 & B2 & ... & Bm  

where 'Ai' (i = 1, ... ,n) and 'Bj' (j = 1, ... ,m) are literals.  
 'A' is more general than 'B' if and only if there exist 'A"', 'B"', 
and 'σ' such that:  
 
 A" = A,    A" = A1" & A2" & ... & Ap"  
 B" = B,    B" = B1" & B2" & ... & Bq"  
 ∀ i∈{1,...,p},  ∃ j∈{1,...,q} such that σAi" = Bj".  
 
 Otherwise stated, one transforms the formulas 'A' and 'B', using 
the theorems and the properties of the representation language, so 
that to make each literal from 'A"' more general than a corresponding 
literal from 'B"'.  
 Notice that some literals from 'B"' may be "left-over", i.e.  they 
are matched by no literal of 'A"', as in the following example.  
 
 Let 
  A = (u ISA adhesive) & (u GLUES v) & (u GLUES w) 
  B = (x ISA adhesive) & (x GLUES y) & (x TYPE fluid)  
 One may transform 'B' by using the idempotence of the '&' 
operator (P=P&P), thus obtaining:  
 B"= (x ISA adhesive) & (x GLUES y) & (x GLUES y) &  
             (x TYPE fluid)  
 There exists 'σ = (u<−x, v<−y, w<−y)' such that:  
 σA = (x ISA adhesive) & (x GLUES y) & (x GLUES y)  
 That is, 'σA' is a part of 'B"'. Therefore, 'A' is more general than 'B'.  
 
 We have defined the more general relation in the context of the 
representation language of DISCIPLE. 
 In the next section we shall show how one can effectively 
generalize or particularize concepts, by applying syntactic rules of 
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generalizations/particularizations (which may be regarded as 
elementary substitutions). 
 

  3.8 Syntactic rules of generalization/particularization 
  
 To generalize concepts, DISCIPLE uses syntactic rules of 
generalization [Michalski, 1983; Kodratoff & Ganascia, 1986].  
 It is important to notice that these rules do not preserve the truth.  
That is, if 'A' is true and is generalized to 'B', then the truth of 'B' is 
not guaranteed. Therefore, one fundamental problem of the learning 
systems is to make those generalizations that preserve the truth.  
 
 To particularize concepts, one may use the same rules in the 
reverse order.  
 
 
 3.8.1 Turning constants into variables  
 
 This rule consists in generalizing an expression by replacing a 
constant with a variable.  
 
 For instance, the expression  

(x ISA cleaner) & (x ABSORBS dust)  
may be generalized to  

(x ISA cleaner) & (x ABSORBS y)  
by turning the constant 'dust' into the variable 'y'.  
 
 The first expression represents the set of 'cleaners' that absorb 
'dust' while the second expression represents the set of 'cleaners' that 
absorbs something.  Since the second set includes the first one, it is 
more general.  
 
 
 
 
 



 

33 
 

 3.8.2 Turning occurrences of a variable into different variables 
 
 According to this rule, the expression 
 
 TIN OBJECTS (terminal-wires t) 
       WITH    (tinning-bath x) 
 TIN OBJECTS (coil-ends c) 
       WITH    (tinning-bath x) 
 
may be generalized to 
 
 TIN OBJECTS (terminal-wires t) 
        WITH    (tinning-bath u) 
 TIN OBJECTS (coil-ends c) 
        WITH    (tinning-bath v) 
 
 The first expression represents the set of the sequences 
consisting of two TIN operations, both using the same 'tinning-bath' 
named 'x'.  
 The second expression represents the set of the sequences 
consisting of two TIN operations, using the 'tinning-bathes' named 'u' 
and 'v', respectively.  
 In particular, 'u' and 'v' may represent the same 'tinning-bath'.  
Therefore, the second set includes the first one, and the second 
expression is more general than the first one.  
 
 3.8.3 Climbing the generalization hierarchies 
  
 The concepts from DISCIPLE's knowledge base are organized 
into generalization hierarchies, as has been shown in section 3.3. 
  Using such hierarchies, DISCIPLE may generalize an 
expression by replacing a concept with a more general one.  
 For instance, the expression   

(x ISA emery-paper) & (x REMOVES y)  
may be generalized to  

(x ISA cleaner) & (x REMOVES y)  
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by replacing the concept 'emery-paper' with the more general concept 
'cleaner'.  
 
 3.8.4 Dropping conditions  
 
 This rule consists in generalizing a concept by removing a 
constraint from its description [Kodratoff & al. 1984].  
 
 For instance, the expression     (x ISA adhesive) & (x TYPE 
fluid)  
may be generalized to                 (x ISA adhesive)  
by removing a constraint on the 'adhesive' to be of type fluid.  
 
 3.8.5 Using theorems 
  
 The knowledge base of DISCIPLE also contains theorems for 
deducing  properties  and relations between  concepts  from other 
properties and relations.  If 'B−>C' is such a theorem, then one may 
generalize 'B' to 'C', or 'A & B' to 'A & C'.  
 
 For instance, using the theorem 
 ∀x ∀y [(x GLUED-ON y) −> (x ATTACHED-ON y)]  
one may generalize the expression 
 (r ISA ring) & (c ISA chassis-membrane-assembly) & 
 (r GLUED-ON c) 
to 
 (r ISA ring) & (c ISA chassis-membrane-assembly) & 
 (r ATTACHED-ON c) 
 
 As has be shown in section 3.3, two types of theorems are 
implicitly represented into the concept hierarchies. They are the 
transitivity of the generalization relation and the inheritance of 
properties from a more general concept to a less general one.  
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 Let us notice that the above syntactic rules of generalization are, 
in fact, special cases of using theorems rule [Vrain, 1987].  However, 
making them explicit, improves the efficiency of the system.  

 
 3.8.6 Structural generalization  
 
 This rule consists in the reverse application of a decomposition 
rule  'A −−> C(A1, ... ,An) '. 
 
 Let us consider, for instance, the following decomposition rule:  
 
   IF 
    NOT (x MATERIAL fragile) & 
    (x THICKNESS thick) & 
    (y MATERIAL rigid) 
   THEN 
   solve the problem 
    ATTACH OBJECT x ON y 
   by solving the subproblems 
    MAKE OBJECTS rivets ON x 
    MAKE OBJECTS holes IN y 
    RIVET OBJECT x WITH y 
 
 This rule suggests that we might generalize the following 
sequence of actions 
 
 MAKE OBJECTS rivets ON (upper-flange u) 
 MAKE OBJECTS holes IN (chassis c) 
 RIVET OBJECT u WITH c 
to 
 ATTACH OBJECT (upper-flange u) ON (chassis c) 
 
 The second expression represents the set of the technological 
solutions for attaching an 'upper-flange' on a 'chassis'. This set 
includes, among others, the attachment by riveting (that is, the 
technological solution represented by the first expression).  
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 4. PROBLEM SOLVING MECHANISMS  
 
 The problem solving mechanisms of DISCIPLE are based on 
techniques of problem reduction [Nilsson, 1971], formulation, 
propagation and evaluation of constraints [Stefik, 1980], and 
problem solving by analogy [Carbonell, 1986].  All these techniques 
are reduced to the basic operations with concepts, and are integrated 
into a unitary problem reduction method. 
  In the following we shall describe these problem solving 
mechanisms.  
 
 
 4.1 Problem reduction  
 
 4.1.1 The problem reduction method  
 
 The problem reduction method may be formulated as follows: 
  

 
 Given: 
  - the description of an initial problem;  
 - a set of reduction rules for transforming problems into 
    subproblems; 
  - a set of primitive problems, i.e. problems with known 
   solutions.  
 
 Determine: 
  - a set of primitive problems that solve the initial problem, 
   by successively applying the reduction rules.  
 

Figure 4.1. The problem reduction method. 
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 4.1.2 Decomposition rules  
 
 In DISCIPLE, a reduction rule has the following form: 
 
  IF 
  condition 
  K(x1,...,xn,...,xq) 
 THEN 
 solve the problem 
  P(x1,...,xn) 
 by solving the subproblems 
  C( P1(x1,...,xn,...,xq), 
             P2(x1,...,xn,...,xq), 
              ... 
             Pm(x1,...,xn,...,xq) ) 
 
 This rule indicates the decomposition of the problem 'P' into a 
set of subproblems 'P1', 'P2', ...  , 'Pm'.  Therefore we shall call such a 
rule a decomposition rule.  
 'C' is a combinator which indicates the way of combining the 
solutions of the problems 'P1', 'P2', ...  , 'Pm', in order to obtain the 
solution of the problem 'P'.  
 'K' is a conjunction of predicates that have to be true in order for 
the rule to be applicable.  
 One should notice that 'K', 'P1', 'P2',..., and 'Pm' may contain 
variables not present in 'P'.  These variables are supposed to be 
existentially quantified.  
 
 The rule form given here is general in that it does not represent 
the decomposition of a specific problem, but the decomposition of an 
entire set of problems. This set contains any problem which is less 
general than 'P' and satisfies 'K'. It is defined as follows: 
  
 { Pa | there exists σ such that σP = Pa and σK = TRUE }  
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 Let 'Pa' be the problem to be solved and 'σ' a substitution such 
that 'σP = Pa' and 'σK = TRUE'.  
 Then, the above rule indicates the following decomposition of 
the problem 'Pa': 'C(σP1, σP2, ... , σPm)'.  

 
 4.1.3 Decomposition of problems  
 
 Let us consider the following decomposition rule, indicating a 
way to perform the attachment of two objects:  
 
 IF 
  (x TYPE solid) & 
  (y TYPE solid) & 
  (x PARTIALLY-FITS y) & 
  (z ISA adhesive) & 
  (z TYPE fluid) & 
  (z GLUES x) & 
  (z GLUES y) 
 THEN 
 solve the problem 
  ATTACH OBJECT x ON y 
 by solving the subproblems 
  APPLY OBJECT z ON x 
  PRESS OBJECT x ON y 
 
 The variable 'z', in the condition of this rule, is considered to be 
existentially quantified. 
 
 Let us now consider the following problem to solve: 
 ATTACH OBJECT membrane-assembly ON chassis-assembly 
 
 In order to decompose this problem one must first find a 
substitution 'σ' such that: 
 
 σ(ATTACH OBJECT x ON y) = 
          ATTACH OBJECT membrane-assembly ON chassis-assembly 



 

39 
 

 This substitution is 
 
 σ = (x <− membrane-assembly, y <− chassis-assembly) 
 
 Next, one has to verify that, in the current situation, 
 
 σ(condition) = TRUE 
 
 That is, one has to verify that the following expression 
 
 (membrane-assembly TYPE solid) & 
 (chassis-assembly TYPE solid) & 
 (membrane-assembly PARTIALLY-FITS chassis-assembly)& 
 (z ISA adhesive) & 
 (z TYPE fluid) & 
 (z GLUES membrane-assembly) & 
 (z GLUES chassis-assembly) 
 
is true, where the variable 'z' is considered to be existentially 
quantified. 
 
 If the above expression is true, then one can solve the problem 
 
 ATTACH OBJECT membrane-assembly ON chassis-assembly 
 
by solving the subproblems 
 
 APPLY OBJECT z ON membrane-assembly 
 PRESS OBJECT membrane-assembly ON chassis-assembly 
 where: (z ISA adhesive) & 
   (z GLUES membrane-assembly) & 
   (z GLUES chassis-assembly) & 
   (z TYPE fluid) 
 
 Notice that the choice of an appropriate adhesive is a problem to 
be addressed later. 
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 Another decomposition rule is the following one: 
 
 IF 
  (l ISA loudspeaker) & 
  (l HAS s) & 
  (s ISA screening-cap) 
 THEN 
 solve the problem  
  FINISHING-OPERATIONS  ON  l 
 by solving the subproblems 
  VERIFY  OBJECT   l 
  ATTACH  OBJECT  s  ON  l 
  MARK  OBJECT  l 
 
 This rule states that the finishing operations for a 'loudspeaker' 
having a 'screening-cap' consist in verifying the 'loudspeaker', 
attaching the 'screening-cap' on the 'loudspeaker', and marking the 
'loudspeaker'.  
 
 4.2 Problem solving by constraints  
 
 DISCIPLE is designed to solve problems which are initially 
imprecisely formulated but become better and better formulated as 
the problem solving process advances.  To this purpose it formulates, 
propagates, and evaluates constraints.  
 
 4.2.1 Constraint formulation  
 
 Constraint formulation is the process of imposing constraints on 
the problems to solve.  
 One way of formulating constraints in DISCIPLE is to apply 
specialization rules.  
 A specialization rule has the following form:  
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  IF 
   condition 
   K(x1,...,xn,...,xq) 
  THEN 
  solve the problem 
   P(x1,...,xn) 
  by solving the specialization 
   Pi(x1,...,xn,...,xq) 
 
 This rule states that if the condition 'K' is satisfied then the 
problem 'P' may be constrained to the problem 'Pi'.  
 In DISCIPLE, constraining a problem means providing a more 
precise specification of it.  
 As in the case of the decomposition rules, a specialization rule is 
general in that 'P' does not represent a particular problem, but an 
entire set of problems.  This set contains any problem that is less 
general than 'P' and satisfies 'K'. It is defined as follows:  
 
 { Pa | there exists σ so that σP = Pa and σK = TRUE }  
 
 Given a problem 'Pa' from this set, the above rule will suggest to 
constrain 'Pa' to 'σPi'.  
 
 If 'P' represents an action, then a specialization rule may 
constrain the action to use a certain instrument, as in the case of the 
following examples:  
 
 
 
 
 
 
 
 
 



 

42 
 

    IF 
     (x HAS z) & 
     (z ISA waste-material) & 
     (y ISA cleaner) & 
     (y REMOVES z) & 
     NOT(y DESTROYS x) 
    THEN 
    solve the problem 
     CLEAN OBJECT x 
    by solving the specialization 
     CLEAN OBJECT x WITH y 
 

    Figure 4.2. A specialization rule. 
 This rule states that, in order to clean an object 'x' which presents a  waste material  
'z',  one should use a cleaner  'y'  which removes  'z'  but does not destroys 'x'. 

 
 Another specialization rule is the following one: 

    IF 
     (y ISA feature) & 
     (z ISA measurement-instrument) & 
     (z MEASURES y) 
    THEN 
    solve the problem 
     VERIFY OBJECT x 
                  FEATURE y 
    by solving the specialization 
     VERIFY  OBJECT x 
                  FEATURE y 
                  INSTRUMENT z 
 

Figure 4.3. Another specialization rule. 
 This rule states that, in order to verify a feature 'y' of an  object 'x', 
 one should use a measurement instrument 'z' which measures 'y'.  
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 If the current problem is to design an object, then a 
specialization rule may specify a new feature of the object.  
 
 DISCIPLE solves problems in a hierarchical manner, 
formulating more and more detailed constraints as the problem 
solving process advances.  In this way, it is not forced to consider all 
the details from the very beginning, but only when they are needed.  
 
 4.2.2 Constraint propagation  
 
 Constraint propagation is the process of transmitting the 
constraints from one problem to another problem.  This is the way 
the problems communicate between themselves.  
 
 A problem is usually under-constrained in that there are many 
possible specializations of it which achieve the desired goal.  
 By constraint propagation this problem receives constraints 
from other problems.  
 Constraint propagation thus makes a least-commitment 
strategy possible.  That is, DISCIPLE keeps open its options and 
reasons by elimination when constraints from other problems are 
received.  
 
 In DISCIPLE, constraint propagation is an instantaneous 
process due to the fact that the objects from the problems to solve are 
uniquely represented.  
 Let us consider, for instance, two tinning operations, each using 
the same tinning-bath 'x':  
 
 TIN OBJECTS (terminal-wires t) 
       WITH     (tinning-bath x) 
 TIN OBJECTS (coil-ends c) 
       WITH     (tinning-bath x) 
 
 DISCIPLE maintains a unique description of 'x'. Therefore, if 
one of these two operations is specialized by imposing a constraint to 
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the tinning-bath 'x', then the other tinning operation is automatically 
specialized, since it refers the same object 'x'.  
 
 DISCIPLE maintains a history of the successive constraints of a 
variable, being able to undo these constraints when it fails to solve a 
problem.  
 
 4.2.3 Constraint evaluation  
 
 Constraint evaluation is the process of determining values for 
variables, values satisfying the constraints imposed on the variables.  
 In DISCIPLE, the constraints describe the features which are 
needed for the objects specified in the problems to be solved.  
 
 Constraint evaluation is a decision problem of the type buy or 
build [Stefik, 1980]. First of all, DISCIPLE looks in its knowledge 
base for an object that satisfies the constraints.  If no object is found 
then the system will try to design the object. Thus, the design of the 
object becomes a new problem to solve.  
 Let us consider, for instance, the following description:  

(c ISA cleaner) & (c REMOVES t)  
and the object hierarchy in figure 3.1.  
 Each object concept from the hierarchy in figure 3.1 which is 
less general than 'c' represents a valid value for 'c'.  
 Following its least commitment strategy, DISCIPLE will choose 
the most general possible concept among the ones less general than 
'c'. That is, the above concept may be replaced with 'air-jet-device' 
(by turning the variable 't' into the constant 'dust') or with 'solvent' 
(by turning 't' into 'glue').  
 
 The specialization rules proved very useful in the technology 
design domain, allowing to introduce into an action description 
information concerning tools, devices, verifiers or materials.  
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 4.3. Problem solving by analogy  
 
 [Carbonell, 1986] defines problem solving by analogy as the 
process of "transferring knowledge from past problem-solving 
episodes to new problems that share significant aspects with 
corresponding past experience and using the transferred knowledge 
to construct solutions to the new problems."  
 Two problems are considered to share significant aspects if they 
match within a certain threshold, according to a given similarity 
metric.  In this case, the past problem solving episode is perturbed in 
such a way as to satisfy the requirements of the new problem.  
 
 From the past problem solving episodes DISCIPLE learns rules. 
Therefore, a rule represents a generalized problem solving episode. 
However, if the domain theory is incomplete or weak, the learned 
rules may not specify a single applicability condition (as was 
presented in the previous sections) but two conditions (as will be 
presented in sections 8 and 9):  
 
 IF 
  analogy criterion 
  Kg(x1,...,xn,...,xq) 
  condition 
  K(x1,...,xn,...,xq) 
 THEN 
 solve the problem 
  P(x1,...,xn) 
 by solving the subproblems 
  C( P1(x1,...,xn,...,xq), 
              P2(x1,...,xn,...,xq), 
               ... 
              Pm(x1,...,xn,...,xq) ) 
 
 If the problem to solve does not satisfy the condition of the rule 
but does satisfy the analogy criterion, then one may look for a 
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reduction of the problem by analogy with the reduction specified in 
the rule.  
 Let 'Pa' be the current problem to solve.  
 
 If there exists a substitution 'σ' such that 'σP = Pa' and 'σK = 
TRUE' then 'C(σP1, σP2, ... , σPm)' is a decomposition of 'Pa', no 
analogy process taking place.  
 
 If  'σK = FALSE'  but  'σKg = TRUE'  then 'C(σP1, σP2, ... 
,σPm)' is a decomposition of 'Pa', obtained by analogy with the 
decomposition of 'P' to 'C(P1, P2, ...  , Pm)'.  
 
 We do not go into further details on this process since it will 
become evident after the presentation of the learning methods of 
DISCIPLE.  
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 5. CONTROL MECHANISMS  
 
 5.1 Definition of the search space 
 
   Let us suppose that DISCIPLE has to solve the problem 'Pa'.  In 
principle, there may be several applicable rules, each indicating a 
partial solution to 'Pa' (a decomposition or a specialization).  
 
 Let R1, R2, and R3 be the applicable rules which suggest the 
reduction of 'Pa' to 'C(Pb,Pc)', 'Pd', and 'C(Pe,Pf,Pg)', respectively.  
 
 Therefore, to solve the problem 'Pa', one may either: 
  - solve the problems 'Pb' and 'Pc', or 
 - solve the problem 'Pd', or 
 - solve the problems 'Pe', 'Pf' and 'Pg'.  
 
 One may represent all these alternatives in the form of an 
AND/OR tree:  
 

Pa

R1 R2 R3

C(Pb,Pc) Pd C(Pe,Pf,Pg)

Pb Pc Pe Pf Pg  
 

Figure 5.1 An AND/OR tree. 
 
 The node 'Pa' is called an OR node since for solving the 
problem 'Pa' it is enough to solve 'C(Pb, Pc)' OR 'Pd' OR 'C(Pe, Pf, 
Pg)'.  
 The node 'C(Pb, Pc)' is called an AND node since for solving it 
one must solve 'Pb' AND 'Pc'.  
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 This tree may still be developed by considering all the rules 
applicable to its leaves (Pb, Pc, Pd, Pe, Pf, Pg).  In this way one may 
build the entire search space for the problem 'Pa'. This space 
contains all the solutions to 'Pa'.  
 Usually, however, one solution is enough.  To find it one needs 
only to build enough of the tree to demonstrate that 'Pa' is solved.  
Such a tree is called a solution tree. 
  
 A node is solved in one of the following cases:  
 1. it is a terminal node (a primitive problem); 
  2. it is an AND node whose successors are solved; 
  3. it is an OR node which has at least one solved successor. 
  
 Similarly, a node is unsolvable in one of the following cases:  
 1. it is a nonterminal node that has no successors 
    (a nonprimitive problem to which no rule applies) 
  2. it is an AND node which has at least one unsolvable 
    successor. 
  3. it is an OR node which has all the successors unsolvable.  
 
 To solve the problem 'Pa', one has to build a solution tree.  Once 
the problem solver detects that a node is solved or unsolvable it 
sends this information to the ancestors of the node. When the node 
'Pa' becomes solved, one has found a solution to 'Pa'.  If the node 'Pa' 
becomes unsolvable, then no solution to 'Pa' exists.  
 

 The presented method supposes an exhaustive search of the 
solution space.  Usually, however, the real world problems are 
characterized by huge search spaces and one has to use heuristic 
methods in order to limit the search.  
 [Feigenbaum & Feldman, 1963] defines the heuristic as being "a 
rule of thumb, strategy, trick, simplification, or any other kind of 
device which drastically limits search for solutions in large problem 
spaces.  Heuristics do not guarantee optimal solutions; in fact they do 
not guarantee any solution at all; all that can be said for a useful 
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heuristic is that it offers solutions which are good enough most of the 
time".  
 One may distinguish between two types of control decisions:  
 1. Attention focusing: what problem, among the leaves of            
the problem solving tree, to reduce next ?  
 2. Meta-rule: what rule, among the applicable ones, to            
use for reducing the current problem ?  
 
 The first type of decision establishes the global strategy for 
searching the solution tree.  
 One may distinguish between different global search strategies: 
  - breadth first search; 
  - depth first search; 
  - heuristic search (the heuristics establish the next problem to 
   solve); 
  - user directed search (the user establishes the next problem 
   to solve); 
  - etc.  
 
 The second type of decision consists in choosing the solution of 
a problem, in order to optimize certain criteria.  
 
 In the next sections we shall discuss these two types of decisions 
in detail.  
 
 5.2 Global control of the search  
 
 The AND/OR tree in figure 5.1 supposes parallel development 
of several solution paths.  
 In the current implementation of DISCIPLE one develops an 
AND tree as the one in figure 2.5 and backtracks when problem 
solving fails.  
 Otherwise stated, DISCIPLE will not develop the problem 
solving tree in figure 5.1.  To reduce the problem 'Pa' it will apply 
only one of the rules R1, R2 or R3 as, for instance, R1. When it will 
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discover that this path does not lead to a solution, it will backtrack to 
'Pa' and will reduce it with another rule.  
 
 The global control in DISCIPLE is based on the agenda 
mechanism [Stefik, 1980].  
 DISCIPLE maintains an agenda of the problems to be solved. 
Initially this agenda contains only the problem indicated by the user.  
 This initial problem evolves in a problem solving tree, as it is 
successively decomposed and specialized (see figure 2.5).  
 Each leaf of this tree is a new problem to reduce.  
 First, one has to decide on the next problem to reduce, among 
the leaf problems.  
 Next, one has to establish the kind of reduction to apply: 
  - to decompose the problem to a set of subproblems; 
  - to specialize the problem to a better defined one; 
  - to specialize an object from the problem.  
 
 Although such a control strategy might itself be learned, we 
have not yet considered this learning task. Instead, several control 
strategies (depending on the application domain) are easy to 
implement into the system.  Such a special control strategy will be 
presented in section 10.1.  
 
 Depending on the implemented control strategy, the system may 
decide itself which problem to reduce next and what kind of rule to 
look for.  However, for real world applications, it is important that 
the user himself be able to control the problem solving process.  To 
this purpose, he may use the following commands:  
 - decompose the current problem; 
  - specialize the current problem to a better defined one; 
  - specialize an object from the current problem;  
 - print the current partial solution (the leaves of the current 
   problem solving tree); 
  - delete the subtree of the current problem (that is, disregard 
   the partial solution of the problem);  
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as well as commands for crossing the current problem-solving tree: 
move to the father (first son, left brother, left-most brother, right 
brother, right-most brother, etc) of the current problem  
 
 
 5.3. Meta-rules  
 
 Once DISCIPLE has decided on the type of rule to apply, it has 
to choose among the applicable rules.  The Expert Systems literature 
calls this the conflict resolution problem.  
 This type of decision is modeled in DISCIPLE with so-called 
meta-rules.  
 
 The meta-rules are heuristics for ordering the rules applicable to 
reduce a problem 'P', in order to optimize certain criteria. They have 
the following form:  
 
 To solve the problem 
  P 
 optimizing the criterion 
  O C 
 consider the applicable rules in the following order 
  R1, ...  , Rn 
 
 This meta-rule defines an order on the rules that may reduce the 
problem 'P' in that 'R1' is expected to give the best result and 'Rn' the 
worst, with respect to the optimization criterion OC.  
 Of course, other criteria may require other orderings on the same 
set of rules.  
 
 A heuristic search consists in using only those rules which are 
recommended by meta-rules ('R1' in our case) and not all the 
applicable rules (R1,R2, ...  ,Rn).  
 Only if 'R1' does not lead to a solution, the system will use 'R2'.  
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 The following is an example of meta-rule:  
 
 To solve the problem 
  ATTACH OBJECT x ON y 
 optimizing the criterion 
  INCREASE shock-resistance 
 consider the applicable rules in the following order 
 1. 
        IF 
  NOT (x MATERIAL fragile) & 
  (x THICKNESS thick) & 
         (y MATERIAL rigid) 
   THEN 
   solve the above problem by solving the subproblems 
  MAKE OBJECTS rivets ON x 
  MAKE OBJECTS holes IN y 
  RIVET OBJECT x WITH y 
 2. 
       IF 
  (x TYPE solid) & 
  (y TYPE solid) & 
  (x PARTIALLY-FITS y) & 
  (z ISA adhesive) & 
  (z TYPE fluid) & 
  (z GLUES x) & 
  (z GLUES y) 
   THEN 
   solve the above problem by solving the subproblems 
  APPLY OBJECT z ON x 
  PRESS OBJECT x ON y 
 
 This meta-rule states that the attachment by riveting has a better 
shock-resistance than the attachment by gluing. 
 It is interesting to notice that the meta-rules corresponding to 
object specializations may be associated with the nodes in the object 
hierarchies.  
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 Let us consider, for instance, the object hierarchy in figure 3.1.  
 An object concept from such a hierarchy may be specialized to 
any of its sons.  Therefore, the conflict set associated with an object 
concept consists of all the sons of this concept.  
 
 For instance, the conflict set associated with the concept  

'air-jet-device'  is  {air-sucker, air-press}  
since each element of this set may specialize the 'air jet device' 
concept, in a problem description containing it.  
 
 A meta-rule associated with the object 'air-jet-device', in the 
hierarchy from figure 3.1, may be the following one:  
 
 To specialize the concept 
  air-jet-device 
 optimizing the criterion 
  INCREASE work-safety 
 consider the specializations in the following order 
  1. air-sucker 
  2. air-press 
 
 That is, if we want to increase the work-safety, then it is better 
to specialize 'air-jet-device' to 'air-sucker' than to 'air-press'.  
 
 The following meta-rules show that different optimizing criteria 
may impose different orderings on the same conflict set:  
 
 To specialize the concept 
  dryer 
 optimizing the criterion 
  DECREASE time 
 consider the specializations in the following order 
  1. tunnel-kiln 
  2. carrousel 
      3. drying-shelf 
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 To specialize the concept 
  dryer 
 optimizing the criterion 
  DECREASE cost 
 consider the specializations in the following order 
  1. drying-shelf 
  2. carrousel 
  3. tunnel-kiln 
 
 To choose between such competing meta-rules, the system will 
ask the user to specify the optimization criterion. 
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 6. THE LEARNING PROBLEM  
 
 DISCIPLE is trying to learn a general problem solving rule from 
each example received from the user. 
  
 The learning problem of DISCIPLE may be formulated as 
follows:  

 Given:  
 - a domain theory;  
 - a problem to solve and a partial solution to the problem, 
   in the form of a decomposition or a specialization of it.  
 
 Determine: 
  - a general decomposition or specialization rule.  
 
 Figure 6.1 The learning problem of DISCIPLE.  

 
 For instance,  
 Given:  
 - the theory of loudspeaker manufacturing;  
 - the problem of attaching two parts of the loudspeaker and the 
decomposition of this problem into two simpler subproblems 
expressing the gluing of the two parts with an adhesive:  

 Example 1:  
 Solve the problem 
   ATTACH OBJECT ring ON chassis-membrane-assembly 
  by solving the subproblems 
   APPLY OBJECT mowicoll ON ring 
  PRESS OBJECT ring ON chassis-membrane-assembly 
  
 Figure 6.2. A decomposition indicated by the user.  
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 Determine:  
 - a general decomposition rule indicating the conditions under 
which one may reduce an 'attachment' problem to a process of 
gluing:  

    IF  
     x, y, and z satisfy <constraints> 
     THEN 
     General Rule 1: 
     solve the problem 
      ATTACH OBJECT x ON y 
     by solving the subproblems 
      APPLY OBJECT z ON x 
      PRESS OBJECT x ON y  
 

 Figure 6.3. The decomposition rule to be learned from Example 1  

 
 As one may notice, the structure of General Rule 1 is identical 
with the structure of Example 1. Therefore, rule learning is reduced 
to learning the features that the objects 'x', 'y', and 'z' should have so 
that the attachment of 'x' and 'y' may be reduced to a process of 
gluing them with 'z'. Otherwise stated, one should learn the concepts 
represented by these objects.  
 
 The method of learning this rule depends on the system's theory 
(knowledge) about Example 1. We distinguish between three types 
of theories: complete, weak, and incomplete.  
 
 A complete theory about Example 1 consists of the complete 
descriptions of the objects 'ring', 'chassis-membrane-assembly',  
'mowicoll', and of the actions 'ATTACH', 'APPLY', 'PRESS'.  
 A complete description of an object specifies all the relevant 
factual properties of the object, as well as all the relevant relations 
with other objects. These may be explicitly specified or may be 
deduced by using inference rules. 
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  A complete description of an action is an action model that 
specifies all the necessary preconditions of the action, all its effects, 
as well as, all the objects that may play certain roles in the action.  
 In the case of a complete theory, DISCIPLE uses an 
explanation-based learning method, being able to learn at once a 
general rule from Example 1 alone.  
 
 A weak theory about Example 1 consists only of incomplete 
descriptions of the objects 'ring', 'chassis-membrane-assembly', and 
'mowicoll'. It differs qualitatively from a complete theory in that it 
does not contain the models of the actions 'ATTACH', 'APPLY', and 
'PRESS'.  
 In this case, DISCIPLE uses an interactive learning method that 
synergistically combines explanation-based learning, learning by 
analogy, and empirical learning.  
 
 The intermediate case, between a complete theory and a weak 
theory, is the incomplete theory. 
 As compared to a complete theory, an incomplete theory may 
lack some object descriptions or action models. Also, it may contain 
incomplete descriptions of objects and actions. 
  As compared to a weak theory, an incomplete theory contains 
action models while a weak theory does not.  
 An incomplete description of an object lacks some important 
properties or relations of this object. Also, some inference rules for 
deducing new properties and relations of this object may be 
incompletely specified. 
 An incomplete description of an action lacks some precondition 
or effect predicates.  
 In the case of an incomplete theory about Example 1, DISCIPLE 
learns a general rule by combining the method corresponding to the 
weak theory with the one corresponding to the complete theory.  
 
 It is interesting to notice that the effect of the learned rule on the 
future behaviour of the system depends on the type of the domain 
theory. 
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  In a complete theory, the learned rule improves only the 
performance of the system, in a weak theory it develops the 
competence of the system, and, in an incomplete theory, it develops 
both the performance and the competence.  
 
 Another goal of learning in the context of a weak or incomplete 
theory is that of developing the domain theory.  
 
 The reason for dealing with all these three types of theories in a 
single system is the following one. Most domain theories are 
nonhomogeneous in that they provide complete descriptions of 
some parts of the domain, and incomplete or even weak descriptions 
of other parts of the domain. A learning episode, however, uses only 
one part of the domain theory that may have the features of a 
complete, incomplete or weak theory, even if, globally, the theory is 
nonhomogeneous. Therefore, the learning system has to adopt the 
learning method corresponding to the features of the theory about the 
example from which it learns.  
 
 In the following sections we shall present these three learning 
methods of DISCIPLE.  
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 7. LEARNING IN A COMPLETE THEORY DOMAIN  
 
 7.1 A sample of a complete theory 
  
 In the case of DISCIPLE, a complete theory of a domain 
consists of complete descriptions of all the objects and actions of the 
domain.  
 In particular, a complete theory about the problem solving 
episode in figure 6.2, contains the complete descriptions of the 
objects 'ring', 'chassis-membrane-assembly', and 'mowicoll', as well 
as the complete models of the actions 'ATTACH', 'APPLY', and 
'PRESS'.  
 
 The objects are described by specifying all the relevant factual 
properties and relations.  
 Some object properties and relations may be explicitly specified, 
as indicated in figure 7.1 
 

adhesive solid black

SOURCE
ISA

TYPE

mowicoll
GLUES

ring
PART-OF

loudspeaker

TYPE
GLUES PARTIALLY-FITS

PART-OF

fluid

chassis-membrane-assembly
TYPE

solid

COLOR

. . .

Figure 7.1. A hierarchical semantic network containing explicit representations 
of object properties and relations.  
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 Other properties and relations may be implicitly specified by 
using inference rules for deducing them from other properties and 
relations, as indicated in figure 7.2.  

  ∀x ∀y [(x GLUED-ON y) ∅ (x ATTACHED-ON y)]  
  ∀x ∀y ∀z  [(z ISA adhesive) & (z GLUES x) & (z GLUES y) & 
                   (z BETWEEN x y) ∅ (x GLUED-ON y)]  
  ∀x ∀y [(x GLUES y) ∅ (x ADHERENT-ON y)]  
 
   Figure 7.2. Inference rules for deducing new properties and relations of objects.  

 
 The action models describe the actions that may be performed in 
the domain.  
 Each action model specifies all the necessary preconditions of 
the action (i.e. all the states of the world in which the action may be 
executed), all its effects (i.e. the states that result after the execution 
of the action), as well as, all the objects that may play certain roles in 
the action (the agent executing the action, the object on which the 
action is performed, the instrument used, etc.).  
 Figure 7.3 presents the models of the actions from the problem 
solving episode in figure 6.2.  
 

Action Preconditions Effects

APPLY OBJECT z ON x (z TYPE fluid) & 
(z ADHERENT-ON x) & 
(x TYPE solid)

(z APPLIED-ON x)

ATTACH OBJECT x ON y (x TYPE solid) & 
(y TYPE solid)

(x ATTACHED-ON y)

PRESS OBJECT x ON y (z APPLIED-ON x) & (z BETWEEN x y)
(x PARTIALLY-FITS y)& 
(y TYPE solid)

Figure 7.3 Action models. 
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   7.2 General presentation of the learning method  
 
 In the case of a complete theory about Example 1, the learning 
method of DISCIPLE follows the explanation-based learning 
paradigm developed by [Fikes & al.  1972], [DeJong & Mooney, 
1986], [Mitchell & al. 1986] and others.  
 
 First, one proves that the solution indicated by the user is indeed 
a solution of the problem to solve. 
  This proof isolates the relevant features of the objects in 
Example 1, that is, those features which will be present in the 
condition of General Rule 1.  
 
 Secondly, one generalizes the proof tree as much as possible so 
that the proof still holds. 
  In this way one generalizes the problem, its solution, and the 
relevant features.  
 
 Thirdly, one formulates the learned rule from the generalized 
proof by extracting the generalized problem, its generalized solution, 
and the generalized relevant features which constitute the 
applicability condition of the rule.  
 
 7.3 Proving the example 
  
 Let us consider again Example 1 (see figure 6.2).  
 To prove this example means to show that the sequence of the 
actions 
  APPLY OBJECT mowicoll ON ring 
  PRESS OBJECT ring ON chassis-membrane-assembly 
achieves the goal of the action 
  ATTACH OBJECT ring ON chassis-membrane-assembly 
 This goal is: 
  (ring ATTACHED-ON chassis-membrane-assembly) 
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 The proof is indicated in figure 7.4. It was obtained by using the 
object descriptions in figure 7.1, the inference rules in figure 7.2, and 
the action models in figure 7.3.  
 

(ring ATTACHED-ON ch-mem-assembly)

(ring GLUED-ON ch-mem-assembly)

(mowicoll (mowicoll (mowicoll
ISA GLUES BETWEEN
adhesive) ch-mem-assembly) ring

ch-mem-assembly)

PRESS OBJECT ring ON ch-mem-assemb ly

(ch-mem-assembly (ring (mowicoll
TYPE APPLIED-ON
solid) ch-mem-assembly) ring)

APPLY OBJECT mowicoll ON ring

(mowicoll (mowicoll (ring
TYPE ADHERENT-ON TYPE
fluid) ring) solid)

(mowicoll GLUES ring)

PARTIALLY-FITS

Figure 7.4. A complete proof of Example 1.  
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     In the above proof, 'ch-mem-assembly' stands for 'chassis-
membrane-assembly'.  
 The leaves of this tree are those features of 'ring', 'chassis-
membrane-assembly', and 'mowicoll' which allowed one to reduce 
the problem of attaching the 'ring' on the 'chassis-membrane-
assembly', to the process of gluing them with 'mowicoll'.  
 
 Thus, by proving the example, one isolates the relevant features 
of it:  
 

adhesive solid

ISA TYPE

mowicoll
GLUES

ring

TYPE
GLUES

fluid
TYPE

solid

PARTIALLY-FITS

chassis-membrane-assembly

 
 (ring TYPE solid) & (chassis-membrane-assembly TYPE solid) & 
 (ring PARTIALLY-FITS chassis-membrane-assembly) & 
 (mowicoll ISA adhesive) & (mowicoll TYPE fluid) & 
 (mowicoll GLUES chassis-membrane-assembly) &  
 (mowicoll GLUES ring) 
 

 Figure 7.5. The relevant features of Example 1. 
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 The 'color' of the 'ring' or the 'source' of the 'mowicoll' were not 
useful in proving the validity of the example.  Therefore, these 
features are not important for this example.  
 
 
 7.4 Generalization of the proof  
 
 The next step consists in the generalization of the proof, as 
much as possible, so that the proof still holds.  
 Since the proof in figure 7.4 was obtained by using instances of 
inference rules and action models, one may generalize the proof by 
generalizing these instances.  
 One way to do this is to first replace each instantiated inference 
rule or action model with its general pattern and then to unify these 
patterns [Mooney & Bennet, 1986].  
 
 First, one replaces the instances of the action models and 
inference rules in figure 7.4 with their general patterns (taken from 
the figures 7.2 and 7.3), thus obtaining the proof structure in figure 
7.6.  
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(x1 ATTACHED-ON y1)

(x1 GLUED-ON y1)

(x2 GLUED-ON y2)

(z2 ISA adhesive) (z2 GLUES y2) (z2 BETWEEN x2 y2)

(z3 BETWEEN x3 y3)

PRESS OBJECT x3 ON y3

(y3 TYPE solid) (x3 PARTIALLY-FITS y3) (z3 APPLIED-ON x3)

(z4 APPLIED-ON x4)

APPLY OBJECT z4 ON x4

(z4 TYPE fluid) (z4 ADHERENT-ON x4) (x4 TYPE solid)

(z5 ADHERENT-ON x5)

(z2 GLUES x2)

(z5 GLUES x5)

 
Figure 7.6. The general structure of the proof. 

 
 Secondly, one determines the most general unifying substitution 
for each connection pattern (the patterns connected by |||) and 
composes these substitutions, as indicated in figure 7.7.  
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 (x1 GLUED-ON y1)      (x2 <− x1, y2 <− y1) 
       |||              
 (x2 GLUED-ON y2) 
  
 (z2 GLUED-ON x2)      (x2 <− x1, y2 <− y1, 
       |||                             z5 <− z2, x5 <− x2) 
 (z5 GLUED-ON x5) 
  
 (z2 BETWEEN x2 y2)    (x2 <− x1, y2 <− y1, 
       |||                                  z5 <− z2, x5 <− x2, 
 (z3 BETWEEN x3 y3)     z3 <− z2, x3 <− x2, y3 <− y2) 
 
  
 (z3 APPLIED-ON x3)    (x2 <− x1, y2 <− y1, 
       |||                                 z5 <− z2, x5 <− x2, 
 (z4 APPLIED-ON x4)     z3 <− z2, x3 <− x2, y3 <− y2, 
                                          z4 <− z3, x4 <− x3) 
 
 (z4 ADHERENT-ON x4)   (x2 <− x1, y2 <− y1, 
       |||                                     z5 <− z2, x5 <− x2, 
 (z5 ADHERENT-ON x5)    z3 <− z2, x3 <− x2, y3 <− y2, 
                                              z4 <− z3, x4 <− x3, 
                                              z5 <− z4, x5 <− x4) 
 
    Figure 7.7. The computation of the unifying substitution. 

 
 
 Finally, one applies the composed substitution to the structure in 
figure 7.6, thus obtaining the generalized proof in figure 7.8.  
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(x1 ATTACHED-ON y1)

(x1 GLUED-ON y1)

(z2 ISA adhesive) (z2 GLUES y1) (z2 BETWEEN x1 y1)

PRESS OBJECT x1 ON y1

(y1 TYPE solid) (x1 PARTIALLY-FITS y1) (z2 APPLIED-ON x1)

APPLY OBJECT z2 ON x1

(z2 TYPE fluid) (z2 ADHERENT-ON x1) (x1 TYPE solid)

(z2 GLUES x1)

 
Figure 7.8.  The generalization of the proof in figure 7.4.  

 
 7.5 The formulation of the general rule 
 
 Just for the purpose of facilitating the comparison with the other 
learning methods of DISCIPLE, let us apply to the generalized proof 
in figure 7.8 the substitution  

(x1<−x, y1<−y, z2<−z)  
which does not change its generality:  
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(x ATTACHED-ON y)

(x GLUED-ON y)

(z ISA adhesive) (z GLUES y) (z BETWEEN x y)

PRESS OBJECT x ON y

(y TYPE solid) (x PARTIALLY-FITS y) (z APPLIED-ON x)

APPLY OBJECT z ON x

(z TYPE fluid) (z ADHERENT-ON x) (x TYPE solid)

(z GLUES x)
 

Figure 7.9. Equivalent form of the generalized proof in figure 7.8.  
 
 The leaves of this generalized tree represent a justified 
generalization of the relevant features in figure 7.5.  

 (x TYPE solid) & (y TYPE solid) & (x PARTIALLY-FITS y) & 
 (z ISA adhesive) & (z TYPE fluid) & (z GLUES x) & (z GLUES y) 
 
   Figure 7.10. Justified generalization of the relevant features of Example 1. 
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 They also represent a general precondition for which the 
sequence of the actions  
 
  APPLY OBJECT z ON x 
  PRESS OBJECT x ON y 
 
achieves the goal of the action 
 
  ATTACH OBJECT x ON y 
 
 This may be expressed in the form of the following general 
decomposition rule, which is precisely the decomposition rule 
learned from Example 1: 
 

    IF 
     (x TYPE solid) & 
     (y TYPE solid) & 
     (x PARTIALLY-FITS y) & 
     (z ISA adhesive) & 
     (z TYPE fluid) & 
     (z GLUES x) & 
     (z GLUES y) 
    THEN 
    General Rule 1: 
    solve the problem 
     ATTACH OBJECT x ON y 
    by solving the subproblems 
     APPLY OBJECT z ON x 
     PRESS OBJECT x ON y 
 

Figure 7.11. The decomposition rule learned from Example 1. 
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 8. LEARNING IN A WEAK THEORY DOMAIN  
 
 8.1 A sample of a weak theory 
  
 A weak theory about the problem solving episode in figure 6.2 
(Example 1) consists of the (possible incomplete) descriptions of the 
objects from this episode.  It does not contain the models of the 
actions from this episode.  
 
 A sample of such a theory is represented in figure 8.1.  
 

adhesive solid

ISA
TYPE

mowicoll
GLUES

ring
PART-OF

loudspeaker

GLUES
PART-OF

chassis-membrane-assembly
TYPE

solid

 
Figure 8.1. Fragment of a weak theory.  

 
 The idea of considering such a theory came from our experience 
with building a knowledge base for loudspeaker manufacturing.  
 We realized that it was very difficult for our expert (Zani 
Bodnaru from the Industrial Electronic Enterprise in Bucharest) to 
describe the actions in terms of their preconditions and effects.  
 On the contrary, it was much easier for him to describe the 
objects and to give us examples of decompositions and 
specializations.  
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 This should not surprise anyone working in action planning who 
knows the difficulty of defining action models for complex 
operations.  
 Therefore, instead of forcing the expert to completely formalize 
his knowledge, we decided to accept the theory which was easily 
provided by him and to learn the rest of the necessary knowledge.  
 
 
 8.2 General presentation of the learning method 
  
 In the context of a weak theory, the system will try to 
compensate its lack of knowledge by using an integrated learning 
method whose power comes from the synergism of different learning 
paradigms: explanation-based learning, learning by analogy, 
empirical learning, and learning by questioning the user.  
 
 Rule learning takes place in several stages which are illustrated 
in figure 8.2.  
 
 First DISCIPLE looks for a shallow explanation of user's 
solution.  Then it uses this explanation to formulate a reduced 
version space for the rule to be learned.  Each rule in this space 
covers only instances which are analogous with the user's example.  
DISCIPLE carefully generates analogous instances to be 
characterized as positive examples or as negative examples by the 
user.  These are used to further narrow the version space until it 
contains only the rule illustrated by the user's solution.   
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Explanation
Based mode

Analogy
Based mode

reduced
version space

explanation

problem

solution
instance 2

rule
. . .

instance n
rule

examples
+  or  -

version space
narrow

user

Empirical Learning mode

 
Figure 8.2 The learning method in the context of a weak theory. 

 
 In the following sections we shall present in detail this learning 
method by using again Example 1 from figure 6.2.  
 
 
 8.3 Explanation-based mode  
 
 In its first learning step, DISCIPLE enters the Explanation 
Based Mode and tries to find an explanation (within its weak domain 
theory) of the validity of the solution in figure 6.2.  
 We shall first define what we mean by an explanation in a weak 
theory and then we shall indicate a heuristic method to find such 
explanations.  
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 8.3.1 Explanations in a weak theory domain  
 
 Let 'P' be the problem to solve and 'S' a solution to this problem.  
As has been shown in section 7, an explanation of the problem 
solving episode 

solve P by S  
is a proof that 'S' solves 'P'.  
 
 In the case of a complete theory about this problem solving 
episode, the learning system is able to find itself such a proof.  
 In the case of a weak theory, however, the system is no longer 
able to find such a proof because it lacks the models of the actions 
from 'P' and 'S'. In such a case, the explanation may be regarded as 
being the premise of a single inference whose conclusion is:  

S solves P 
 

 Let us consider the problem solving episode in figure 6.2 
(Example 1).  In the context of a weak theory, a complete 
explanation of this problem solving episode is the following one:  
 

 (ring TYPE solid) & (chassis-membrane-assembly TYPE solid) & 
 (ring PARTIALLY-FITS chassis-membrane-assembly) & 
 (mowicoll ISA adhesive) & (mowicoll TYPE fluid) & 
 (mowicoll GLUES chassis-membrane-assembly) &  
 (mowicoll GLUES ring) 
 
  Figure 8.3. A complete explanation of Example 1. 

 
 The fact that the 'ring', the 'chassis-membrane-assembly', and the 
'mowicoll' have the features in figure 8.3 explains (in a weak theory) 
why the process of gluing the 'ring' and the 'chassis-membrane-
assembly' with 'mowicoll' solves the problem of attaching them.  
 As can be seen, this explanation consists of the leaves of the tree 
in figure 7.4.  Since such a proof tree cannot be built in a weak 
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theory, one has to use heuristics, as well as the user's help, in order to 
find the explanation.  
 Moreover, it is very likely that one will not find the complete 
explanation in figure 8.3.  This is partially a consequence of using 
heuristics, and partially a consequence of the incompleteness of the 
domain theory (which may not contain all the relevant object 
properties and relations).  
 
 
 8.3.2 A heuristic to find explanations 
  
 In a weak theory domain, the explanation of Example 1 is the 
result of an interactive process in which the system uses heuristics to 
propose plausible partial explanations to be validated by the user 
who may himself indicate other pieces of explanations.  
 
 In DISCIPLE, this process of finding the explanation is based on 
the following heuristic: look for an explanation expressible in terms 
of the relations between the objects from the example, ignoring 
object features.  
 
 Therefore, to find an explanation of Example 1, DISCIPLE will 
look in its knowledge base for the links and for the paths (i.e.  
sequences of links) connecting 'ring', 'chassis-membrane-assembly', 
and 'mowicoll', and will propose the found connections as pieces of 
explanations of the Example 1.  It is the user's task to validate them 
as true explanations:  
 
 Do the following justify your solution: 
  mowicoll GLUES ring ? Yes 
  mowicoll GLUES chassis-membrane-assembly ? Yes 
  ring PART-OF loudspeaker &  
 chassis-membrane-assembly PART-OF loudspeaker ? No  
 
 All the pieces of explanations marked by a user's yes form the 
explanation of the example rule:  
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 Explanation 1:  

ring

GLUES

mowicoll

GLUES

chassis-membrane-assembly  
 

Figure 8.4. The explanation of Example 1.  

 
 
 Notice that this explanation is incomplete.  As already stated, 
this is due partly to the incompleteness of the domain theory and 
partly to the heuristic used to find explanations (DISCIPLE looks 
only for the relations between objects, ignoring their properties). 
However, the found explanation shows some important features of 
the objects, features justifying the user's solution.  
 This explanation will be used in the next learning mode (the 
analogy-based mode) which will be described in the following 
section.  There we shall also give a justification of the above 
presented heuristic.  



 

76 
 

 8.4 Analogy-Based Mode  
 
 8.4.1 Learning by Analogy  
 
 The central intuition supporting the learning by analogy 
paradigm is that if two entities are similar in some respects then they 
could be similar in other respects as well.  
 A general scenario for learning by analogy is expressed by the 
following statement:  

'a T is like a B'  
 The purpose of this statement is to convey knowledge from 'B' 
to 'T'.  'B' is called the base since it is the entity that serves as a 
source of knowledge, and 'T' is called the target since it is the entity 
that receives the knowledge.  
 
 A classical example of analogy is Rutherford's analogy:  

"The hydrogen atom is like our solar system"  
 By analogy with the solar system, one is able to get new 
knowledge about the hydrogen atom.  
 
 Let us notice that the base and the target are similar but not 
identical.  Therefore, nothing guarantees that the features imported 
from the base are indeed features of the target.  Otherwise stated, 
analogy is a weak inference method and the inferences drown by 
analogy have to be, somehow, validated.  
 
 According to the structure-mapping theory of Gentner 
[Gentner, 1983], which will be briefly presented in the following, the 
relations between objects, rather than attributes of objects, are 
mapped from the base to the target.  Moreover, a relation that 
belongs to a mappable system of mutually interconnecting 
relationships is more likely to be imported into the target than is an 
isolated relation (the systematicity principle).  
 
 The analogy maps the objects of the base onto the objects of the 
target:  b1−> t1, b2 −> t2, ... , bn −> tn  
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 These object correspondences are used to generate the candidate 
set of inferences in the target domain.  
 Predicates from the base are carried across to the target, using 
the node substitutions dictated by the object correspondences, 
according to the following rules:  
 
 1. Discard attributes of objects  
 A(bi) -/-> A(ti) 
  For instance, the yellow color of the sun is not transmitted to the 
hydrogen nucleus.  
 
 2. Try to preserve relations between objects  
 R(bi, bj) -?-> R(ti, tj) 
  That is, some relations are transmitted to the target, while others 
are not.  
 
 3.  The systematicity principle: the relations that are most 
probably to be transmitted are those belonging to systems of 
interconnected relations  
 R'(R1(bi,bj), R2(bk,bl))  −>  R'(R1(ti,tj), R2(tk,tl))  
 
 An important result of the learning by analogy research 
([Bareiss & Porter 1987], [Burstein 1986], [Carbonell, 1983, 86], 
[Chouraqui, 1982], [Forbus & Gentner, 1986], [Kedar-Cabelli, 
1985], [Russel, 1987], [Winston, 1980, 86]), confirming the 
structure-mapping theory, is that the analogy involves mapping some 
underlying causal network of relations between analogous situations.  
 The idea is that similar causes are expected to have similar 
effects:  

A A'

B B'

cause cause

similar

similar  
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 Since A, B, A', B' are usually networks of relations, the 'cause' 
relation is a higher order relation.  Therefore, this is in accordance 
with the systematicity principle.  
 
 
 8.4.2 The paradigm of analogy in DISCIPLE  
 
 In DISCIPLE, the explanation of a problem solving operation 
may be regarded as a cause for performing the operation:  

ring

GLUES

mowicoll

GLUES

chassis-membrane-assembly

CAUSES

 
  Solve the problem 
   ATTACH OBJECT ring ON chassis-membrane-
assembly 
  by solving the subproblems 
   APPLY OBJECT mowicoll ON ring 
   PRESS OBJECT ring ON chassis-membrane-assembly 
 
 Let us suppose that a new situation is characterized by the 
following network:  
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GLUES

GLUES

neoprene

screening-cap

loudspeaker  
Figure 8.5. Network similar with Explanation 1 (figure 8.4).  

 
 Since this network is similar with Explanation 1, we may expect 
that it will cause a decomposition of the problem 
  
 ATTACH OBJECT screening-cap ON loudspeaker  
 
similar with the one from Example 1:  
 
  Solve the problem 
   ATTACH OBJECT screening-cap ON loudspeaker 
  by solving the subproblems 
   APPLY OBJECT neoprene ON screening-cap 
   PRESS OBJECT screening-cap ON loudspeaker 
 
 Now, let us point out that the analogical decomposition is not 
derived from any particular properties of 'screening-cap', 
loudspeaker', and 'neoprene' other than those that 'neoprene' glues 
both the 'screening-cap' and the 'loudspeaker'. Therefore, the system 
making this inference must be equally willing to infer the 
decomposition  
 
    Solve the problem 
     ATTACH OBJECT x ON y 
    by solving the subproblems 
     APPLY OBJECT z ON x 
     PRESS OBJECT x ON y 
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for any other objects 'x', 'y', and 'z', such that the following network 
holds:  

GLUES

GLUES

z

x

y  
 
 Therefore, this network may be regarded as an analogy 
threshold, and the above inferences may be rewritten in the 
following equivalent form:  
 
    IF 
     analogy threshold 
     (z GLUES x) & (z GLUES y) 
    THEN 
    solve the problem 
     ATTACH OBJECT x ON y 
    by solving the subproblems 
     APPLY OBJECT z ON x 
     PRESS OBJECT x ON y 
 
 The instances of this rule are decompositions of the ATTACH 
operation that are analogous with Example 1. Since analogy is a 
weak inference method, these decompositions may be acceptable 
(i.e. valid decompositions) or not. 
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 Therefore, the analogy paradigm in DISCIPLE is the following 
one: 

 

CAUSE CAUSE?

LESS-GENERAL-THAN LESS-GENERAL-THAN

over-generalized explanation
(analogy criterion)

explanation explanation

episode

problem-
solving
episode

problem-
solving

SIM ILAR

SIM ILAR

 

 
 The following figure contains an example of analogy. 
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GLUES

GLUES

GLUES

GLUES

GLUES

GLUES

z

y

x

mowicoll neoprene

screening-cap

loudspeaker

ring

ch-mem-assembly

Solve the problem Solve the problem
ATTACH OBJECT ring ATTACH OBJECT screening-cap

ON ch-mem-assembly ON loudspeaker

By solving the subproblems By solving the subproblems
APPLY OBJECT mowicoll

ON ring ON screening-cap
PRESS OBJECT ring PRESS OBJECT screening-cap

ON ch-mem-assembly ON loudspeaker

LESS-GENERAL-THAN LESS-GENERAL-THAN

CAUSE CAUSE?

SIMILAR

SIMILAR

APPLY OBJECT neoprene

 
Figure 8.6. An example of analogy.  
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 While, usually, two situations are considered to be analogous if 
they match within a certain pre-defined threshold, in DISCIPLE, two 
situations are considered to be analogous if they generalize within a 
pre-defined threshold (the analogy criterion).  This is not at all 
surprising since generalization may be reduced to structural matching 
[Kodratoff & Ganascia, 1986].  
 
 Now we can also justify the heuristic used by DISCIPLE to find 
explanations of examples.  Because these explanations are used in 
analogical reasoning, the systematicity principle requires them to be 
networks of relations.  Indeed, in this case, the 'CAUSE' relation, 
which is imported by analogy, is a higher order relation.  
 
 
 8.4.3 Determining a reduced version space for the rule to be 
learned  
 
 The purpose of the previous sections was to justify the 
following procedure for determining a reduced version space for the 
rule to be learned. This space contains rules covering only instances 
analogous with Example 1.  
 
 First of all DISCIPLE over-generalizes Example 1 by turning all 
the objects into variables, thus obtaining:  
 
    General Rule 1: 
    solve the problem 
     ATTACH OBJECT x ON y 
    by solving the subproblems 
     APPLY OBJECT z ON x 
     PRESS OBJECT x ON y 
 
 Next Explanation 1 is rewritten as a lower bound of the 
applicability condition of General Rule 1:  
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 (x ISA ring) & (y ISA chassis-membrane-assembly) & 
 (z ISA mowicoll) & (z GLUES x) & (z GLUES y) 
 
 Figure 8.7 Explanation 1 written as a lower bound of the 
          applicability condition of General Rule 1.  

 
 Notice that the above expression is indeed a lower bound 
because it reduces General Rule 1 to Example 1, which is known to 
be true.  
 
 Further, DISCIPLE determines an analogy criterion which will 
allow it to generate instances analogous to Example 1.  
 The analogy criterion is a generalization of Explanation 1.  In 
the case of our example, it was obtained by simply transforming the 
constants of Explanation 1 into variables, or, if we consider the form 
of Explanation 1 in figure 8.7, by dropping the 'ISA' predicates.  
 
 In general, the analogy criterion is defined as the most general 
generalization of Explanation 1 that may still be accepted by the 
user as an explanation of General Rule 1.  
 
 The analogy criterion may be taken as an upper bound for the 
applicability condition of General Rule 1:  
 

 
analogy criterion: 

(z GLUES x) & (z GLUES y)  
 

Figure 8.8. An over-generalization of Explanation 1.  

 
 The analogy criterion, Explanation 1, and the General Rule 1 
define a reduced version space [Mitchell, 1978] for the rule to be 
learned:  
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 IF 
  G:analogy criterion 
  (z GLUES x) & (z GLUES y) 
  
  S:Explanation 1 
  (x ISA ring) &  
  (y ISA chassis-membrane-assembly) & 
  (z ISA mowicoll) & (z GLUES x) & (z GLUES y) 
  THEN 
  General Rule 1:  
 solve the problem 
   ATTACH OBJECT x ON y 
  by solving the subproblems 
   APPLY OBJECT z ON x 
   PRESS OBJECT x ON y 
  
 Figure 8.9. A reduced version space for the rule to be learned.  

 
 Each rule in this space has an applicability condition that is less 
general that the analogy criterion and more general than Explanation 
1.  Also, it covers only instances that are analogous with Example 1.  
 
 
 8.4.4 Generation of instances 
  
 To search the rule in the space from figure 8.9, DISCIPLE needs 
positive and negative instances of it. These instances may be 
provided by future problem solving episodes or may be generated by 
the system itself.  
 
 To generate an instance, DISCIPLE looks in the knowledge base 
for objects  satisfying the analogy  criterion. 
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  The objects 'screening-cap', 'loudspeaker', and 'neoprene'  are 
such  objects. 
  DISCIPLE calls Explanation-i the properties of these objects 
that were used to prove that they satisfy the analogy criterion:  
 
  Explanation-i:  

GLUES

GLUES

neoprene

screening-cap

loudspeaker  
 

 It uses the found objects to generate an instance of General Rule 
1 (see figure 8.9) and asks the user to validate it: 
 

 May I solve the problem 
  ATTACH OBJECT screening-cap ON loudspeaker 
 by solving the subproblems 
  APPLY OBJECT neoprene ON screening-cap 
  PRESS OBJECT screening-cap ON loudspeaker ? 
 
     Figure 8.10. An instance generated by analogy with Example 1. 

 



 

87 
 

 8.5 Empirical Learning mode 
  
 The instances generated in the analogy mode are accepted or 
rejected by the user, being thus characterized as positive examples or 
as negative examples of the rule to be learned. These instances are 
used to search the rule in the version space from figure 8.9.  
 
 8.5.1 The use of the positive examples 
  
 Each positive example shows a true explanation. All these 
explanations are generalized and the obtained generalization is used 
as a new lower bound of the condition version space.  
 
 Let us suppose that the user accepts the decomposition in figure 
8.10.  Then, Explanation-i, computed in the previous section, is a 
true explanation which may also be rewritten as a lower bound for 
the applicability condition of General Rule 1:  
 
 Explanation i:  
 (x ISA screening-cap) & (y ISA loudspeaker) &  
 (z ISA neoprene) & (z GLUES x) & (z GLUES y)  
 
 Therefore, DISCIPLE computes a maximally specific common 
generalization of the lower bound in figure 8.9 and Explanation-i:  
 
 (x TYPE solid) & (y TYPE solid) & (z ISA adhesive) & 
  (z GLUES x) & (z GLUES y)  
 
 This generalization is taken as a new lower bound of the 
condition to be learned:  
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 IF 
  G:upper bound 
  (z GLUES x) & (z GLUES y) 
 
  S:lower bound 
  (x TYPE solid) & (y TYPE solid) & 
  (z ISA adhesive) & (z GLUES x) & (z GLUES y) 
 THEN 
 General Rule 1: 
 solve the problem 
  ATTACH OBJECT x ON y 
 by solving the subproblems 
  APPLY OBJECT z ON x 
  PRESS OBJECT x ON y 
 
   Figure 8.11. The version space after the use of a new positive example. 

 
 Notice that the new lower bound is always more specific than 
the upper bound because both the previous lower bound and 
Explanation i are less general than the upper bound.  
 
 
 8.5.2 The use of the negative examples  
 
 Each negative example shows the incompleteness of 
Explanation 1 and of its over-generalization (the analogy criterion).  
The explanation of why the instance is a negative example points to 
the features which were not present in Explanation 1.  These new 
features are used to particularize both bounds of the version space.  
 
 Let us consider the objects 'screening-cap', 'loudspeaker' and 
'scotch'.  They also satisfy the analogy criterion (the upper bound of 
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the condition version space) but the corresponding instance is 
rejected by the user:  
 

 May I solve the problem 
   ATTACH OBJECT screening-cap ON loudspeaker 
  by solving the subproblems 
   APPLY OBJECT scotch ON screening-cap 
   PRESS OBJECT screening-cap ON loudspeaker ? No 
  
    Figure 8.12. A negative example of the rule to be learned.  

 
 In this case, DISCIPLE looks for an explanation of the failure 
because this explanation points to the important object features  
which  were  not  contained  in   Explanation  1.  
 The explanation is that 'scotch' (an adhesive tape) is not fluid 
(therefore, it might not be applied on a curved surface):  
 

Failure Explanation:  
NOT (scotch TYPE fluid)  

 
     Figure 8.13. The explanation of the negative example in figure 8.12.  

 
 That is, the concept represented by 'z' must not have the 
following property:  

'NOT (z TYPE fluid)'  
 

 Therefore, DISCIPLE will specialize both bounds of the version 
space by adding the negation of this explanation:  
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 IF 
  G:upper bound 
  (z GLUES x) & (z GLUES y) &  
  (z TYPE fluid)  
 
  S:lower bound 
  (x TYPE solid) & (y TYPE solid) & 
  (z ISA adhesive) & (z GLUES x) & (z GLUES y) & 
  (z TYPE fluid) 
  THEN  
 General Rule 1: 
  solve the problem 
   ATTACH OBJECT x ON y 
  by solving the subproblems 
   APPLY OBJECT z ON x 
   PRESS OBJECT x ON y  
 
   Figure 8.14. The version space after the use of a negative example.  

 
 In another situation, failing to glue two objects whose surfaces 
do not fit each other, DISCIPLE discovers the condition that the 
objects should partially fit:  
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 IF 
  G:upper bound 
  (z GLUES x) & (z GLUES y) & 
  (z TYPE fluid) & 
  (x PARTIALLY-FITS y) 
 
  S:lower bound 
  (x TYPE solid) & (y TYPE solid) & 
  (z ISA adhesive) & (z GLUES x) & (z GLUES y) & 
  (z TYPE fluid) & 
  (x PARTIALLY-FITS y) 
 THEN 
 General Rule 1: 
 solve the problem 
  ATTACH OBJECT x ON y 
 by solving the subproblems 
  APPLY OBJECT z ON x 
  PRESS OBJECT x ON y 
 
 The learning process decreases the distance between the two 
bounds of the version space.  This process should, in principle, 
continue until the lower bound becomes identical with the upper one.  
 In our case, other negative examples will show that  

(x TYPE solid) & (y TYPE solid) & (z ISA adhesive)  
are necessary features of the objects 'x', 'y', and 'z'.  
 Thus one learns the rule in figure 7.11.  
 
 However, since the domain theory is weak, we should expect 
that this will not always happen.  Therefore, we will be forced to 
preserve two conditions (the upper bound and the lower bound), 
instead of a single applicability condition.  
 We propose to define such a case as being typical of an 
uncertain explanation (in which uncertainty is not expressed by 
numerical means).  
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 It should be noticed that the degree of generalization of the 
learned rule is determined by the degree of generalization of the 
over-generalized explanation in figure 8.8.  However, this rule may 
still be generalized in the future.  This opportunity arises when the 
user indicates that two objects may be attached by a gluing process 
even if the rule does not apply.  In such a case, the conditions of the 
rule may be generalized, so that to cover the explanation of the new 
example.  
 
 8.5.3 Active experimentation 
  
 In the Analogy-Based Mode DISCIPLE may generate many 
instances of the rule to be learned.  However, they are not equally 
useful for searching the version space. Therefore, in the Empirical 
Learning Mode, DISCIPLE will determine the features of the most 
useful instances, asking for the generation of such instances.  
 
 DISCIPLE's strategy is to generalize the lower bound of the 
version space by generalizing the referred objects (i.e. 'mowicoll', 
'ring', and 'chassis-membrane-assembly').  It will therefore try to 
climb the generalization hierarchy of these objects in such a way as 
to preserve consistency with the necessary condition.  
 
 During this generalization process, several situations may occur: 
  - there are different ways to generalize; 
  - the generalization may cover objects that are not guaranteed to 
produce positive examples of the rule.  
 When faced with such problems, DISCIPLE will ask the user 
"clever" questions whose answers allow it to take the right decision.  
 This process is illustrated in section 8.8.  
 
 8.6 Developing the domain theory 
  
 As has been shown in section 8.3.2, DISCIPLE looks for 
explanations in its knowledge base.  
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 Because the domain theory is weak, we may expect that it will 
not always contain the right pieces of explanations. In such situations 
the pieces of the explanation must be provided by the user.  
 Let us consider, for instance, that the failure explanation in 
figure 8.13 was provided by the user. In this case the domain theory 
will be enriched by storing this explanation: 

NOT (scotch TYPE fluid)  
 
 More significantly, as a consequence of updating the Lower 
Bound of the version space, the following relations between the 
objects that previously generated positive examples of the rule are 
added to the domain theory:  

(mowicoll TYPE fluid) 
 (neoprene TYPE fluid)  

 
 8.7 The learning algorithm  
 
 The purpose of the previous sections was to justify the 
following learning algorithm.  
 
 Explanation-Based Mode:  
 
 1. Find an explanation of the user's solution (Example 1) and 
call it Explanation 1.  
 
 Analogy-Based Mode:  
 
 2.  Over-generalize Example 1, by simply turning all the objects 
into variables, and call it General Rule 1.  
 
 3.  Take Explanation 1 as a Lower Bound for the applicability 
condition of General Rule 1.  
 
 4.  Over-generalize Explanation 1 to the most general 
expression that may still be accepted by the user as an explanation of 
General Rule 1.  
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 5.  Take the over-generalized explanation as an Upper Bound 
for the applicability condition of General Rule 1. 
  The Upper Bound, the Lower Bound, and the General Rule 1 
define a reduced version space for the rule to be learned.  
 
 6.  Look in the knowledge base for "interesting" objects 
satisfying the Upper Bound. 
  If there are such objects then Call Explanation-i the properties 
of these objects which were used to prove that they satisfy the Upper 
Bound and go to step 7.  
 If there are no such objects then show the Upper Bound, the 
Lower Bound, and the General Rule 1 to the user as an uncertain rule 
and stop.  
 
 7.  Use the objects found in step 6 to generate an instance of 
General Rule 1.  Call it Instance-i. This instance is analogous with 
Example 1.  
 
 8.  Propose Instance-i to the user and ask him to characterize it 
as a valid or as an invalid reduction. If Instance-i is rejected by the 
user then go to step 9. Otherwise go to step 14.  
 
 Explanation-Based Mode:  
 
 9.  Take Instance-i as a near miss (negative example) of the rule 
to be learned.  
 
 10. Find an explanation of why Instance-i was rejected by the 
user and call it Failure-Explanation-i.  
 
 Empirical Learning Mode:  
 
 11.  Specialize the Upper Bound as little as possible, so that not 
to cover Failure-Explanation-i. 
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  If the new Upper Bound is identical with the Lower Bound then 
take it as a necessary and sufficient condition of General Rule 1, 
show them to the user and stop, else go to step 12.  
 
 12.  Specialize (if necessary) the Lower Bound as little as 
possible, so that not to cover Failure-Explanation-i.  
 
 13. Go to step 6.  
 
 14. Take Instance-i as a new positive example of the rule to be 
learned and Explanation-i as a true explanation of Instance-i.  
 
 15.  Look for a maximally specific common generalization of 
the Lower Bound and Explanation-i, which is less general than the 
Upper Bound. Several cases may occur:  
 - if such a generalization exists and is not identical with the 
Upper Bound, then take it as the new Lower Bound and go to step 6; 
  - if such a generalization exists and is identical with the Upper 
Bound, then take it as a necessary and sufficient condition of General 
Rule 1, show them to the user and stop.  
 
 8.8 A sample trace of the learning algorithm 
  
 In this section we shall apply the learning algorithm in order to 
learn a specialization rule.  
 Let us consider the following example of specialization:  
 
 Example 1: 
 Solve the problem 
  CLEAN OBJECT entrefer 
 by solving the specialization 
  CLEAN OBJECT entrefer WITH air-sucker 
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 1. Find an explanation of Example 1 
 
 Look, in the knowledge base, for the links (or paths) connecting 
'entrefer' and 'air-sucker'.  They are illustrated in the following 
network:  
 

collector air-jet-device magnetic-circuit

ISA ISA ISA PART-OF

air-sucker entrefer

ABSORBS HAS

dust

. . .

. . .. . .

 
 This network contains a single path between 'entrefer' and 'air-
sucker'.  This is proposed to the user as a plausible explanation of 
Example 1:  
 
  Do the following justify your solution: 
  entrefer HAS dust & air-sucker ABSORBS dust ? Yes  
 
 Therefore, the explanation of Example 1 is:  
 
 Explanation 1:  

air-sucker entrefer

ABSORBS HAS

dust  
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 2. Build General Rule 1 
 
 General rule 1: 
 solve the problem 
  CLEAN OBJECT x 
 by solving the specialization 
  CLEAN OBJECT x WITH y 
 
 3. Rewrite Explanation 1 as a Lower Bound for the applicability  
     condition of General Rule 1 
 
 Lower Bound: 
 (x ISA entrefer) & (y ISA air-sucker) & (z ISA dust) & 
 (x HAS z) & (y ABSORBS z) 
 
 4. Over-generalize Explanation 1 
 
 DISCIPLE is first trying to generalize Explanation 1 by 
generalizing the contained relations only.  
 It will show the user the competing generalizations, asking him 
to choose the right one:  
 
 The explanation 
 entrefer HAS dust & air-sucker ABSORBS dust 
 may be expressed as: 
 1.entrefer HAS dust & air-sucker REMOVES dust 
 2.entrefer HAS dust & air-sucker GETS dust 
 Choose the solution [number, No, Modify]: 1 
 
 Therefore, a first generalization of Explanation 1 is:  
 
        entrefer HAS dust & air-sucker REMOVES dust   
 
 Next, the above explanation is over-generalized by turning all 
the objects into variables, thus obtaining:  
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  Over-generalized explanation:  
 (x HAS z) & (y REMOVES z)  
 
 5.  Build the reduced version space for the rule to be learned 
 
 IF 
  Upper Bound: 
  (x HAS z) & (y REMOVES z) 
 
  Lower Bound: 
  (x ISA entrefer) & (y ISA air-sucker) & 
  (z ISA dust) & (x HAS z) & (y ABSORBS z) 
 THEN 
 General rule 1: 
 solve the problem 
  CLEAN OBJECT x 
 by solving the specialization 
  CLEAN OBJECT x WITH y 
  
 6. Look for objects satisfying the Upper Bound 
 
 As has been written in section 8.5.3, DISCIPLE is trying to 
generalize the Lower Bound by climbing the generalization 
hierarchies of the contained objects.  
 In our case, 'air-sucker' belongs to quite a rich generalization 
hierarchy:  
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air-mover cleaner

ISA ISA ISA ISA

ventilator air-jet-device solvent

ISA ISA ISA ISA

air-sucker air-press alcohol acetone

emery-paper

ISA

 
 Therefore, DISCIPLE is trying to generalize 'air-sucker' (in the 
Lower Bound) to its ancestors from the above hierarchy.  
 As may be seen, a first generalization consists in generalizing 
'air-sucker' to 'air-jet-device'.  This generalization is plausible since 
'air-press', 'entrefer', and 'dust' satisfy the Upper Bound:  
 
 Explanation i:  
 (x ISA entrefer) & (y ISA air-press) & (z ISA dust) & 
  (x HAS z) & (y REMOVES z)  
 
 7 & 8. Generate an instance analogous with Example 1 and  
           propose it to the user  
 
 May I solve the problem 
  CLEAN OBJECT entrefer 
 by solving the specialization 
  CLEAN OBJECT entrefer WITH air-press ? Yes 
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 14 & 15. Generalize the Lower Bound in order to cover Explanation-i 
 
  Lower Bound:  
 (x ISA entrefer) & (y ISA air-jet-device) & 
  (z ISA dust) & (x HAS z) & (y REMOVES z)  
 
 6. Look for objects satisfying the Upper Bound 
 
 Now there are two possible generalizations of the 'air-jet-
device': one to 'air-mover' and the other to 'cleaner'. To choose 
between them, DISCIPLE will build an instance based on an object 
belonging only to one of these competing generalizations.  Such an 
object is, for instance, 'acetone', the corresponding Explanation-i 
being:  
 
 Explanation i:  
 (x ISA membrane-assembly) & (y ISA acetone) & 
  (z ISA surplus-glue) & (x HAS z) & (y DISSOLVES z)  
 
 7 & 8. Generate an instance analogous with Example 1 and 
           propose it to the user 
 
 May I solve the problem 
  CLEAN OBJECT membrane-assembly 
 by solving the specialization 
  CLEAN OBJECT membrane-assembly WITH acetone ? Yes 
  
 14 & 15.  Generalize the Lower Bound in order to cover Explanation i 
 
  Lower Bound:  
 (x HAS z) & (y ISA cleaner) & (y REMOVES z) & 
  (z ISA waste-material)  
 
 6. Look for objects satisfying the Upper Bound 
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 The 'air-jet-device' was generalized to 'cleaner'. However, this 
generalization is valid only if every son of 'cleaner' produces positive 
examples of General Rule 1. Such a son is 'emery-paper'. It satisfies 
the Upper Bound:  
 
  Explanation i:  
 (x ISA membrane-assembly) & (y ISA emery-paper) &  
 (z ISA surplus-glue) & (x HAS z) & (y REMOVES z)  
  
 Therefore, DISCIPLE may test the generalization of 'air-jet-
device' to 'cleaner'.  

 
 7 & 8. Generate an instance analogous with Example 1 and 
           propose it to the user 
 
 May I solve the problem 
     CLEAN OBJECT membrane-assembly 
 by solving the specialization 
     CLEAN OBJECT membrane-assembly WITH emery-paper ? 
No 
  
 9 & 10. Find an explanation of the negative example 
  
 Since the user rejected the above specialization it follows that 
the concept represented by 'y' must not cover 'emery-paper', that is, it 
must be less general than 'cleaner'.  
 The fact that Explanation i is true is not enough to justify the 
above specialization.  
 In such a case, DISCIPLE re-enters the Explanation-Based 
Mode to find an explanation of why the above instance is a negative 
example. This explanation is the following one:  
 
 Failure Explanation i:  
 (emery-paper DESTROYS membrane-assembly)   

 
 11 & 12. Specialize the Upper Bound and the Lower Bound  so 
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               that not to cover Failure Explanation i 
 
 Failure-explanation-i shows that the concepts represented by 'x' 
and 'y' must not have the following property:  

'(y DESTROYS x)'  
 Therefore, DISCIPLE will specialize both bounds of the version 
space by adding the predicate  

'NOT(y DESTROYS x)'  
 
 Upper Bound: 
 (x HAS z) & (y REMOVES z) & NOT(y DESTROYS x) 
 
 Lower Bound: 
 (x HAS z) & (y ISA cleaner) & (y REMOVES z) & 
 (z ISA waste-material) & NOT(y DESTROYS x) 
 
 It may happen that the domain theory does not contain the 
explanation of the negative example.  In such a case the user is asked 
to provide himself the explanation.  As a side effect, the domain 
theory will be enriched by retaining the new link between 'emery-
paper' and 'chassis-assembly'. 
 
  Moreover, as a consequence of updating the Lower Bound, the 
following relations between the objects that generated positive 
examples of the rule are added to the domain theory: 
  
 NOT(air-sucker DESTROYS entrefer) 
  NOT(air-press DESTROYS entrefer) 
 NOT(acetone DESTROYS membrane-assembly)  
 
 
 6. Look for objects satisfying the Upper Bound 
 
 The domain theory does not contain other "interesting" objects 
that would allow efficient improvement of the rule's conditions. 
Therefore, the learned rule is:  
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 IF 
  Upper Bound: 
  (x HAS z) & (y REMOVES z) & NOT(y DESTROYS x) 
 
  Lower Bound: 
  (x HAS z) & (y ISA cleaner) & (y REMOVES z) & 
  (z ISA waste-material) & NOT(y DESTROYS x) 
 THEN 
 General rule 1: 
 solve the problem 
  CLEAN OBJECT x 
 by solving the specialization 
  CLEAN OBJECT x WITH y 
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9. LEARNING IN AN INCOMPLETE THEORY DOMAIN  
 
9.1 A sample of an incomplete theory 
  
 In the case of DISCIPLE, an incomplete theory of a domain may 
lack some object descriptions, inference rules, or action models. Also, it 
may contain incomplete descriptions of these. 
 An incomplete description of an object lacks certain properties or 
relations with other objects, an incomplete action model lacks some 
precondition predicates or some effect predicates, and an incomplete 
inference rule lacks some left hand side or right hand side predicates.  
 A sample of an incomplete theory about Example 1 (figure 6.2) is 
given in the following figures:  

adhesive solid

ISA
TYPE

mowicoll
GLUES

ring
PART-OF

loudspeaker

GLUES
PART-OF

chassis-membrane-assembly
TYPE

solid

 
  ∀x ∀y [(x GLUED-ON y) −> (x ATTACHED-ON y)]  
  ∀x ∀y ∀z  [(z ISA adhesive) & (z GLUES x) & (z GLUES y) & 
                   (z BETWEEN x y) −> (x GLUED-ON y)]  
  ∀x ∀y [(x GLUES y) −> (x ADHERENT-ON y)]  
 
   Figure 9.1. Incomplete descriptions of the objects from Example 1.  
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Action Preconditions Effects

APPLY OBJECT z ON x (z APPLIED-ON x)

ATTACH OBJECT x ON y (x TYPE solid) & 
(y TYPE solid)

(x ATTACHED-ON y)

(z ADHERENT-ON x) & 
(x TYPE solid)

 
Figure 9.2. Incomplete models of two actions from Example 1. 

 
 As one may notice, the explicit properties of the objects 'ring', 
'chassis-membrane-assembly' and 'mowicoll' are the ones considered in 
the case of the weak theory (see figure 8.1).  
 Let us also notice that this incomplete theory lacks entirely the 
model of the action 'PRESS'.  It also contains an incomplete model of 
the action 'APPLY'. This model lacks the precondition predicate '(z 
TYPE fluid)'.  
 
 
 9.2 General presentation of the learning method 
  
 In this case, the learning method combines the two learning 
methods presented previously.  
 First, the system will construct an incomplete proof of the user's 
example and will generalize it, as in a complete theory. 
  In this way, the system will determine an over-generalized 
explanation of the example.  
 Then, the system will use the over-generalized explanation as an 
analogy criterion to perform experiments and to synthesize the general 
rule, as in a weak theory.  
 
 The first step may require asking focused questions to the user, in 
order to fill the possible gaps in the proof.  
 Also, the proof found in the first step will provide additional focus 
for the second step.  
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 As a side effect of rule learning, one will develop the domain 
theory.  

 
 9.3. Incomplete proving of the example  
 
 Even when the objects, the inference rules, and the actions are 
incompletely specified, one may be able to construct a proof tree, which 
lacks some parts of the complete proof tree.  
 
  When the system lacks inference rules or action models, it will try 
to sketch the proof tree both top-down and bottom-up, and will ask the 
user focused questions, in order to connect the different parts of the 
proof.  
 
 Using the incomplete theory about Example 1, presented in the 
previous section, the system may build the following proof of Example 
1:  
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(ring ATTACHED-ON ch-mem-assembly)

(ring GLUED-ON ch-mem-assembly)

(mowicoll (mowicoll (mowicoll
ISA GLUES BETWEEN
adhesive) ch-mem-assembly) ring

ch-mem-assembly)

PRESS OBJECT ring ON ch-mem-assemb ly

APPLY OBJECT mowicoll ON ring

(mowicoll (ring
ADHERENT-ON TYPE
ring) solid)

(mowicoll GLUES ring)

(mowicoll APPLIED-ON ring)

 
Figure 9.3. An incomplete proof of Example 1.  
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 The dotted lines from the above proof tree do not result from the 
domain theory but are hypotheses made by the system and confirmed by 
the user.  
 
 For instance, the system makes the hypothesis that  
 

(mowicoll BETWEEN ring ch-mem-assembly)  
 

is an effect of the action  
 

PRESS OBJECT ring ON ch-mem-assembly  
 

from the fact that all the other left hand side literals of the inference rule  
 
  ∀x ∀y ∀z  [(z ISA adhesive) & (z GLUES x) & (z GLUES y) & 
                   (z BETWEEN x y) ∅ (x GLUED-ON y)]  
 
are true in the current situation, that is  
 
 [(mowicoll ISA adhesive) & (mowicoll GLUES ring) & 
   (mowicoll GLUES ch-mem-assembly)]  = TRUE  
 
and the literal 

(mowicoll BETWEEN ring ch-mem-assembly)  
is not known to be true.  
 
 Comparing this proof tree with the one in figure 7.4, one may easily 
notice that it lacks some of the portions of the complete proof tree.  
Nevertheless, its leaves represent some important features of the objects 
from Example 1, features which, in the case of a weak theory, would 
correspond to the following explanation of Example 1:  
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 Explanation 1:  
adhesive solid

ISA TYPE

mowicoll
GLUES

ring

GLUES

chassis-membrane-assembly  
 

  (mowicoll ISA adhesive) & (mowicoll GLUES ring) & 
  (mowicoll GLUES chassis-membrane-assembly) & (ring TYPE solid)  
 
   Figure 9.4. The relevant features of Example 1, revealed by the 
                    proof tree in figure 9.3.  

 
 
 9.4 Defining version spaces for the unknown actions  
 
 The incomplete proof allows one to define initial version spaces for 
the models of the unknown actions used in the proof.  
 
 For instance, one may define the following version space for the 
action 'PRESS':  
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Action Preconditions Effects

PRESS OBJECT x ON y upper bound: upper bound:
(z APPLIED-ON x) (z BETWEEN x y)

lower bound: lower bound:
(z APPLIED-ON x) & 
(x ISA ring) & 
(y ISA 
 ch-mem-assembly)& 
(z ISA mowicoll)

(z BETWEEN x y)& 
(x ISA ring) & 
(y ISA 
 ch-mem-assembly)& 
(z ISA mowicoll)

  
 The lower bounds for the preconditions and effects are taken 
directly from the proof tree.  
 
 The upper bound of the effects is the generalization of the lower 
bound  

(mowicoll BETWEEN ring ch-mem-assembly)  
taken from the premise of the inference rule  
  ∀x ∀y ∀z  [(z ISA adhesive) & (z GLUES x) & (z GLUES y) & 
                   (z BETWEEN x y) ∅ (x GLUED-ON y)]  
 
 The upper bound of the preconditions is the generalization of the 
lower bound, taken from the effects of the model of the action  

APPLY OBJECT z ON x  
 
 During the learning of the decomposition rule in figure 6.3, the 
system will also refine the model of the action 'PRESS'.  
 
 
 9.5 Generalization of the incomplete proof  
 
 Once the proof in figure 9.3 is built, the system will generalize it, as 
in a complete theory:  
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(x ATTACHED-ON y)

(z ISA adhesive) (z GLUES y) (z BETWEEN x y)

PRESS OBJECT x ON y

(z APPLIED-ON x)

APPLY OBJECT z ON x

(z ADHERENT-ON x) (x TYPE solid)

(z GLUES x)

(x GLUED-ON y)

Figure 9.6. The generalization of the proof in figure 9.3.  
 
 Let us notice that, for generalizing the proof, the system used the 
upper bounds of the preconditions and effects of the action 'PRESS'.  
 
 9.6  Determining a reduced version space for the  rule to be learned 
  
 As in the case of a weak theory, the Explanation 1 in figure 9.4 may 
be rewritten as a Lower Bound for the applicability condition of 
General Rule 1 (figure 6.3):  
 
 Lower Bound: 
 (x ISA ring) & (x TYPE solid) & 
 (y ISA chassis-membrane-assembly) & 
 (z ISA adhesive) & (z GLUES x) & (z GLUES y) 
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 Also, the leaves of the generalized proof tree provide an over-
generalized explanation of Example  1.  
 This over-generalized explanation corresponds to the analogy 
criterion from a weak theory and may therefore be considered as an 
Upper Bound for the applicability condition of General Rule 1 (see 
figure 6.3): 

analogy criterion: 
(x TYPE solid) & (z ISA adhesive) & (z GLUES x) & (z GLUES y) 

 
  Figure 9.7. An over-generalization of Explanation 1 from figure 9.4. 

 
 Therefore, as in a weak theory, the system is able to formulate the 
following version space for the rule to be learned: 

 IF 
  Upper Bound: 
  (x TYPE solid) & 
  (z ISA adhesive) & (z GLUES x) & (z GLUES y) 
 
  Lower Bound: 
  (x ISA ring) & (x TYPE solid) & 
  (y ISA chassis-membrane-assembly) & 
  (z ISA adhesive) & (z GLUES x) & (z GLUES y) 
 THEN 
 General Rule 1: 
 solve the problem 
  ATTACH OBJECT x ON y 
 by solving the subproblems 
  APPLY OBJECT z ON x 
  PRESS OBJECT x ON y 
 
      Figure 9.8. A reduced version space for the rule to be learned. 
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 9.7 Searching the rule in the version space 
  
 As soon as the version space from figure 9.8 has been determined,  
rule learning  will  continue  as in a  weak theory. This time,  however,  
the  generalized proof tree in figure 9.6 provides a focus for the process 
of finding the explanations of the failures.  
 
 To illustrate this, let us consider again the failure in figure 8.12.  
 
 May I solve the problem 
   ATTACH OBJECT screening-cap ON loudspeaker 
  by solving the subproblems 
   APPLY OBJECT scotch ON screening-cap 
   PRESS OBJECT screening-cap ON loudspeaker ? No 
 
 In this case, the system generates the instance of the generalized 
proof in figure 9.6, corresponding to this problem solving episode (by 
replacing 'x', 'y', and 'z' with 'screening-cap', 'loudspeaker', and 'scotch', 
respectively).  
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ISA GLUES BETWEEN
adhesive)

ADHERENT-ON TYPE
solid)

(scotch (scotch (scotch

screening-cap
loudspeaker)

PRESS OBJECT screening-cap ON loud speaker

(scotch APPLIED-ON screening-cap)

APPLY OBJECT scotch ON screening-c ap

(scotch

screening-cap)

(screening-cap

(scotch GLUES screening-cap)

(screening-cap ATTACHED-ON loudspe aker)

(screening-cap GLUED-ON loudspeake r)

loudspeaker)

 
   Figure 9.9. A wrong proof of the example from figure 8.12.  
 
 The fact that the user rejected the solution proposed by the system 
proves that the leaves of the instantiated tree in figure 9.9 do not imply 
the top of the tree (the leaf predicates are true but the top predicate is 
not).  
 This means that some action models or inference rules are faulty 
(incomplete, in our case).  To detect them, the system follows the proof 
tree from bottom up. If the user says that the effect of an action or the 
consequent of an inference rule is not true, then the corresponding 
action model (inference rule) may be the incomplete one.  
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 In our case, the predicate  
(scotch APPLIED-ON screening-cap)  

is not true.  Because this predicate should have been the effect of the 
action  

APPLY OBJECT scotch ON screening-cap  
it follows that the action 'APPLY' has a precondition which is not 
contained in its model and this precondition is not true in the current 
situation. This precondition is  

(z TYPE fluid)  
 It is not satisfied in the case of the problem solving episode in figure 
8.12 because 'scotch' (which is an adhesive tape) is not fluid.  
Therefore, the action 'APPLY' cannot be executed and its effect cannot 
be achieved.  
 It follows that the explanation of the failure in figure 8.12 is  
 

NOT(scotch TYPE fluid).  
 

 Therefore, in an incomplete theory, finding the explanations of the 
failures reduces to finding the knowledge which is lacking from the 
knowledge pieces.  
 
 In this case, the generalized proof in figure 9.6 plays the role of a 
justification structure for the rule to be learned [Smith & al.  1985].  
 
 As it was also mentioned at the end of section 8.5.2, the generality 
of the learned rule is limited by the generality of the over-generalized 
explanation.  However, the rule may be further generalized in response 
to a problem solving situation in which the rule does not apply and the 
user says that it should apply.  In this case, the condition of the rule and 
some action models or inference rules from the associated generalized 
proof may be generalized to cover the new situation as well.  
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 9.8 Learning in an imperfect theory 
  
 This section presents a future direction of our research: learning in 
an imperfect theory.  
 A theory may be imperfect from different points of view ([Mitchell 
& al.  1986; Rajamoney & DeJong, 1987]).  However, we shall consider 
only imperfections resulting from the fact that certain pieces of 
knowledge (objects, inference rules, action models) are lacking from 
the domain theory or contain minor errors in their definitions in that 
parts of these definitions may be either more general or less general 
than they should be.  
 
 For instance, the preconditions of an action may be:  
 - more general than they should be, allowing the application of the 
action in situations in which the action is not applicable;  
 - less general than they should be, forbidding the application of the 
action in situations in which the action is applicable;  
 - may have some parts which are more general and other parts 
which are less general than they should be, having both of the above 
consequences.  
 The same types of errors may manifest in the effects of an action, in 
any of the two sides of an inference rule, or in the definition of an 
object property or relation.  
 
 Let us notice that the incomplete theory is a special case of the 
above defined imperfect theory.  For instance, an action lacking some 
precondition predicates has a precondition that is more general than it 
should be.  In particular, an action having no precondition is supposed 
to be applicable in any situation.  Therefore, learning in an imperfect 
theory may be similar to learning in an incomplete theory.  
 
 Besides learning problem reduction rules, the system will also 
correct the theory.  This will consist in appropriate generalizations and 
particularizations of parts of the knowledge pieces, in response to the 
encountered failures.  
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 10. A SAMPLE SESSION WITH DISCIPLE IN THE 
          TECHNIQUE DESIGN DOMAIN  
 
 10.1 General presentation 
  
 The design of technologies for the manufacturing of loudspeakers, 
at the Industrial Electronic Enterprise in Bucharest, has been chosen as 
a real world application for testing the problem solving and learning 
methods of DISCIPLE.  
 In this section we shall present in some detail this application, by 
commenting a sample session with DISCIPLE. 
 Our goal is to present the external behavior of the system.  
 
 The context for using DISCIPLE can be described by the interaction 
among the system, the human expert (i.e.  the user of DISCIPLE), the 
background knowledge about the concerned technology (the domain 
theory which, in this case, is weak), and the current application of the 
system.  
 DISCIPLE and its user are in constant interaction, both proposing 
solutions and explanations to the other. The system has access to a 
knowledge base containing the domain theory, but its user does not.  
 The user has access to the features of the current application, but the 
system does not.  
 This last feature may be felt as a serious drawback. This is wrong 
because, while needing to know if the current loudspeaker has a certain 
feature, the system will simply ask the user, waiting for one of the 
following answers: yes, no, irrelevant, as exemplified in the next 
section.  
 
 DISCIPLE receives a very general specification of a problem (plan 
the manufacturing of a loudspeaker, in our example) and the system 
will start solving this problem without knowing the specific features of 
the current loudspeaker.  Only when the known technological solution 
depends on the presence (or absence) of a certain feature, will the 
system ask the user if the loudspeaker has the respective feature.  
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 The set of all questions asked during a session, together with their 
answers, provides a complete description of the current loudspeaker.  
 
 In this application DISCIPLE uses an implicit global control 
strategy which we consider suitable for the technology design domain in 
general.  
 The system will design the technology in three consecutive steps: 
  - design of the detailed (elementary) operations of the technology 
(i.e.  use decomposition rules); 
  - design (choice) of the tools, devices or verifiers for each 
elementary operation (i.e. use specialization rules); 
  - design (choice) of the materials needed for each operation (i.e.  use 
specialization rules).  
 During each of the above three stages, the system will implicitly use 
a depth first strategy in building the design tree.  That is, it will always 
reduce the left most leaf of the tree, as long as there is a rule 
corresponding to the current stage.  When there are no more nodes to 
reduce, the system will go to the next step, and the depth first strategy is 
resumed. Of course, the user may modify the system's global control. 
For instance, he may ask for the design of tools for a given action, 
although the system is in the first stage.  
 
 10.2 A sample design session 
  
 In this section we present a sample session with DISCIPLE.  The 
session is put between /* ... */, our comments are outside these 
delimitors.  Moreover, to differentiate between the user and the system, 
the answers of the first are underlined.  
 
 The session starts with the user indicating the top level action of 
manufacturing a loudspeaker.  The system will present the possible 
reductions of the current operation (in this case MANUFACTURE), 
ranked in order of its preference.  The user may accept the system's 
suggestion, may prefer a lower ranked reduction, if any, may reject all 
the system's suggestions, or may wish to modify the rule corresponding 
to one of the system's suggestions.  
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/* 
 Solve the problem 
       MANUFACTURE OBJECT LOUDSPEAKER. 
 
 I propose the following solution 
 MAKE OBJECT CHASSIS-ASSEMBLY. 
 MAKE OBJECT MEMBRANE-ASSEMBLY. 
 ASSEMBLE OBJECT CHASSIS-ASSEMBLY 
                         WITH   MEMBRANE-ASSEMBLY. 
 FINISHING-OPERATIONS ON LOUDSPEAKER. 
 
 Do you agree ? [Yes, No, Modify]: Yes  
 
 To solve the problem 
 MAKE OBJECT CHASSIS-ASSEMBLY. 
 
 I propose the following solution 
 FIX OBJECTS CONTACTS  
       ON         CHASSIS. 
 MAKE OBJECT MECHANICAL-CHASSIS-ASSEMBLY. 
 FINISHING-OPERATIONS ON ENTREFER. 
 
 Do you agree ? Yes 
*/ 
 
 DISCIPLE indicated a possible decomposition of the 
MANUFACTURE operation into simpler operations, and the user 
agreed with system's suggestion.  
 
 Further on, following the implicit control strategy, DISCIPLE 
proposed a decomposition of the action:  
 MAKE OBJECT CHASSIS-ASSEMBLY.  
 This decomposition was also accepted by the user. 
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/* 
 
 LOUDSPEAKER HAS TERMINAL-BLOCK ? Yes 
 To solve the problem 
 FIX OBJECTS CONTACTS 
       ON         CHASSIS.   
 
 I propose the following solution 
        *CRIMP OBJECTS CONTACTS 
                    ON          SUPPORT. 
        *CONNECT OBJECT TERMINAL-BLOCK 
                        ON        CHASSIS. 
        Do you agree ? Yes 
*/ 
 
 DISCIPLE tried to decompose the FIX operation but the known 
rules are dependent on the loudspeaker features. Therefore, DISCIPLE 
asked the user a question and the answer received allowed it to choose 
the right rule.  
 It is by means of such questions that DISCIPLE becomes 
progressively aware of loudspeaker features.  Describing the 
loudspeaker in advance would not only be too cumbersome, but even 
impractical, since we do not know in advance which features are 
important and which are not important for the technology design.  
 
 The system prints an asterisk before each action which may no 
longer be decomposed into simpler ones (CRIMP and CONNECT, in 
this case).  
 
/* 
        ... 
 To solve the problem 
       MAKE OBJECT MEMBRANE-ASSEMBLY. 
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 I propose the following solution 
 CONNECT OBJECTS TERMINAL-WIRES 
                       ON        COIL.  
 ASSEMBLE OBJECT MEMBRANE 
                        WITH   COIL.  
 ASSEMBLE OBJECT MEMBRANE 
                         WITH   CENTERING-DEVICE. 
 FINISHING-OPERATIONS ON MEMBRANE-ASSEMBLY. 
 Do you agree ? Yes 
 
 To solve the problem 
 CONNECT OBJECTS TERMINAL-WIRES 
                       ON         COIL.  
 
 I propose the following solution 
 TIN OBJECTS TERMINAL-WIRES. 
 SHORTEN OBJECTS COIL-ENDS. 
   TIN OBJECTS COIL-ENDS. 
 TIN OBJECTS TERMINAL-WIRES 
             WITH      COIL-ENDS. 
  
 Do you agree ? No 
 
 Could you indicate a solution ? Yes 
 SHORTEN OBJECTS COIL-ENDS. 
 SOLDER OBJECTS TERMINAL-WIRES 
                     WITH    COIL-ENDS. 
 
 Does your solution work because 
 COIL-ENDS PART-OF COIL ? No 
 COIL-ENDS ISA TERMINALS &  
 TERMINAL-WIRES ISA TERMINALS ? No 
 
 Could you give me an explanation ? No 
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 I cannot make any generalization 
 I learned the following rule: 
 
 Solve the problem 
        CONNECT OBJECTS TERMINAL-WIRES 
                       ON          COIL.  
 by solving the subproblems 
        SHORTEN OBJECTS COIL-ENDS. 
        SOLDER OBJECTS TERMINAL-WIRES 
                    WITH      COIL-ENDS. 
 
 Do you agree ? Yes 
*/ 
 
 As stated in the previous section, the system has an implicit control 
strategy to choose the next problem to solve. Nevertheless, the user can 
direct the system to solve another problem.  To this purpose it uses 
commands for traversing the problem-solving tree.  Using such 
commands (not shown in our example) the user positioned DISCIPLE 
on the problem:  

MAKE OBJECT MEMBRANE-ASSEMBLY.  
 Then, the implicit control strategy was resumed. Therefore, 
DISCIPLE proposed a decomposition of the MAKE operation.  Then it 
automatically chose to decompose the first operation of this reduction 
(i.e.  CONNECT) and proposed a possible decomposition of it.  
 The user rejected this decomposition because he had in mind 
another technological solution.  
 DISCIPLE tried to learn a general rule from user's solution.  
Therefore it started looking for an explanation of this solution.  Because 
neither DISCIPLE nor the user were able to provide an explanation, no 
generalization was possible. Nevertheless, DISCIPLE retained the 
specific rule indicated by the user because it was told to do so.  
 This example shows that generalization is not always possible or 
desirable.  
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/* 
        ... 
 Unable to solve the problem 
        ATTACH OBJECT RING 
                      ON       CHASSIS-MEMBRANE-ASSEMBLY. 
 
 Could you indicate a solution ? Yes 
 APPLY OBJECT MOWICOLL 
             ON        RING. 
 PRESS OBJECT RING 
            ON       CHASSIS-MEMBRANE-ASSEMBLY. 
 
 Does your solution work because: 
 MOWICOLL GLUES RING ? Yes 
 MOWICOLL GLUES CHASSIS-MEMBRANE-ASSEMBLY ? Yes 
 RING PART-OF LOUDSPEAKER & 
 CHASSIS-MEMBRANE-ASSEMBLY PART-OF 
LOUDSPEAKER ? No 
*/ 
 Since DISCIPLE did not know any reduction of the ATTACH 
operation, it asked the user for one and proposed an explanation of it, as 
shown in section 8.3.2.  
 
 Note that the explanation says why the decomposition is good and 
not why the ATTACH operation should be performed.  Therefore the 
user's answer to the third question was "No".  
 
/*  
 May I solve the problem 
 ATTACH OBJECT SCREENING-CAP 
               ON        LOUDSPEAKER. 
 by solving the subproblems 
        APPLY OBJECT NEOPRENE 
                   ON        SCREENING-CAP. 
        PRESS OBJECT SCREENING-CAP 
            ON        LOUDSPEAKER ? Yes 
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 May I solve the problem 
 ATTACH OBJECT SCREENING-CAP 
               ON        LOUDSPEAKER. 
 by solving the subproblems 
        APPLY OBJECT SCOTCH 
                   ON        SCREENING-CAP. 
        PRESS OBJECT SCREENING-CAP 
             ON       LOUDSPEAKER ? No 
 
 Could you give me an explanation ? Yes 
 NOT(SCOTCH TYPE FLUID) 
 
 I learned the following rule: 
 IF 
  G:upper bound 
  (z GLUES x) & (z GLUES y) & 
  (z TYPE fluid) 
 
  S:lower bound 
  (x TYPE solid) & (y TYPE solid) & 
  (z ISA adhesive) & (z GLUES x) & (z GLUES y) & 
  (z TYPE fluid) 
 THEN 
 solve the problem 
  ATTACH OBJECT x ON y. 
 by solving the subproblems 
  APPLY OBJECT z ON x. 
  PRESS OBJECT x ON y. 
 Do you agree ? Yes 
*/ 
 
 DISCIPLE proposed two other decompositions (consistent with the 
found explanation) which were validated by the user. This allowed the 
system to learn a more general rule, validated by the user.  
 During the second stage of technology design, the system will try to 
propose tools for the established operations, by using specialization rules.  



 

125 
 

 
/*     ... 
 Unable to specialize the problem 
        CLEAN OBJECT ENTREFER. 
 
        Could you indicate a solution ? Yes 
        CLEAN OBJECT ENTREFER 
                   WITH   AIR-SUCKER. 
 
        Does your solution work because: 
        ENTREFER HAS DUST & AIR-SUCKER ABSORBS DUST ? 
Yes 
 
 This explanation may expressed as: 
 1. ENTREFER HAS DUST & AIR-SUCKER REMOVES DUST 
 2. ENTREFER HAS DUST & AIR-SUCKER GETS DUST 
 
 Choose the solution [number, No, Modify]: 1 
*/ 
 DISCIPLE was unable to propose any tool for the CLEAN 
operation, therefore it asked for a solution from the user. Then it found 
an explanation which was generalized. 
/* 
 May I solve the problem 
 CLEAN OBJECT ENTREFER 
 by solving the specialization 
 CLEAN OBJECT ENTREFER 
                 WITH   AIR-PRESS ? Yes 
 
 May I solve the problem 
 CLEAN OBJECT MEMBRANE-ASSEMBLY  
 by solving the specialization 
        CLEAN OBJECT MEMBRANE-ASSEMBLY 
                   WITH   ACETONE ? Yes 
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 May I solve the problem 
 CLEAN OBJECT MEMBRANE-ASSEMBLY  
 by solving the specialization 
 CLEAN OBJECT MEMBRANE-ASSEMBLY 
                  WITH   EMERY-PAPER ? No 
 
 Could you give me an explanation ? Yes 
 EMERY-PAPER DESTROYS MEMBRANE-ASSEMBLY. 
 
       I learned the following rule: 
      IF 
  Upper Bound: 
  (x HAS z) & (y REMOVES z) & NOT(y DESTROYS x) 
 
  Lower Bound: 
  (x HAS z) & (y ISA cleaner) & (y REMOVES z) & 
  (z ISA waste-material) & NOT(y DESTROYS x) 
 THEN 
 solve the problem 
  CLEAN OBJECT x 
 by solving the specialization 
  CLEAN OBJECT x WITH z. 
 Do you agree ? Yes 
*/ 
 
 DISCIPLE proposed other specializations of the CLEAN operation 
(analogous with user's solution) and synthesized a more general 
specialization rule. 
 
/* ...  
 DRY OBJECT LOUDSPEAKER 
        DEVICE DRYER. 
 
 Trying to constrain the dryer. 
 1. DECREASE COST. 
 2. DECREASE TIME. 
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 Choose the optimization criterion [Number, No]: 2 
 
 I propose the following solutions 
 1. TUNNEL-KILN 
 2. CARROUSEL  
 3. DRYING-SHELF 
 
 Choose the solution: 1 
*/ 
 
 The system knows several specialized dryers.  It also knows two 
meta-rules corresponding to the specializations of dryers: one for 
minimizing the cost and the other for minimizing the time. 
 The system is unable to choose among the dryers until the user 
expresses his preference for one of the above optimization criteria. 
/* 
 Print 
 
 problem: 
 MANUFACTURE OBJECT LOUDSPEAKER.  
 
 loudspeaker's features: 
 LOUDSPEAKER HAS TERMINAL-BLOCK 
 
 optimization criterion: 
 DECREASE TIME. 
 
 partial technology: 
 *CRIMP OBJECTS CONTACTS 
                   ON          SUPPORT. 
 *CONNECT OBJECT TERMINAL-BLOCK 
                        ON        CHASSIS.  
 ASSEMBLE OBJECT MECHANICAL-CHASSIS-ASSEMBLY. 
 CLEAN OBJECT ENTREFER 
                  WITH   AIR-SUCKER.  
 ... 
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 SHORTEN OBJECTS COIL-ENDS. 
 SOLDER OBJECTS TERMINAL-WIRES 
                    WITH     COIL-ENDS. 
 ASSEMBLE OBJECT MEMBRANE 
                        WITH   COIL.  
 ASSEMBLE OBJECT MEMBRANE 
                         WITH   CENTERING-DEVICE. 
 FINISHING-OPERATIONS OBJECT MEMBRANE-ASSEMBLY. 
 ... 
 *APPLY OBJECT MOWICOLL 
                    ON        RING. 
 *PRESS OBJECT RING 
                   ON       CHASSIS-MEMBRANE-ASSEMBLY. 
 ...  
 *DRY OBJECT LOUDSPEAKER 
                DEVICE TUNNEL-KILN. 
        ... 
*/ 
 
 The user asked for a print-out of the technology so far designed. 
 The session continues until a detailed enough technology was 
designed.  
 
 The performance of DISCIPLE in the technique design domain is 
very encouraging. Presently, the knowledge base for the design of 
loudspeakers contains several hundreds of rules and objects. 
 
  The utility of DISCIPLE in technique design  results from the  fact 
that there are many  types of products  (belonging to a certain  family 
as,  for instance, the loudspeaker family)  which are not very different 
from each other. As a consequence, many of the technological solutions 
used to manufacture a certain type of loudspeaker, are also applicable to 
a new type.  
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 11. AN EXAMPLE FROM MANAGEMENT  
 
 In this section we shall present a hypothetical utilization of DISCIPLE in a 
management application which consists in defining the production and commercial 
strategy of an electronic company.  
 In this application, DISCIPLE acts as an aid to the manager of a company and, 
meanwhile, learns company management.  
 The theory of this domain is weak.  It consists of knowledge about objects as, for 
instance, about electronic components (their features, who produces them and in what 
conditions, etc.), about possible partners, as well as knowledge about the possibilities 
of the manager's company (the components it can manufacture, general management 
strategies, etc).  
 In this domain, a problem for DISCIPLE is a management goal as the following 
one:  
 
        PENETRATE IN India WITH electronic-equipment  
 
 A solution to this goal consists of a plan of "elementary" actions which achieves 
it.  
 DISCIPLE has rules which decompose a problem into simpler problems or 
specialize a problem.  These rules indicate in fact partial solutions to problems.  
 
 An example of a decomposition rule is the following one:  
 
  IF 
   (x ISA new-product) & 
   (y ISA market) 
  THEN 
  solve the problem 
   PENETRATE IN y WITH x 
  by solving the subproblems 
   GET OBJECT x 
   MAKE-PUBLICITY TO x IN y 
   SELL OBJECT x IN y WITH promotion-price 
   SELL OBJECT x IN y WITH value-price      
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 This rule gives a partial solution to the problem of penetrating a market with a 
new product.  
 Other rules would indicate how to make a good publicity or how to sell the 
product.  
 
 The following is an example of a specialization rule:  
 
   IF 
    (x ISA product) & 
    (y ISA company) & 
    (y PRODUCES x) 
   THEN 
   solve the problem 
    GET OBJECT x 
   by solving the specialization 
    GET OBJECT x FROM y 
  
 The specialization rules are used to better define the problems to solve.  
 
 DISCIPLE solves a given problem by successively decomposing it into simpler 
subproblems and by specializing it to better defined problems.  Therefore, the problem 
solving paradigm of DISCIPLE is problem-reduction.  
 
 During problem-solving, it develops a problem solving tree whose top represents 
the initial problem and whose leaves represent the solution to this problem:  
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PENETRATE IN India WITH electronic -equipment

GET 
OBJECT 
electronic- 
equipment

M AKE-PUBLICITY 
TO 
electronic- 
equipment 
IN India

SELL 
OBJECT 
electronic- 
equipment 
IN India 
WITH 
promotion- 
price

SELL 
OBJECT 
electronic- 
equipment 
IN India 
WITH 
value- 
price

GET 
OBJECT 
electronic-equipment 
FROM  
Hitachi

 
 The leaves of the tree may be elementary actions (i.e. actions which can be 
directly executed) or general strategies which must themselves be reduced to 
elementary actions.  
 Let us suppose that, while trying to solve the problem of penetrating India with 
electronic equipment, the system encounters the following problem:  

GET OBJECT vax-780  
 Suppose further that the user does not accept any of the system's suggestions 
('BUY OBJECT vax-780 FROM Digital', for instance) and decide to make an 
exchange agreement with Digital, to buy 'vax-780' from it, and to sell 'displayscreen of 
type 0021' to it:  
 
 EXCHANGE-AGREEMENT WITH        Digital 
      TO-BUY  vax-780 
      TO-SELL displayscreen-0021    
 BUY OBJECT vax-780 
   FROM    Digital  
 SELL OBJECT displayscreen-0021 
     TO         Digital  



 

132 
 

 
 Having received a solution from the user, the system is facing the problem of 
inferring a general rule, one instance of which is:  
 
 Solve the problem 
  GET OBJECT vax-780 
 by solving the subproblems 
  EXCHANGE-AGREEMENT WITH         Digital 
                                    TO-BUY    vax-780 
              TO-SELL  displayscreen-0021  
  BUY OBJECT vax-780 
    FROM   Digital  
  SELL OBJECT displayscreen-0021 
     TO          Digital  
 
 This instance suggests the system to learn a general rule of the form:  
 
  IF 
   v, d, ds satisfy <constraints> 
  THEN 
  solve the problem 
   GET OBJECT v 
  by solving the subproblems 
   EXCHANGE-AGREEMENT WITH     d 
               TO-BUY  v 
               TO-SELL ds  
   BUY OBJECT  v 
     FROM   d  
   SELL OBJECT ds 
      TO       d  
 
 Note that 'EXCHANGE-AGREEMENT' might be an action previously unknown 
to the system.  
 
 Next, DISCIPLE will use its weak domain theory to find an explanation of user's 
solution.  
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 Let us suppose that the theory is represented by the following network:  
 

Digital
USES-A-

NETWORK-OF
vax-780

PRODUCES NEEDS NEEDS

vax-780
micro-vax-2

. . .

human-needs material-needs

ISA ISA ISA

tape-unit-079 displayscreen-0021A.I.-qualified-people

  
 DISCIPLE will look for an explanation in terms of the relations between the 
objects from the rule instance (vax-780, Digital, displayscreen-0021).  It will propose 
partial explanations, asking the user to validate them:  
 
 Does your solution work because: 
 Digital PRODUCES vax-780 ? Yes 
 Digital USES-A-NETWORK-OF vax-780 ? No 
 Digital NEEDS displayscreen-0021 ? Yes 
 
 All the pieces of explanation validated by the user form the explanation of the 
example: 

Digital

PRODUCES NEEDS

vax-780 displayscreen-0021  
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 This explanation is used to define the following reduced version space for the 
rule to be learned:  
 
  IF 
   Upper bound: 
   (d PRODUCES v) & 
   (d NEEDS ds) 
 
   Lower Bound: 
   (d ISA Digital) & 
   (v ISA vax-780) & 
   (ds ISA display-0021) & 
   (d PRODUCES v) & 
   (d NEEDS ds) 
  THEN 
  solve the problem 
   GET OBJECT v 
  by solving the subproblems 
   EXCHANGE-AGREEMENT WITH     d 
               TO-BUY  v 
               TO-SELL ds  
   BUY OBJECT v 
     FROM   d  
   SELL OBJECT ds 
      TO       d  
 
 Next, DISCIPLE will look in its knowledge base for other objects satisfying the 
upper bound of the above rule:  
 

IBM CONTROL-DATA

PRODUCES NEEDS PRODUCES NEEDS

IBM -PC disk-unit-027 . . . . . .  
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 These objects will be used to generate instances of the above rule, the user being 
asked to validate or to reject them.  
 The positive examples thus produced will be used to generalize the lower bound 
of the above version space, and the negative examples will be used to particularize 
both bounds.  
 Finally, DISCIPLE will learn the following general rule:  
 
  IF 
   (d ISA company) & 
   (d PRODUCES v) & 
   (d NEEDS ds) & 
   (v ISA product) & 
   (ds ISA my-product) & 
   (ds STATE available) 
  THEN 
  solve the problem 
   GET OBJECT v 
  by solving the subproblems 
   EXCHANGE-AGREEMENT WITH     d 
               TO-BUY  v 
               TO-SELL ds  
   BUY OBJECT v 
     FROM   d  
   SELL OBJECT ds 
      TO       d  
  
 This rule may be expressed in English as follows: "to get an object produced by 
a company needing one of my available products, make an exchange agreement, buy 
the object and sell my product". 
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 12. CONCLUSIONS  
 
 In this thesis we proposed an approach to the knowledge transfer 
from a human expert to an expert system. This approach is illustrated 
by DISCIPLE, an interactive system which integrates an empty expert 
system and a learning system, both using the same knowledge base.  
 
 With DISCIPLE, the building of a practical Expert System is a two-
phase process.  
 In the first phase, the human expert has to introduce, into the 
knowledge base of DISCIPLE, elementary knowledge about the 
application domain.  It is expected that this knowledge represents a 
"nonhomogeneous theory" of the domain, in that it provides complete 
descriptions of some parts of the domain, and incomplete or weak 
descriptions of other parts of the domain.  
 In the second phase, DISCIPLE is used as an interactive problem 
solver.  From each contribution of the human expert to the problem 
solving process, the system is trying to learn the general problem 
solving rule illustrated by the user's solution.  In this way, DISCIPLE 
progressively evolves from a helpful assistant in problem solving to a 
genuine expert.  
 With DISCIPLE, the critical process of building the "complete" 
knowledge base of an expert system is reduced to the process of 
building a smaller knowledge base containing only the theory of the 
application domain. Moreover, the resulting system is able to 
progressively improve its competence and performance in problem 
solving.  
 
 DISCIPLE integrates many learning and problem solving 
techniques. In spite of this, however, it appears as a unitary system, not 
only in what regards its external behavior, but also in what regards its 
internal behavior. The unity is given by the existence of a unique 
knowledge base which is organized around the notion of concept and 
supports the elementary operations with concepts (comparing the 
generality of concepts, generalizing concepts, and particularizing 
concepts). 
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 The problem solving mechanisms of DISCIPLE consist in problem 
reduction, formulation, propagation and evaluation of constraints, and 
problem solving by analogy. These "classical" problem solving 
paradigms have been expressed in terms of the above mentioned 
elementary operations with concepts, and have been integrated into an 
advanced problem reduction method. 
 
 Trying to cope with the complexity of the real world applications, 
DISCIPLE makes the hypothesis that its theory about an application 
domain is nonhomogeneous, describing completely some parts of the 
domain, but only incompletely or even poorly, other parts of the same 
domain. This is a very difficult learning environment. However, 
DISCIPLE integrates different learning methods which allow it to learn 
at different levels of knowledge. A common feature of all these 
methods is that they are based on an understanding of the example from 
which the rule is learned. 
 
    In the context of a complete theory, DISCIPLE uses explanation-
based learning. It is thus able to learn a justified rule from a single 
example, and may also reject incorrect examples. 
 
 The learning method in the context of a weak theory integrates 
different learning paradigms: explanation based learning, learning by 
analogy, empirical learning, and learning by questioning the user. 
Among the most important features of this learning method one could 
mention:  
 - the synergistic combination of different learning paradigm into a 
unitary learning method; 
  - the notion of "explanation" in a weak theory and a heuristic 
method to find such explanations;  
 - the use of analogy to define a reduced version space for the rule to 
be learned; 
  - the use of both the explanations of the successes and the 
explanations of the failures to search the rule in its version space; 
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  - the formulation of "clever" questions, in order to extract useful 
knowledge from the expert; 
 - the possibility of hiding the learned rules to the expert; 
 - a great confidence in the human expert. 
 
 In the context of an incomplete theory, DISCIPLE learns by 
combining the method corresponding to the complete theory with the 
method corresponding to the weak theory. In this way, it is able to use a 
generalization of an incomplete proof of an example: 
 - for defining a justified analogy criterion; 
 - for finding the explanations of the failures; 
 - and as a justification structure of the general rule to be learned. 
 This method borrows features from both the learning method in a 
complete theory (may reject incorrect examples, learns justified rules) 
and from the learning method in a weak theory (clever questions to the 
user, use of analogy, etc.). It also opens a new research direction: 
learning in an imperfect theory, a generalization of the incomplete 
theory.  
 

 Another important effect of learning in the context of a weak theory 
or an incomplete theory is that of developing the domain theory.  
 
 Let us notice that, by the integration of these three learning 
methods, DISCIPLE proposes a solution to the so called "falling off the 
knowledge cliff" problem of the current systems. This problem is that a 
system performs well within the scope of the knowledge provided to it, 
but any slight move outside its narrow competence causes the 
performance to deteriorate rapidly [Michalski, 1986]. On the contrary, 
in DISCIPLE, the move from one part of the application domain, 
characterized by a complete theory, to another part, characterized by an 
incomplete theory or by a weak theory, causes only a slight 
deterioration of the performance, this effect being obtained by a 
corresponding replacement of the learning method used.  
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 We have implemented DISCIPLE in Le_Lisp [Chailloux, 1985] and 
we have used it to design techniques for the manufacturing of 
loudspeakers. 
 
 There are several weaknesses of DISCIPLE, on which will shall 
direct our future research.  
 
 For instance, the generality of the learned rule is limited by the 
generality of the over-generalized explanation (the analogy criterion) 
which may not be in the most general form.  However, the rule may be 
further generalized, in response to a problem solving situation in which 
the rule does not apply and the user says that it should apply.  In this 
case, the condition of the rule and some action models or inference 
rules from the associated generalized proof may be generalized to cover 
the new situation as well.  
 
 Also, the method of finding an explanation in a weak theory is not 
powerful enough.  Other sources of knowledge are needed, as well as 
meta-rules for finding far off explanations;  
 
 While DISCIPLE uses control knowledge in the form of meta-rules, 
such knowledge is not learned, having to be provided by the user.  
Therefore, if two experts provide different solutions to the same 
problem, DISCIPLE simply generates two different rules.  The learning 
mechanisms of DISCIPLE should be used to propose explanations of 
this difference and find meta-explanations that can become meta-
preconditions on the use of the rules.  
 
 An important future direction of research consists in developing the 
learning methods of DISCIPLE in order to be able to deal with an 
imperfect theory in which the knowledge may contain minor errors.  
 
 There are also several lessons we have learned from the design of 
DISCIPLE.  
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 One is that, to cope with the complexity of real-world applications, 
one should use any available learning technique. Indeed, the different 
learning paradigms have many complementary prerequisites and effects.  
Therefore they may be synergistically combined.  
 
 Another lesson is that full formalization of weak theories is short-
time harmful.  Indeed, forcing the expert to completely formalize a 
domain theory (which may even not have such a complete theory) may 
result in a degradation of the knowledge provided by him/her.  
 
 Lastly, we have discovered that over-generalization is not only 
harmless, but also useful and necessary, when interacting with a user, 
allowing the identification of features usually neglected by the expert.  
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APPENDIX 
 
 
 
 In this appendix we present other learning methods which are 
complementary to DISCIPLE, and might therefore be used to further 
develop our theory and methodology of expert knowledge acquisition. 
More precisely, we show: 
 - how one might improve the quality and efficiency of the empirical 
generalizations. 
 - how one might learn hierarchies of concepts (which constitute 
elementary knowledge in DISCIPLE); 
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LEARNING BASED ON CONCEPTUAL DISTANCE 

 
Abstract  

 
We present a new approach to concept learning from examples and 
concept learning by observation, which is based on a intuitive notion of 
conceptual distance between examples (concepts) and combines 
symbolical and numerical methods. Our approach is supported by the 
observation that very different examples generalize to an expression 
that is very far from each of them, while identical examples generalize 
to themselves. Therefore, a generalization of two examples, as well as 
the process of obtaining this generalization, represents indications of 
the conceptual distance between the examples. Following this idea we 
propose some domain independent and intuitively justified estimates for 
the conceptual distance. Usually however, a set of examples may be 
characterized by several generalizations, each suggesting a certain 
conceptual distance. The minimum of these is taken as the estimation of 
the real conceptual distance. Moreover, the corresponding 
generalization is recommended as the one to be made by the learning 
system because this generalization has the desirable property of 
reflecting the greatest number of common features of the examples. We 
also present a hierarchical conceptual clustering algorithm which 
groups objects so that to maximize the cohesiveness (a reciprocal of the 
conceptual distance) of the clusters. We further show that conceptual 
clustering may improve learning from complex examples describing 
objects and the relations between them. The idea is that learning good 
generalizations of such examples requires matching the most similar 
objects which, in turn, requires a clustering of these objects. Finally we 
present a methodology of learning hierarchies of prototype objects 
which is a step towards automating the construction of knowledge bases 
for expert systems. 
 
Keywords: Learning from examples, Preferable  generalization, 
Conceptual distance, Concept learning by observation, Conceptual 
cohesiveness, Conceptual clustering, Hierarchies of prototype objects.  
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I. INTRODUCTION 
 
 Machine learning may be defined as any process by which a 
computer increases its knowledge and improves its skills. 
 One of the basic types of learning is inductive learning, that is, 
learning by generalizing specific facts or situations. 
 Inductive learning has received considerable attention in Artificial 
Intelligence ([Cohen & Feigenbaum, 1982], [Dietterich & Michalski, 
1981], [Langley, 1987], [Michalski, Carbonell & Mitchell, 1983, 1986], 
[Mitchell, Carbonell & Michalski, 1985]). Two different kinds of 
inductive learning are:  learning from examples and conceptual 
clustering. 
 
 In concept learning from examples, the learning system is presented 
with independent instances representing a certain class, and the task is 
to induce a general description of the class. The instances can be 
specific physical objects, actions, processes, images, etc. Let us suppose 
that they are different cars (CITROEN, RENAULT, OPEL, etc). In this 
case, the system's task is to learn the concept of car, represented by 
what is common to all the given examples (objects with four wheels, 
used to transport people, etc). Having formed such a concept, the 
system will be able to recognize other objects as being or not being 
cars, as they have or have not the properties of the car concept. 
 
 In conceptual clustering, the learner is also presented with a set of 
examples, but these examples are no longer said to represent the same 
class. In this case, the learner has to solve two problems: 
 - the aggregation problem of distinguishing classes (defined as 
extensionally enumerated sets of objects) into which the examples can 
be grouped; 
 - the characterization problem of inducing an intentional 
description for each class. 
 The examples presented to the learner could be, for instance, 
descriptions of specific cars, ships, airplanes, or trains, and the system 
would learn the following concepts: 
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. . . . . .

vehicle

aerial-vehicle terrestrial-vehicle acquatic-vehicle

car train

 
 
 As defined, the characterization problem is very similar with the 
problem of learning from examples. Conceptual clustering processes 
must address this problem since the quality of a clustering is dependent 
on the description of the clusters (the simplicity of these descriptions, 
the map between these descriptions and the clusters they cover, etc. 
[Michalski & Stepp, 1983a]).  
 Although nobody is claiming that the aggregation and 
characterization problems should be independent, the present 
conceptual clustering algorithms [Fisher & Langley, 1985] first solve 
the aggregation problem, and then use the methods of learning from 
examples to obtain a description for each cluster. The so obtained 
descriptions are further used to estimate the quality of the clustering and 
may suggest to search for another clustering. 
 
 In this paper we present a new approach to concept learning from 
examples and concept learning by observation, which is based on a 
intuitive notion of conceptual distance [Michalski & Stepp, 1983a] 
between examples (concepts) and combines symbolical and numerical 
methods. 
 Our approach is supported by the observation that very different 
examples generalize to an expression that is very far from each of them, 
while identical examples generalize to themselves. Therefore, a 
generalization of two examples, as well as the process of obtaining this 
generalization, represent indications of the conceptual distance between 
the examples. Following this idea, in section III, we propose some 
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domain independent and intuitively justified measures for the 
conceptual distance. 
 However, the process of obtaining a generalization of a set of 
examples is not a deterministic one. Several generalizations are 
possible, and each suggests a certain conceptual distance between them. 
Therefore, we propose to estimate the real distance by the minimum of 
these distances. Moreover, the corresponding generalization is 
recommended as the one to be made by the learning system since this 
generalization has the desirable property of reflecting the most 
commonalties between the examples. 
 
 In section IV, we present a conceptual clustering algorithm which is 
based on the reciprocal of the conceptual distance, called conceptual 
cohesiveness [Michalski & Stepp, 1983a], and on a partial ordering 
defined on conceptual cohesiveness. The main feature of the conceptual 
cohesiveness is that it takes into consideration not only the properties of 
the individual objects, but also their relationship to other objects and, 
most importantly, their relationship to some pre-defined concepts 
characterizing object collections. 
 To cluster a set of examples E1, ... En, our algorithm first looks for 
the two examples Ei, Ej for which the conceptual cohesiveness is 
maximum. These examples form the seed of a cluster. A new example 
Ek is added to this cluster only if the conceptual cohesiveness of the set 
{Ei,Ej} is not greater than the conceptual cohesiveness of the set 
{Ei,Ej,Ek}. 
  
 While, in general, only conceptual clustering is based on learning 
from examples, in our approach learning from complex examples is also 
based on conceptual clustering. Here by a complex example we mean 
an example describing several objects and the relations between them. 
The idea is that learning good generalizations of complex examples 
requires matching the most similar objects which, in turn, requires a 
clustering of these objects. This method is presented in section V. For 
instance, it should be of use in Scene Analysis where the recognition of 
each individual scene component and the recognition of the whole 
scene are dependent of each other. 
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 We consider that the approach presented in this appendix is also 
significant to automatic knowledge acquisition for expert systems and, 
in section VI, we present a methodology for generating hierarchies of 
prototype objects. 
 

II. CONCEPT LEARNING FROM EXAMPLES 
 
 Concept learning from examples  means forming a general 
description (concept) of a class of objects given a set of objects 
(examples) from this class. 
 
 We assume that both the examples and the concepts are described in 
the same representation language, as conjunctions of literals. For 
instance, Fig. 1 represents two examples of toy trains. They are taken 
from the famous Michalski's train problem [Michalski, 1984], which 
consists in finding a common characterization of a set of such trains. 
 
 As can be seen in Fig. 1, each train is described as a conjunction of 
literals of the form (p a1,...,an), where p is a predicate and a1,...,an are 
the arguments of the predicate. For instance: 
 (car-shape open-rectng C2) 
means that the shape of the car C2 is an open rectangle, and 
 (length long C2) 
means that the length of C2 is long. 
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T1: 
(infront C1 C2) (infront C2 C3) (infront C3 C4) (infront C4 C5) 
(length long C1) (length long C2) (length short C3) (length long C4) 
(length short C5) (car-shape machine C1)(car-shape open-rectng C2)  
(car-shape sloping-top C3) (car-shape open-rectng C4)  
(car-shape open-rectng C5) (contains C2 L2) (contains C3 L3)  
(contains C4 L4) (contains C5 L5) (load-shape square L2)  
(load-shape triangle L3) (load-shape hexagon L4)  
(load-shape circle L5) (nrpts-load 3 L2) (nrpts-load 1 L3)  
(nrpts-load 1 L4) (nrpts-load 1 L5) (nr-wheels 2 C1)  
(nr-wheels 2 C2) (nr-wheels 2 C3) (nr-wheels 3 C4)(nr-wheels 2 C5) 
  
T2: 
(infront C6 C7) (infront C7 C8) (infront C8 C9) 
(length long C6) (length short C7) (length short C8) (length short C9)  
(car-shape machine C6) (car-shape U-shape C7)  
(car-shape open-trapeze C8) (car-shape closed-rectng C9) 
(contains C7 L7) (contains C8 L8) (contains C9 L9) 
(load-shape triangle L7) (load-shape rectangle L8)  
(load-shape circle L9) (nrpts-load 1 L7) (nrpts-load 1 L8)  
(nrpts-load 2 L9) (nr-wheels 2 C6)(nr-wheels 2 C7)(nr-wheels 2 C8) 
(nr-wheels 2 C9) 
  

   Figure 1. The first two trains from Michalski's train problem 
 
 The argument of a predicate, also called term, may be a constant, a 
variable, or f(t1,...,tn), where f is a function and t1,...,tn are terms. 
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  For each variable a domain is defined, containing all possible values 
the variable can take. As in [Michalski & Stepp, 1983a], we distinguish 
among nominal (categorical), linear (quantitative), and structured 
variables, whose domains are unordered, totally-ordered, and graph-
oriented sets, respectively. Structured variables represent generalization 
hierarchies of related values as, for instance, the following one: 
 

* l
(any load shape)

polygon oval

triangle rectangle hexagon circle ellipse

square

Fig. 2. A generalization hierarchy  for the load shapes in Fig.1.

 
 The predicates may be related by theorems as, for instance, the 
following one: 
 ∀x∀y∀z, (contains x y) & (contains y z) −−>  (contains x z) 
 
 We shall use the predicates from Michalski's train problem to 
present our approach. The following, for instance, are two simple 
examples: 
 

E1: (car-shape open-rectng A1)  (length short A1) 
E2: (car-shape open-trapeze A2) (length short A2) 

 
Fig. 3. Two simple examples. 
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 The first example describes the car A1 as having the shape open 
rectangle and being short. The second example describes the car A2 as 
having the shape open trapeze and being also short. 
 
 A generalization of an example is an expression which "describes" 
a set containing the example. That is, by replacing the variables of the 
generalization by suitable constants, one finds back the example (see 
precise definition below). 
 For instance, the following is a generalization of E1: 
 G: (car-shape open-rectng x) (length y x) 
 It describes a set of open rectangle cars of any length. One finds 
back E1 by replacing 'x' by 'A1' and 'y' by 'short'. 
 
 A generalization  of several examples E1,...,En is an expression 
which describes a set containing all these example. For instance, the 
following is a generalization of E1 and E2: 
 G1: (car-shape z x) (length short x) 
 It describes a set of short cars of any shape. 
 
 A key characteristic of the concept learning from example problem 
is that there is an important structure inherent to the language used to 
represent the concepts. This structure is based on the relation less-
general-than, which was defined in the section 3.7 of the thesis. 
 
 For instance 
 E1: (car-shape open-rectng C1)  
is less general than 
 G:   (car-shape z x) (length y x) 
 Indeed, one may use the theorem that any car has a length 
 ∀v ∃u (length u v) = TRUE 
and may rewrite E1 as 
 E1:  (car-shape open-rectng C1) (length u C1) 
 Now, there exists the substitution σ = (z<−open-rectng, x<−C1, y<−u) 
such that 'σoG=E1'. Therefore, E1 is less general than G. 
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 Let us consider again the examples in Fig. 3. Some of their 
generalizations are the following ones: 
 
 G1:     (car-shape z x) (length y x) 
 G2:     (car-shape z x) (length short x) 
 G3:     (car-shape z x) (length y t) 
 G4:     (car-shape x y) 
 G5:     (length short x) 
 G6:     (length x y) 
 
 A learning system will always have the problem of choosing among 
the competing generalizations. We define the notion of preferable  
generalization as being the generalization which is less general than all 
the other generalizations. 
 In our case, the preferable  generalization is G2 since it is less 
general than all the other generalizations. For instance, G2 is less 
general than G1 because there is the substitution 'σ = (y <− short)' such 
that σoG1=G2. 
 
 The notion of preferable generalization is relative to the knowledge 
about the learning universe and cannot be considered absolute. New 
knowledge may lead to an improvement. For instance, let us consider 
that we have acquired new knowledge about car shapes. Suppose that 
this knowledge is expressed by the following hierarchy: 
 

machine open-top close-top

(any car shape)
*c

-rectng -trapeze -rectng -rectng -top -top
open-  U-shaped  ell ipse closed- jagged-  slopping-dbl-open-open-

 
Fig. 4. A generalization hierarchy for the shapes of the cars in Fig. 1. 
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 In this case 
 G7: (car-shape open-top x) (length short x) 
is also a generalization of E1 and E2. Since G7 is less general than G2 
(there is 'σ =(z<−open-top)' such that 'σoG2=G8'), G7 is less general 
than all the other generalizations. Therefore G7 is the preferable 
generalization in the new context. 
 
 Given a set of generalizations, it is most probable that there is no 
generalization that is the least general. For instance, the set {G1, G3, 
G4, G5, G6} does not contain a least general expression. 
 
 Given two expressions G1 and G2, if neither G1 is less general than 
G2 nor G2 less general than G1, then G1 and G2 are said to be 
incomparable from a generalization point of view. 
 
 In a given learning situation, there are many generalizations which 
are incomparable, and the main difficulty of learning is to choose the 
right one [Kodratoff & al. 1984]. Therefore, we have to look for 
another, more relaxed, definition of the preferable  generalization. 
 
 Let us notice that, if Gi is the preferable  among G1, ... ,Gn, then 
the set of instances of Gi is included into the set of instances of each of 
these generalizations. It follows that the number of instances of Gi is 
less than the number of instances of any other generalization. Based on 
this observation we may compare two generalizations G1 and G2 even 
if they are incomparable from a generalization point of view. We shall 
say that G1 is preferable if the number of instances of G1 is less than 
the number of instances of G2. 
 
 But this definition is still unsatisfactory for the simple reason that 
learning is not an isolated aim. One is learning in a given universe, with 
a well-defined goal in that universe. As a consequence,  a generalization 
has also to point to the essential common properties of the examples. 
Therefore, a good  generalization is not one which represents many of 
the properties common to the examples, but that one which represents 
many of the important properties common to the examples. 
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 Let us consider, for instance, the case of a robot which learns 
concepts from examples representing physical objects. Each object is 
described by specifying the actions which could be performed on it, the 
relations which could be established between this object and other 
objects, the shape of the object, its color, etc. Although all these 
properties are relevant for a robot their relative importance depends on 
robot goals. If the robot intends to use the learned concepts for action 
planning, then the action and relation properties are to be considered 
more important the the color, for instance. On the other hand, if the 
robot intends to use the learned concepts for recognizing objects, then 
the color property should be considered more important. 
 This problem is treated in detail in section VI.  
 In our approach, the relative importance of the predicates must be 
defined by the teacher. One way to do it is to associate a weight to each 
predicate. Based on the weights of the predicates we could estimate the 
relevance (value) of a generalization as the sum of the weights of the 
predicates included into the generalization. We may therefore consider 
that the preferable  generalization is the one which maximizes the 
relevance and minimizes the number of instances. 
 
 We may now informally define the preferable  generalization of the 
examples E1, E2, ... , En, as follows: 
 - if there is a generalization Gi which is less-general-than all the 
other generalizations of the examples then Gi is the preferable  
generalization; 
 - if Gi1, ... , Gim, are all the incomparable generalizations of the 
examples, then consider the preferable  generalization the one which is 
the most relevant  (contains the most important predicates) and has the 
least number of instances. 
 
 In the following section we shall propose a more computational 
definition of the preferable generalization, definition based on domain-
independent and intuitively justified heuristics. 
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III. CONCEPTUAL DISTANCE AND CONCEPTUAL 
COHESIVENESS 

 
A. The general approach 
 
 Given two descriptions, we could notice similarities and 
dissimilarities. For instance, the descriptions: 
 E1: (car-shape open-rectng B1)  
 E2: (car-shape U-shaped B2) 
 
are similar because both are characterized by the predicate car-shape 
and each car-shape is open-top (see Fig. 4),  but the first shape is open-
rectng, while the second one is U-shaped. 
 If we could estimate the similarity S(E1,E2) and the dissimilarity 
D(E1,E2) between the descriptions E1 and E2, then we could estimate 
the conceptual distance between E1 and E2 by a function of S and D. 
This function would quantify the contribution of S and D to the 
conceptual distance. 
 
 Since a generalization of two examples is able to reveal subtile 
commonalties between these examples it seems to be a suitable means 
of estimating their conceptual distance. Indeed, let us notice that very 
different examples generalize to a general expression that is very far 
from each of them, while identical examples generalize to themselves. 
Moreover, we want to take into account that the fewer changes are 
made to the examples in order to obtain a generalization, the greater the 
similarities and the less the dissimilarities are. 
 
 Here we shall propose an estimation of the conceptual distance 
which is based on the learning algorithm developed at LRI [Kodratoff 
& Ganascia, 1986]. This algorithm uses the principle of structural 
matching: the examples are successively transformed until they acquire 
approximately the same form. Then the generalization is obtained by 
retaining only the common features.  
 To illustrate this algorithm let us consider the following two 
examples: 
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 E1: (car-shape open-rectng C1) (contains C1 L1) 
    (car-shape open-trapeze C3) 
 
 E2: (car-shape U-shaped C2) (length short C2) 
 
 The first example represents two cars, an open rectangle one 
containing an object and an open trapeze one. The second example 
represents a short U-shaped car (see Fig. 4). 
 The algorithm first rewrites the examples revealing their common 
features: 
 
 E1: (car-shape open-top X1) (contains X1 L1) 
    (car-shape open-trapeze C3) 
    (X1<−C1) 
 
 E2: (car-shape open-top X1) (length short X1) 
         (X1<−C2) 
 
 Next, it will use the theorems of the representation language in 
order to reveal in one example features exhibited by the other. Such a 
theorem expresses, for instance, the fact that any object has a length: 
 ∀z ∃t  (length t z)=TRUE 
 Using this theorem one rewrites the two examples as follows: 
 
 E1:  (car-shape open-top X1) (length Y1 X1) (contains X1 L1) 
         (car-shape open-trapeze C3) 
         (X1<−C1, Y1<−t) 
 
 E2: (car-shape open-top X1) (length Y1 X1) 
         (X1<−C2, Y1<−short) 
 If one example exhibits a certain feature more times than the other, 
one uses the idempotency of the AND operator to make the feature 
appear the same number of times: 
         (car-shape open-top X1) = 
    (car-shape open-top X1) & (car-shape open-top X1) 
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 Therefore, the two expressions are farther rewritten as follows: 
 
 E1: (car-shape open-top X1) (length Y1 X1) (contains X1 L1) 
            (car-shape open-top X2) 
           (X1<−C1, Y1<−t, X2<−C3) 
 
 E2: (car-shape open-top X1) (length Y1 X1) 
    (car-shape open-top X2) 
    (X1<−C2, Y1<−short, X2<−C2) 
 
 When no other common features may be revealed, one simply drops 
the differences between the two expressions and obtains the 
generalization of the initial examples: 
 
 G(E1,E2): (car-shape open-top X1) (length Y1 X1) 
     (car-shape open-top X2) 
     (may-be-the-same X1 X2) 
 
 Let us notice that the operations made in order to obtain a structural 
matching and a generalization of the examples are indications of 
similarities and dissimilarities between these examples. 
 
 The predicates of E1, E2, and G(E1,E2) could be classified  in four 
categories (thus obtaining four lists of predicates), as follows: 
 
COMMON 
Predicates from G(E1,E2) which were initially present in E1 and E2: 
 { (car-shape open-top X1) } 
 
THEOREMS 
Predicates introduced in G(E1,E2) by using the theorems of the 
representation language: 
 { (length Y1 X1) } 
IDEMPOTENCY 
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Predicates introduced in G(E1,E2) by using the idempotency of the  
AND operator: 
 { (car-shape open-top X2) } 
 
DROPPED 
Predicates dropped from E1 and E2, in order to obtain G(E1,E2): 
 { (contains X1 L1) } 
 
 The general intuition is that each such type has a specific influence 
to the estimation of the similarities and dissimilarities between the 
examples. 
 In the following sections we shall propose and justify measures for 
each type of predicates. 
  
B. Common predicates 
 
 Let us consider the following four examples: 
 E1: (car-shape open-rectng C1) 
 E2: (car-shape U-shaped C2) 
 E3: (car-shape open-rectng C3) 
 E4: (car-shape ellipse C4)  
 
 Since each of these four descriptions is characterized by the same 
predicate, the conceptual distance between them is exclusively 
determined by the distance between their arguments. 
 
 Intuitively,   distance(E1,E3) < distance(E1,E2) < distance(E1,E4) 
 
 Let us also consider the following generalizations (see Fig. 4): 
 G(E1,E3):  (car-shape open-rectng X1) 
 G(E1,E2):  (car-shape open-top X2) 
 G(E1,E4):  (car-shape *c X3) 

 
 Let us notice that open-rectng, open-top, and *c are all values from 
the structured domain in Fig. 4, and that open-rectng is less general 
than open-top which in its turn is less general than *c.  While open-
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rectng is an instance, open-top  is a generalization with 4 instances and 
*c  is a generalization with 9 instances. 
 
 We could define the degree of generality  of an argument, as the 
ratio of the number of argument's instances to the total number of 
instances from argument's domain, that is: 

                               number of instances of "a" 
 g(a) = ---------------------------------------------------- 
                   number of instances of the domain of "a" 
 For example: 

 g(open-rectng) = 0.      g(open-top) = 0.44       g(*c) = 1. 
 
 This definition applies also to the so-called linear (quantitative) 
variables [Michalski & Stepp, 1983a]. 
 
 Let us notice that there is no dissimilarity between E1 and E3. 
Indeed, C1 and C3 are just different names for the same entity (i.e. the 
car) and X1, in the expression  G(E1,E3)=(car-shape open-rectng X1), 
is just another name for the car. X1 denotes a definite object and, 
therefore, g(X1)=0. 
 
 Intuitively, the more similar two descriptions containing only 
common predicates are, the less general are the arguments of their 
generalizations. Also, the more dissimilar two such descriptions are, the 
more general are these arguments. 
  All the arguments of a predicate being a priori of the same 
importance, one should propose an estimation for the similarity 
(dissimilarity), between two examples E1 and E2, by a function of the 
mean degree of generality of the arguments of the generalization 
G(E1,E2). 
 
 Let us now consider the following three examples: 
 E5:     (COLOR RED C5) 
 E6:     (COLOR BLUE C6) 
 E7:     (SIZE BIG C7) 
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and the generalization: 
 G(E5,E6):  (COLOR *d X8)  
 It is quite obvious that E5 is more similar to E6 than to E7, in spite 
of the fact that the arguments of G are variables. The simple fact that E5 
and E6 are characterized by the same predicate makes them similar. 
Therefore, the similarity estimation function should also indicate a 
certain similarity between two examples even when all the arguments of 
G are variables, but both examples are characterized by the same 
predicate. 
 
 To sum up, let us consider two examples 
 E1: (P a1 a2 ... an) & . . . 
 E2: (P b1 b2 ... bn) & . . . 
and their generalization 
 G(E1,E2): (P c1 c2 ... cn) & . . . 
 Let also g(ci) be the generality degree of the argument ci.  
 
 Then we propose to estimate the contribution of P to the 
dissimilarity and similarity between E1 and E2 by the following 
functions on the degree of generality of the arguments of P: 
 
 D(E1,E2,P) = 0.5( Σg(ci) ) / n 
 S(E1,E2,P) = 1 - D(E1,E2,P) 
 
 That is, we take the total contribution of a predicate P to the 
conceptual distance between E1 and E2 as being equal to 1, and we 
distribute it between similarity and dissimilarity in accordance with the 
generality degree of its arguments. 
 
C. Dropped predicates 
 
 Let us consider two examples and their generalization: 
 
 E1: (car-shape open-rectng C1) & (contains C1 L1) 
 E2: (car-shape U-shaped C2) 
 G(E1,E2): (car-shape open-top X1) 
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 In order to obtain a generalization of E1 and E2 one has to drop the 
predicate contains  because it represents a feature of E1 which has 
nothing in common with any feature of E2.  Therefore, this predicate is 
an indication of dissimilarity between the two examples. 
  Therefore we propose to estimate the contribution of a dropped 
predicate P to the estimation of the dissimilarity and similarity between 
E1 and E2 as follows: 
 D(E1,E2,P) = 1 
 S(E1,E2,P) = 1 - D(E1,E2,P) = 0 
 
D. Predicates introduced by idempotence 
 
 We consider that the necessity of using idempotency of the logical 
'AND' (for computing a generalization of two descriptions) is an 
indication of dissimilarity. But this dissimilarity has to be considered 
less than in the case of dropping predicates. Indeed, the predicate 
involved is present in both descriptions (that is, both descriptions have 
the property expressed by the predicate) but a different number of 
times. 
 
  Let us consider the following examples: 
 E1 = (length short C1) 
 E2 = (length short C2)(length short C3) 
 E3 = (length short C4)(length long  C5) 
 
 We could obtain the following generalizations (by applying 
idempotency in the first example): 
 G(E1,E2) = (length short X1)(length short X2) 
 G(E1,E3) = (length short X3)(length   *l  X4) 
 
 Intuitively, one sees that distance(E1,E2) < distance(E1,E3). 
 
 G(E1,E2) and G(E1,E3) differ only by the predicate which was 
introduced by idempotency. The only significant dissimilarity between 
(length short X2) and (length *l X4) consists in the generality degree of 
the first argument: g(short)=0, g(*l)=1. 
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 As in the case of the common predicates, we could estimate the 
dissimilarity, due to a predicate introduced by idempotency, by the 
mean of the degree of generality of its arguments. 
 For intuitive, but also for formal reasons, we cannot accept any 
contribution of idempotency to the similarity estimation . Indeed, if 
idempotency would contribute to similarity estimation, then the 
similarity of two descriptions would be undefined and arbitrary since 
idempotency can be applied any number of times. 
 
 Therefore, the contribution to the estimation of the dissimilarity and 
similarity between E1 and E2 of the predicate P, introduced in 
G(E1,E2) by idempotency, is taken as follows: 
 
 D(E1,E2,P) = 0.5( Σg(ci) ) / n 
 S(E1,E2,P) = 0. 
 
 The generalization algorithm will always prefer idempotency to 
dropping, but will also try to use idempotency as few times as possible. 
 
E. Predicates introduced by theorems 
 
 In principle, these predicates should be treated as the common 
predicates. Let us consider, for instance, the examples: 
 
 E1: (on A B) 
 E2: (near C D) 
 
 We may use the theorem '∀x∀y (on x y) ∅ (near x y)' and rewrite 
the first example as: 
 
 E1: (on A B) (near A B) 
 
 In this way we have revealed a common feature of E1 and E2: both 
represent two objects which are near one another. 
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 However, we must take care avoiding counting several times the 
contribution of a predicate to the similarity and dissimilarity estimation, 
as shown by the following example. 
 
 Let us consider, for instance, the examples 
 E1: (on A B) 
 E2: (on C D) 
and their rewritten form 
 E1: (on A B) (near A B) 
 E2: (on C D) (near C D) 
 
 In this case we should consider the on predicate as the only 
predicate common to the examples. Adding near would almost mean 
counting several times the on predicate. 
 
F. Relative importance of the predicates 
 
 A system learning concepts from examples is supposed to have its 
own goals that are intended to be achieved by using the learned 
concepts. Since these goals are also known by the teacher supplying the 
examples, it is reasonable to suppose that the examples specify only the 
properties relevant to the system's goals. Even in such a case however 
some properties may be regarded as more important than others. 
 
 We assume that the relative importance of the properties is given by 
the teacher in the form of a weight associated to each predicate. 
Therefore, the previously estimated contributions of a predicate, to the 
similarity and the dissimilarity of two descriptions will be multiplied by 
the weight of the predicate. For instance, if P is a common predicate 
with the weight 'w', then its contribution to the dissimilarity and 
similarity estimation will be taken as: 
 
  D(E1,E2,P) = 0.5w( (Σg(ci) ) / n 
  S(E1,E2,P) = 1 - D(E1,E2,P) 
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G. Estimation of conceptual distance and conceptual cohesiveness 
 
 Let us consider two examples E1, E2, and one of their 
generalizations G(E1,E2). As shown in the previous sections, one may 
estimate the contribution to similarity and dissimilarity of each involved 
predicate. By adding these estimations, one obtains the total estimation 
of similarity S(E1,E2,G) and the total estimation of dissimilarity 
D(E1,E2,G). These estimations depend of course on the generalization 
G(E1,E2). Another generalization G'(E1,E2) would produce different 
estimations D'(E1,E2,G') and S'(E1,E2,G'). 
 Having estimated the similarity and the dissimilarity between E1 
and E2 (corresponding to G(E1,E2)), one is able to estimate the 
conceptual distance between E1 and E2 (corresponding to G), as a 
function of D and S. Hereafter we shall consider the following distance 
function: 
 
 f(E1,E2,G) = D(E1,E2,G)/S(E1,E2,G) 
 
 Using G'(E1,E2) instead of G(E1,E2), one obtains another 
estimation of the conceptual distance between E1 and E2: 
 
 f(E1,E2,G') = D(E1,E2,G')/S(E1,E2,G') 
 
 We take, as the conceptual distance between E1 and E2, the 
minimum of f(E1,E2,G) over all possible generalizations of E1 and E2: 
 
 conceptual-distance(E1,E2)  =    MIN    {f(E1,E2,G(E1,E2))} 
                                                 G(E1,E2) 
 
  Moreover, the generalization for which f is minimum is 
recommended as the concept to be learned from E1 and E2 since this 
generalization has the desirable property of revealing the greatest 
number of common features between the examples and of being the 
least general among the generalizations revealing the same amount of 
common features. 
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 Since the definition of the conceptual distance is based on the 
generalizations of the examples, this definition applies for any number 
of examples. 
 Let us consider n examples E1,E2,...,En and G(E1,E2,...,En), one of 
their generalization. Based on this generalization one can compute the 
four lists: 
 
CM: predicates from G(E1,...,En) which were initially present in 
E1,...,En; 
 
TH: predicates from G(E1,...,En) which were introduced in at least one 
example,  by using the theorems of the representation language (but not 
idempotency); 
 
ID: predicates from G(E1,...,En) which were introduced in at least one 
example by using the idempotency of the AND operator; 
 
DR: predicates dropped from E1,...,En, in order to obtain G(E1,...,En). 
 
  Further on, using the above four lists, one can estimate the 
similarity S(E1,...,En,G), the dissimilarity D(E1,...,En,G), and the 
conceptual distance f(E1,...,En,G). The minimum of f taken over all 
possible generalizations of E1,...,En is the conceptual distance between 
E1,...,En: 
 
 conceptual-distance(E1,...,En) =    MIN     f(E1,...,En,G) 
                                                       G(E1,...,En) 
 
 The reciprocal of the conceptual distance is called the conceptual 
cohesiveness of the set {E1,...,En}. The more similar and less dissimilar 
are the examples, the greater is their conceptual cohesiveness. 
 In the next section we shall present a hierarchical clustering 
algorithm based on the above notion of conceptual cohesiveness. 
 

IV. CLUSTERING BY GENERALIZING 
 



 

164 
 

 Conceptual clustering was introduced by Michalski and Stepp 
[Michalski & Stepp, 1983a] as an extension of processes of numerical 
taxonomy (a collection of methods used to form classification schemes 
over data sets) [Van Ryzin, 1977]. The main quality of the conceptual 
clustering is that it is able to capture the "Gestalt properties" of object 
clusters, that it, properties that characterize a cluster as a whole and are 
not derivable from properties of individual entities. 
 To illustrate this idea, let us consider the following example taken 
from [Michalski & Stepp, 1983a]: 

.
. .
. . . ... ..

.. ..
. A B

 
Fig. 5. An illustration of conceptual clustering. 

 
 A person considering this figure would typically describe the 
observed points as representing two diamonds. Thus, the points A and 
B, although closer to each other than to other points, are placed into 
different clusters. 
 CLUSTER/2 [Michalski & Stepp, 1983a] is a conceptual clustering 
algorithm able to make such classifications. In this section we present 
another clustering algorithm which is based on the conceptual 
cohesiveness defined in the previous section. 
 The goal of our clustering algorithm is to group the examples in 
such a way so that to maximize the conceptual cohesiveness of the 
clusters.  
 Our algorithm is based on the following observation: if 
{E1,E2,...,En} is a cluster with high conceptual cohesiveness and {Ei, 
... , Ek} is a subset of this cluster, then the conceptual cohesiveness of 
{Ei, ... , Ek} is a good approximation of the conceptual cohesiveness of 
{E1,E2,...,En}. Let us now suppose that we add a new example Ea to 
this cluster. If the conceptual cohesiveness does not decrease 
significantly, then Ea belongs to the same concept as {E1,E2,...,En}. 
Otherwise, {E1,E2,...,En} and Ea belong to different concepts. 
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 To illustrate this idea, let us consider that each example represents 
either a man or a woman. The conceptual cohesiveness of each subset 
of women is approximately the same with the conceptual cohesiveness 
of the set of all women. However, adding a man to such a set would 
significantly decrease the conceptual cohesiveness of the set. 
 
 To make this approach operational, one has to be able to determine 
when a conceptual cohesiveness decreases significantly. This is 
analogous to the definition of what we call resolution, a measure that 
indicates the minimum distance that has to exist between two elements 
to be perceived as distinct. 
 Our claim is that, in a given domain, one could experimentally 
determine the resolution by measuring the distances between concepts 
thought as distinct. 
 We propose to express this resolution as a threshold µ, where 
0<µ≤1, and to state that the conceptual cohesiveness of two sets S1 
and S2 are different if and only if 
 cohesiveness(S1) is less than µ*cohesiveness(S2) 
or  
 cohesiveness(S2) is less than µ*cohesiveness(S1).  
 
 Let {E1, .... , Et} be the examples to be clustered. The clustering 
algorithm first determines the pair of examples {Ep,Eq} for which the 
conceptual cohesiveness is maximum and takes it as the seed of a 
cluster. A new example is introduced into this cluster only if it does not 
decrease the cohesiveness of the cluster below the cohesiveness of 
{Ep,Eq}. 
 Once a cluster is completed, it replaces, in the set of examples, all 
the examples it contains, and the process is restarted with the new 
examples. 
 
  In greater detail the clustering algorithm is the following one: 
 
 Step 1: ask for the resolution of the application domain. 
 The resolution of the application domain is defined by the user as a 
threshold µ, where 0<µ≤1. 



 

166 
 

 Given two sets S1 and S2, cohesiveness(S1) < cohesiveness(S2) if 
and only if cohesiveness(S1) is less than µ*cohesiveness(S2).  
 If neither "c(S1) < c(S2)" nor "c(S2) < c(S1)" we say that c(S1) and 
c(S2) are incomparable, were by c(Si) we denoted the cohesiveness of 
Si. 
 
 Step 2: compute the conceptual cohesiveness of each pair of 
examples. 
 Let  E = {E1, ... ,En} be the set of examples. 
 For each pair {Ep,Eq} compute its cohesiveness by using the 
generalizations G(Ep,Eq) and the corresponding quadruples 
 L(Ep,Eq) = (CO(Ep,Eq), TH(Ep,Eq), ID(Ep,Eq), DR(Ep,Eq))  
as presented in section III. 
 
 Step 3: choose a seed of the clustering. 
 Determine the pair {Ep,Eq} for which c(Ep,Eq) is maximum. If 
several such pairs exist, choose one of them. 
 Let {Ep,Eq} be the chosen pair. It is called seed of the clustering. 
 G(Ep,Eq) is one of the most relevant concepts among those 
represented by pairs of examples. 
 Let M = {Ep,Eq}. 
 We shall discover a first cluster by introducing in M other elements 
from E. 
 
 Step 4: determine the examples which could be members of the 
cluster represented by the chosen seed. 
 That is, determine the set: 
 T = { Ek | "c(Ep,Eq) and c(Ek,Ep) are incomparable" 
                  "c(Ep,Eq) and c(Ek,Eq) are incomparable" } 
 
 Let us suppose that c(Ek,Ep) < c(Ep,Eq). In this case also 
c(Ep,Eq,Ek) < c(Ep,Eq) so Ek may not be member of the concept 
represented by {Ep,Eq}. 
 Step 5: introduce examples into the cluster. 
 For each Ek from T, if c(Ep,Eq) and c(M,Ek) are incomparable, 
then introduce Ek into M. 
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 Initially M = {Ep,Eq}. Therefore, c(M,Ek) means c(Ep,Eq,Ek). 
 If M = {Ep,Eq, ... ,Et} then c(M,Ek) means c(Ep,Eq, ... ,Et,Ek). 
 At the end of this step one has discovered the cluster represented by 
the seed {Ep,Eq}: 
 M = {Ep,Eq, ... ,Es}. 
 
 Step 6: replace the examples contained in the cluster with the 
cluster. 
 Remove from the set of examples E, the elements of the discovered 
cluster M = {Ep,Eq, ... ,Es}. 
 Consider M as a complex example Em and introduce it into E.  
 That is, E ♦ (E - M) U {Em}. 
 If Ei is an initial example and Em = {Ep,Eq, ... ,Es}, is a complex 
example, then we consider that 
 G(Ei,Em) = G(Ei,Ep,Eq, ... ,Es) and 
 c(Ei,Em) = c(Ei,Ep,Eq, ... ,Es)  
 If Ms is a cluster containing the complex example Em then Ms 
represents a super-concept of the concept Em. 
 
 Step 7: rerun the algorithm. 
 Repeat from step 1 with the new set of examples until E is reduced 
to one element (Ek) or to two elements (Ek1,Ek2). Ek (respectively 
G(Ek1,Ek2)) is the concept representing all the examples. 
 
 The presented algorithm is only a basic one. Several improvements 
are obvious. For instance, let us consider again step 2. If E = 
{Ei1,...,Eit} U {Em}, Em being the last complex  example formed, then 
we have to consider only the pairs {Eik,Em} since the other pairs have 
been already considered in the previous steps 1.  
 One could also modify the step 3 of the above algorithm by working 
with several seeds simultaneously. Indeed, instead of choosing one seed 
(among the incomparable ones) and to determine the corresponding 
cluster, one could consider all the competing seeds at the same time and 
determine simultaneously the corresponding clusters. 
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 Let us also notice that although the discovered clusters are disjoint 
with respect to the clustered examples (or one is included into the other) 
their descriptions are not guaranteed to be disjoint. That is, they may 
have common instances. 
 
 Since an example of using this algorithm is presented in section 6, 
here we will only make clear its differences with CLUSTER/2 
[Michalski & Stepp, 1983a]. Both these algorithms are able to discover 
hierarchies of concepts and each concept is represented as a conjunction 
of predicates. Even more, they are both based on a notion of seed. 
However, in CLUSTER/2 a seed is an example, while in our algorithm 
a seed is represented by a pair of examples. 
 CLUSTER/2 requires as input the number of clusters to be 
determined. The analog in our algorithm is the "resolution". 
CLUSTER/2 may successively consider different numbers, until it finds 
the right one. Similarly, our algorithm may do experiences with 
different resolutions.  
 Another difference between these algorithms is that CLUSTER/2 is 
looking for non-overlapping concepts that optimize pre-defined criteria, 
while our algorithm is looking for the most relevant concepts (as 
defined in section III), be these overlapping or not.  
 
 Finally, we may contrast the presented algorithm with the other 
clustering algorithm developed in our team [Benamou & Kodratoff, 
1986]. While both algorithms combines symbolical and numerical 
methods, the presented algorithm is more symbolically oriented while 
the other one relies more on the numerical approach. The two 
approaches complement each other in a natural way. While the 
clustering algorithm presented in this paper tends to discover more 
relevant concepts, it also requires more processing resources. 
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V. GENERALIZING BY CLUSTERING 
 
 In this section we present an interesting relation which exists 
between generalization and clustering, in our approach. 
 Recall, from the previous section, that our clustering algorithm uses 
generalizations in order to cluster. We shall show that computing good 
generalizations of complex examples requires in turn a clustering phase. 
 By complex examples we mean examples containing objects. For 
instance, the examples in Fig. 1 contain car and load objects. The 
description of an object "O", from such an example, consists of all the 
predicates containing "O" as an argument. For instance, the description 
of the first car of the first train is the following one: 
 
 C1: (car-shape machine C1) (length long C1) (infront C1 C2) 
       (nr-wheels 2 C1)  
 
 The description of the load in the second car is: 
 
 L2: (contains C2 L2) (load-shape square L2) (nrpts-load 3 L2) 
 
 One may easily notice that the description of a train is the conjunct 
of the descriptions of the objects it contains, except that, in the latter, 
some predicates are duplicated. For instance, (infront C1 C2) appears 
both in the description of C1 and in that of C2. 
 
 Provided that the two trains in Fig. 1 are examples of a general train 
concept, the objects from these examples are instances of the objects 
from the general train description. Therefore, one way to determine the 
general train concept is to match and generalize the descriptions of the 
objects from the examples. 
 Our claim is that for computing good generalizations of complex 
examples one should match the most similar objects. 
 
 We shall illustrate this generalization strategy by applying it to 
compute a generalization of the two trains in Fig. 1. 
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 First of all we extract from each of the two train examples the 
descriptions of the objects. We find 9 objects (5 cars and 4 loads) in the 
first example and 7 objects (4 cars and 3 loads) in the second one. 
 Next we look for the two objects (one from E1 and the other from 
E2) for which the conceptual distance is minimum. These objects will 
be matched, that is, they are supposed to represent the same object in 
the generalization of E1 and E2. This matching will of course influence 
the following matchings. For instance, if two cars Ci and Cj are 
matched, and are represented in the generalization by X1, then the loads 
contained into these cars (Li and respectively Lj) became more similar 
to each other. This is represented by replacing, in the descriptions of Li 
and Lj, the predicates (contains Ci Li) and (contains Cj Lj) by (contains 
X1 Li) and (contains X1 Lj), respectively. 
 Having established the matching between the most similar objects, 
we look for the other two objects which are the most similar. We 
continue this way, matching each object from E1 with an object from 
E2 (using idempotency, if needed). 
 We find the generalization of E1 and E2 as the union of the 
generalizations of the corresponding objects (eliminating of course the 
identical predicates): 
 
(car-shape machine X1)(length long X1)(infront X1 X5)(nr-wheels 2 X1) 
(car-shape * X2)(length  short X2)(contains X2  Y1)(infront X2 X4) 
(infront * X2)(nr-wheels 2 X2)(load-shape triangle Y1)(nrpts-load 1 Y1) 
(car-shape * X3)(length short X3)(contains X3 L2)(infront X4 X3) 
(nr-wheels 2 X3)(load-shape circle   Y2)(nrpts-load * Y2) 
(car-shape open-top X4)(length * X4)(contains X4 Y3)(nr-wheels * X4) 
(load-shape polygon Y3)(nrpts-load 1 Y3) 
(car-shape open-top X5)(length * X5)(contains X5 Y4)(infront X5 *) 
(nr-wheels 2 X5)(load-shape polygon Y4)(nrpts-load * Y4) 
 
 This description represents a type of train having the following 
features: 
  - the first car is a two wheel machine. It is followed by a two wheel 
open car containing polygons; 
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 - the last car is a two wheel short one, containing circles. It is 
preceded by an open car containing one polygon which, in its turn, is 
proceeded by a two wheel short car containing a triangle; 
 
 When there are more than two examples to generalize, one needs to 
cluster the objects and to match objects belonging to the same cluster. 
 
 The main advantage of this approach is that it reduces a process of 
finding a generalization of complex descriptions to several processes of 
finding generalizations of much simpler descriptions. 
 The clustering of the objects may raise, however, complex 
combinatorial problems. In such a case, one may use heuristics (or a 
very simple clustering algorithm) to limit the objects to be clustered. 
For instance, it should be easy to establish that one must try to match 
cars with cars and loads with loads. Moreover, one does not need to 
cluster all the examples, but only to find out one cluster containing an 
object from each example. 
 
VI. ACQUIRING OBJECT KNOWLEDGE 
 
 In this section we shall illustrate the relevance of our learning 
approach to the automation of knowledge base construction for expert 
systems. 
 
 A commonly used method of representing knowledge in artificial 
intelligence systems is to use prototypes ([Bobrow & Winograd, 1977], 
[Kodratoff & Tecuci, 1987a], [Minsky, 1975], [Sridharan & Bresina, 
1983]). Each prototype represents a class of objects which is relevant 
for the system's application domain. The prototype is a parameterized 
representation of the properties common to the objects in the class. 
These prototypes are ordered in a class-subclass hierarchy in which 
each prototype inherits the properties of its super-class prototypes. The 
main feature of such a representation is that knowledge is organized 
around conceptual entities, in a memory efficient manner. 
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 Therefore, automated construction of hierarchies of prototypes is an 
attempt towards automated construction of knowledge bases for expert 
systems. 
 
 The clustering algorithm presented in section IV is able to discover 
a hierarchy of concepts characterizing a set of examples. The only thing 
which remains to be done, for building a hierarchy of prototypes, is to 
fill up this structure, by computing a description for each concept (node 
in the tree). Each such description has to be in terms of its ancestors in 
the tree, inheriting and particularizing their descriptions. 
 
 We shall illustrate this problem in the robot world [Tecuci & al. 
1983] presented in Fig. 6. It consists of mechanical parts to be used in 
assembling tasks. 
 

Fig. 6. A robot assembly world. 
 
 The robot is told the description of each part (AXLE1, AXLE2, 
WHEEL1, WHEEL2, ... ) and is asked to learn the general concepts 
represented by these examples. Such concepts are, for instance, axle, 
wheel, graspable-object etc. The goal is to use the learned concepts in 
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planning assembling tasks (for instance, planning the assembly of a 
car). 
 
 For instance, the following is the description of AXLE1: 
 
 (RELATION ATTACHED R1) (RELATION ATTACHED R3) 
 (RELATION THRU R2) (ACTION GRASP R2) (ACTION MOVE R2)  
 (ACTION INSERT R1) (ACTION INSERT R3) (POSITION P2)  
 (GRASPING G2) (APPROACHING L2)  
 (SUBPART SOLID CYLINDER(5 1) R1)  
 (SUBPART SOLID CYLINDER(20 4) R2) 
 (SUBPART SOLID CYLINDER(5 1) R3) (ALIGNED R1 R2 R3) 

 
Figure 6'. Details of an axle. 

  
 The symbols R1, R2, and R3 are the names of AXLE1's sub-parts. 
P2, G2, L2, are constants representing spatial positions. R1 and R3 
could be in the relation ATTACHED with other entities (ATTACHED 
to a WHEEL, for instance) and R2 could be in the relation THRU with 
other entities (THRU a CARBODY HOLE, for instance). The actions 
which could be performed on AXLE1 are GRASP (by grasping R2), 
MOVE (by moving the grasped sub-part) and INSERT (by inserting 
R1). AXLE1 is also characterized by a position (P2), a grasping point 
(G2) and a corresponding approaching point (L2). The three sub-parts 
R1, R2, R3, are solid cylinders, two of them (R1 and R3) having the 
same dimensions (height and diameter). The parts are aligned. 
 
 The robot is also given that the predicates describing the possible 
relations between parts or the actions that may be performed with these 
parts are to be considered more important than the predicates describing 
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the shape of the parts. This information is given by the teacher in the 
form of the following weights associated with the predicates: 
 
          w(RELATION) =   w(ACTION) = 4 
          w(GRASPING) =   w(APPROACHING) =   w(POSITION) = 3 
          w(SUBPART) = 2 
          w(ALIGNED) =   w(INSIDE) =   w(PARALLEL) = 1 
 
 Running our clustering algorithm with these examples we obtained 
the following hierarchy of concepts: 
 

(object)

(axle) (wheel)

(graspable object)

AXLE1 AXLE2 WHEEL1 WHEEL2 WHEEL3 WHEEL4 CARBODY1

  
Fig. 7. Concepts learned from the robot world in Fig. 6. 

 
  Notice that the robot discovered the concepts that are relevant to its 
goal (planning assembling tasks). 
 Let us now suppose that the robot goal is to recognize objects. In 
this case, the teacher will have to state that the most important 
predicates are those describing the shape of the parts and the robot may 
discover the following concepts: 

(object)

(axle) (wheel)

AXLE1 AXLE2 WHEEL1 WHEEL2 WHEEL3 WHEEL4 CARBODY1

(object with holes)

Fig. 8. Another set of concepts learnable from Fig. 6. 
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 Let us consider again the hierarchy in Fig. 7. We want to transform it 
into a hierarchy of prototypes [Tecuci 1984a]. In such a hierarchy, each 
prototype is defined in terms of its ancestors. For instance, one says that 
graspable object is an object that has specific properties and that axle  is a 
graspable object that has specific properties. The description that is 
actually associated with a prototype consists of its specific properties. 
Therefore, the description of object consists of the features common to all 
the objects from Fig. 6. Also, the description of graspable object consists 
of the features common to the axles and wheels, except those that are 
already present in the description of object  because they are automatically 
inherited. 
 
 Our clustering algorithm has already computed a description of each 
concept. Therefore, to transform the hierarchy in Fig. 7 into a hierarchy of 
prototypes one has only to remove, from the description of each concept, 
the features which are already present into the descriptions of its ancestors. 
Acting this way one obtains the following hierarchy of prototypes: 

Fig.9. A hierarchy of prototypes learned from examples. 
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 The prototype object  contains the properties common to all objects 
in the robot world presented. These properties express the fact that an 
object (be it a graspable one or not) could be in certain relations with 
other objects (there is no relation common to all objects and this is the 
reason for the presence of the variables in the description), that certain 
actions can be performed on the object, that the object is characterized 
by a certain spatial position and has cylinder sub-parts of the same 
height. Implicitly, different names means different entities. Therefore 
the MAY-BE-THE-SAME predicate indicates which variables can take 
the same value. For instance "v" could take the same value as S1 or S2 
or S3. 
 The prototype graspable object  contains the properties common 
only to graspable objects ( has a GRASPING point and a corresponding 
APPROACHING point). It also inherits the properties of object and 
establishes values for some of the variables in the inherited properties. 
 y:=:{GRASP,MOVE} means that the property (ACTION y v), 
which is inherited from object, has to be instantiated to (ACTION 
GRASP v) & (ACTION MOVE v). 
 (x,t):=:(ATTACHED,S1) means that any inherited property 
containing the tuple (x,t) has to be instantiated by replacing x with 
ATTACHED and t with S1. 
 Similarly, axle defines the properties common only to axles, but not 
common to all graspable objects or general objects. It also inherits the 
properties of its ancestors. 
 
 The significance and the advantages of the above description are 
those generally mentioned in connection with the hierarchies of 
prototypes: knowledge is organized around relevant conceptual entities 
(prototypes) in a memory efficient manner (the inheritance mechanism 
allows for a unique representation of a property common to some 
objects as the property of a prototype of those objects). Moreover, the 
generalization techniques are able to reveal subtle features that are 
common to the objects. 
 One disadvantage of the above descriptions is that they are 
somehow complicated. Therefore they need to be simplified by 
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removing certain facts that may be proven to be useless for the 
application domain. 
 
 Once learned, these prototypes may be directly referred to by other 
pieces of knowledge [Tecuci & al. 1983]. For instance, a rule may 
indicate to the robot that, for moving a graspable object, it has to move 
the hand to the object's approaching point, open the hand, move the 
hand to the object, close the hand, and move the hand. This rule may be 
used for each graspable object instance. 
 
 

VII. CONCLUSIONS 
 
 One of the most critical problems of inductive learning is that of 
choosing among competing generalizations. In this appendix we 
proposed and justified a solution to this problem which is based on the 
notion of conceptual distance and consists in enhancing the symbolical 
method of generalization with some numerical estimations. 
 A distinctive feature of our approach is that learning from examples 
and learning by observation are seen as complementary learning 
paradigms: 
 - learning by observation uses learning from examples to determine 
the examples to cluster; 
 - learning from examples uses learning by observation to determine 
the objects to match. 
 These relationships allowed the definition of a recursive learning 
method in which a complex learning from examples task is reduced to a 
task of clustering the objects contained in the examples, which in turn is 
reduced to a task of learning from these objects. 
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