

ORSAY
no d'ordre: 647

UNIVERSITE DE PARIS-SUD

CENTRE D'ORSAY

T H E S E

présentée

Pour obtenir

Le titre de DOCTEUR en SCIENCE

PAR

Gheorghe TECUCI

SUJET

DISCIPLE: A Theory, Methodology and System
for Learning Expert Knowledge

 soutenue le 7 juillet 1988 devant la Commission d'examen

MM. Joffroy BEAUQUIER Président
Mme. Françoise FOGELMAN Rapporteur
MM. Jean-Gabriel GANASCIA
MM. Yves KODRATOFF
MM. Alexandre PARODI Rapporteur

For Sanda and my father

Acknowledgements

 I am very grateful to Yves Kodratoff for encouraging to pursue research in this
fascinating realm of learning, for his generous support, for directing my work with
so much competence, and for all these years of joint research.
 I thank Joffroy Beauquier for honoring me by agreeing to chair the thesis
commission, Françoise Fogelman and Alexandre Parodi for reporting on my thesis,
and Jean-Gabriel Ganascia for his friendship and his good advice.
 The members of the "Learning and Inference" team have also helped me. I want
to thank them all, and especially Antoine Cornuejols, Jean-Jacques Cannat, Thierry
Conrad, Luc De Raedt, Martha Franova, Michel Manago, Céline Rouveirol and
Stephen Thorp. I thank all the members of LRI for their hospitality.

 I express my gratitude to Mihai Draganescu who constantly encouraged and
helped me, who suggested writing this thesis to me, and who is for me a human
model to follow.
 I am also indebted to Mircea Petrescu for all I learned from him, for his
encouragement, and for offering me his time with such great generosity.
 I thank Margareta Draghici for her trust in my work and for giving me the
means of pursuing the research reported in this thesis.
 Zani Bodnaru acted admirably as the domain expert of DISCIPLE.
 Dan Tufis was always available when I needed advice or help.

 This work has been sponsored by the Romanian CNST and it was greatly
facilitated by several research visits to the LRI. My expenses have been taken in
charge through an agreement between the French CNRS and the Romanian
Academy of Sciences. I wish to express my gratitude to these institutions, as well as
to Nicolae Badea for his help, his confidence in my work, and the support given to
fundamental research.

 None of this work would have been possible without the constant
encouragement, support, and help of my wife Sanda. I hope she will find here the
expression of my love and gratitude.

DISCIPLE: a Theory, Methodology and System
for Learning Expert Knowledge

Gheorghe TECUCI
Research Institute for Computers and Informatics

71316, Bd. Miciurin 8-10, Bucharest 1, ROMANIA

Abstract

This thesis presents DISCIPLE, a system illustrating a theory and a methodology for
learning expert knowledge. DISCIPLE integrates a learning system and an empty
expert system, both using the same knowledge base. It is provided with an initial
domain theory and learns problem solving rules from the problem solving steps
received from its expert user, during interactive problem solving sessions. In this
way, DISCIPLE evolves from a helpful assistant in problem solving to a genuine
expert. The problem solving method of DISCIPLE combines problem reduction,
problem solving by constraints, and problem solving by analogy. The learning
method of DISCIPLE depends of its knowledge about the problem solving step (the
example) from which it learns. In the context of a complete theory about the
example, DISCIPLE uses explanation-based learning to improve its performance.
In the context of a weak theory about the example, it synergistically combines
explanation-based learning, learning by analogy, and empirical learning, developing
its competence. In the context of an incomplete theory about the example,
DISCIPLE learns by combining the above mentioned methods, improving both its
competence and performance.

Keywords: Learning, Expert Systems, Artificial Intelligence, Knowledge
Acquisition, Explanation-Based Learning, Learning by Analogy, Empirical
Learning, Conceptual Clustering

C O N T E N T

 1. INTRODUCTION.. 7

 2. AN INTUITIVE VIEW OF DISCIPLE... 11

 2.1 The overall architecture of DISCIPLE... 11
 2.2 DISCIPLE as an Expert System... 12
 2.2.1 Problems to solve with DISCIPLE... 12
 2.2.2 Elementary knowledge about an application domain..............................13
 2.2.3 The problem solving method...15
 2.4 DISCIPLE as a Learning System..18

 3. KNOWLEDGE REPRESENTATION... 22

 3.1 Concepts... 22
 3.2 Representation language... 23
 3.3 Object concepts.................................. .. 25
 3.4 Action concepts... 26
 3.5 States and goals... 27
 3.6 Intuitive definition of generalization... 28
 3.7 Generalization in a representation language... 29
 3.7.1 Term generalization... 29
 3.7.2 Literal generalization... 30
 3.7.3 Conjunctive formula generalization... 31
 3.8 Syntactic rules of generalization / particularization.. 32
 3.8.1 Turning constants into variables.. 32
 3.8.2 Turning occurrences of a variable into different variables...................... 33
 3.8.3 Climbing the generalization hierarchies.. 33
 3.8.4 Dropping conditions.. 34
 3.8.5 Using theorems.. 34
 3.8.6 Structural generalization.. 35

4

 4. PROBLEM SOLVING MECHANISMS.. 36

 4.1 Problem reduction.. 36
 4.1.1 The problem reduction method... 36
 4.1.2 Decomposition rules... 37
 4.1.3 Decomposition of problems.. 38
 4.2 Problem solving by constraints.. 40
 4.2.1 Constraint formulation.. 40
 4.2.2 Constraint propagation.. 43
 4.2.3 Constraint evaluation.. 44
 4.3 Problem solving by analogy... 45

 5. CONTROL MECHANISMS.. 47

 5.1 Definition of the search space... 47
 5.2 Global control of the search... 49
 5.3 Meta-rules.. 51

 6. THE LEARNING PROBLEM... 55

 7. LEARNING IN A COMPLETE THEORY DOMAIN.................................... 59

 7.1 A sample of a complete theory... 59
 7.2 General presentation of the learning method.. 61
 7.3 Proving the example... 61
 7.4 Generalization of the proof... 64
 7.5 The formulation of the general rule.. 67

 8. LEARNING IN A WEAK THEORY DOMAIN.. 70

 8.1 A sample of a weak theory.. 70
 8.2 General presentation of the learning method... 71
 8.3 Explanation-based mode.. 72
 8.3.1 Explanations in a weak theory domain... 73
 8.3.2 A heuristic to find explanations.. 74

5

 8.4 Analogy-based mode... 76
 8.4.1 Learning by analogy... 76
 8.4.2 The paradigm of analogy in DISCIPLE... 78
 8.4.3 Determining a reduced version space for the rule to be learned............ 83
 8.4.4 Generation of instances.. 85
 8.5 Empirical learning mode.. 87
 8.5.1 The use of the positive examples... 87
 8.5.2 The use of the negative examples.. 88
 8.5.3 Active experimentation.. 92
 8.6 Developing the domain theory... 92
 8.7 The learning algorithm... 93
 8.8 A sample trace of the learning algorithm... 95

 9. LEARNING IN AN INCOMPLETE THEORY DOMAIN…….………....... 104

 9.1 A sample of an incomplete theory... 104
 9.2 General presentation of the learning method... 105
 9.3 Incomplete proving of the example... 106
 9.4 Defining version spaces for the unknown actions... 109
 9.5 Generalization of the incomplete proof... 110
 9.6 Determining a reduced version space for the rule to be learned.................... 111
 9.7 Searching the rule in its version space... 113
 9.8 Learning in an imperfect theory domain.. 116

 10. A SAMPLE SESSION WITH DISCIPLE IN THE
 TECHNIQUE DESIGN DOMAIN... 117

 10.1 General presentation.. 117
 10.2 A sample design session.. 118

 11. AN EXAMPLE FROM MANAGEMENT... 129

 12. CONCLUSIONS... 136

6

 A P P E N D I X

 LEARNING BASED ON CONCEPTUAL DISTANCE.............................. 142

 Abstract.. 142
 I. Introduction... 143
 II. Concept learning from examples.. 146
 III. Conceptual distance and conceptual cohesiveness.. 153
 IV. Clustering by generalizing... 164
 V. Generalizing by clustering.. 169
 VI. Acquiring object knowledge.. 171
 Conclusions.. 177

 BIBLIOGRAPHY... 178

7

1. INTRODUCTION

 The present success of Artificial Intelligence is mostly due to the
knowledge-based systems which proved to be useful almost
anywhere.

 As the name suggests, the power of a knowledge-based system
comes from its knowledge. However, building a knowledge base for
such a system is a very complex, time-consuming, and error-prone
process. Moreover, the resulting system lacks or has only poor
abilities to update its knowledge or to acquire new knowledge.
 This problem is largely recognized as the "knowledge acquisition
bottleneck" of the knowledge-based systems ([Feigenbaum, 1977],
[Michalski, 1986]).

 Recent Machine Learning achievements ([Michalski, Carbonell
& Mitchell, 1983, 1986], [Langley, 1987], [Laird, 1988]) offer new
solutions to the knowledge acquisition problem and open a new area
in the evolution of expert systems, that is, Expert Systems capable to
automatically acquire knowledge and learn.

 The Learning Apprentice Systems (LAS) are examples of such
learning expert systems.
 A Learning Apprentice System is an interactive knowledge-based
consultant which is provided with an initial domain theory and is able
to assimilate new problem-solving knowledge by observing and
analyzing the problem solving steps contributed by its users through
their normal use of the system [Mitchell & al. 1985].

 Representative examples of this approach are the systems
GENESIS [Mooney & DeJong, 1985] and LEAP [Mitchell & al.
1985]. The domain of expertise of LEAP is the VLSI design and that
of GENESIS is story understanding.
 A common feature of LEAP and GENESIS is that they are based
on a strong (complete) domain theory. Such a complete theory allows
them to learn a general rule or schemata from a single example.

8

 Nevertheless, such beautifully tailored domains are seldom
available. A typical real world domain theory is nonhomogeneous in
that it provides complete descriptions of some parts of the domain,
and only incomplete or even poor (weak) descriptions of other parts
of the domain.
 A learning episode, however, uses only one part of the domain
theory, and this part may have the features of a complete, incomplete
or weak theory, even if, globally, the theory is nonhomogeneous.
 Therefore, a learning apprentice system should be able to learn a
general rule or concept not only when disposing of a complete theory
about an example, but also when disposing of an incomplete or even
weak theory about it.

 The goal of this thesis was to develop a theory and methodology
of expert knowledge acquisition in such nonhomogeneous domain
theories.
 The system illustrating this theory and methodology is called
DISCIPLE.

 DISCIPLE is an interactive system which integrates an empty
expert system and a learning system. It is initially provided with
elementary knowledge about an application domain (knowledge
representing a nonhomogeneous theory of the domain) and learns
problem solving rules from the problem solving steps received from
its expert user, during interactive problem solving sessions. In this
way, DISCIPLE evolves from a helpful assistant in problem solving
to a genuine expert.

 The problem solving method of DISCIPLE is based on problem
reduction. That is, a problem is solved by successively reducing it to
simpler subproblems. This process continues until the initial problem
is reduced to a set of elementary problems (i.e. problems with known
solutions). Moreover, the problem to solve may be initially
imprecisely formulated, becoming better and better formulated as the
problem solving process advances. To this purpose, DISCIPLE
formulates, propagates, and evaluates constraints.

9

 The knowledge base of DISCIPLE contains object descriptions,
action models, problem reduction rules, and meta-rules.

 The object descriptions and the action models are elementary
knowledge about an application domain.
 Using such elementary knowledge, DISCIPLE learns general
problem reduction rules from examples of reductions provided by its
user, during the normal use of the system.
 The meta-rules, for choosing between the rules applicable to
reduce a problem, have to be defined by the user, once such
competing rules have been learned.

 The method of learning a general problem solving rule from a
particular solution indicated by the user (which constitutes an
example of the rule) depends on the system's theory (knowledge)
about the solution.

 We have considered three types of theories: complete, weak,
and incomplete.
 A complete theory about an example consists of the complete
descriptions of all the objects and actions contained in the example.
 A weak theory about an example consists only of incomplete
descriptions of the objects from this example.
 The intermediate case, between a complete theory and a weak
theory, is the incomplete theory. It contains incomplete descriptions
of the objects and the actions from the example. Also, it may lack
some object descriptions or action models.

 In the case of a complete theory about the example, the learning
method of DISCIPLE follows the explanation-based learning
paradigm.

 First, DISCIPLE proves that the solution indicated by the user is
indeed a solution of the problem to solve. Then it generalizes the
proof tree as much as possible so that the proof remains valid, and
formulates the learned rule from this generalized proof.

10

 In the case of a weak theory about the solution indicated by the
user, DISCIPLE learns interactively by synergistically combining
explanation-based learning, learning by analogy, and empirical
learning.

 First DISCIPLE looks for a shallow explanation of user's
solution. Then it uses this explanation to formulate a reduced
version space for the rule to be learned. Each rule in this space
covers only instances which are analogous with the user's solution.
DISCIPLE carefully generates such analogous instances to be
characterized as positive examples or as negative examples by the
user. These are used to further narrow the version space until it
contains only the rule illustrated by the user's solution.

 In the case of an incomplete theory about the user's solution,
DISCIPLE learns a general rule by combining the learning methods
mentioned previously.

 First, the system will construct an incomplete proof of the user's
solution and will generalize it, as in a complete theory. This will
allow DISCIPLE to define a reduced version space for the rule to be
learned and to perform experiments, as in a weak theory.

 It is interesting to notice that the effect of the learned rule on the
future behavior of the system depends of the domain theory. In a
complete theory, the learned rule improves the performance of the
system, in a weak theory it develops its competence and, in an
incomplete theory, it develops both its performance and competence.

 Another effect of learning in the context of a weak theory or an
incomplete theory is that of developing the domain theory.

11

 2. AN INTUITIVE VIEW OF DISCIPLE

 2.1 The overall architecture of DISCIPLE

 DISCIPLE illustrates an approach to the knowledge transfer
from a human expert to an expert system.
 We would like to allow the expert to introduce into the
knowledge base of the system only that knowledge which he may
easily formalize, and to enable the system to learn the rest of the
necessary knowledge.

 The overall architecture of DISCIPLE is presented in figure 2.1.

Problem
Solver

Knowledge
Base

Learner

Problem
Solving

Area

Learning
Area

User

Figure 2.1. Overall architecture of DISCIPLE.
The arrows indicate the main directions of information flow.

 DISCIPLE is an interactive system which integrates an empty
expert system and a learning system.
 Initially, the human expert has to introduce into the knowledge
base of the system a theory of the application domain, theory
consisting of elementary knowledge about the domain.
 Next, DISCIPLE may be used to interactively solve problems,
according to the following scenario:

12

 The user gives DISCIPLE the problem to solve and the expert
subsystem starts solving this problem by showing the user all the
problem solving steps. The user may agree or reject them. Therefore,
during the course of its functioning as an Expert System, DISCIPLE
may encounter two situations.
 Either the current problem-solving step (which we shall call
partial solution) is accepted by the user. Then, the current state of
the knowledge base is judged as satisfactory, and no learning will
take place.
 Or it is unable to propose any partial solution (or the solution it
proposes is rejected by the user). Then, the user is compelled to give
his own solution. Once this solution is given, a learning process will
take place. DISCIPLE will try to learn a general rule so that, when
faced with problems similar with the current one (which it has been
unable to solve), it will become able to propose a solution similar to
the solution given by the user to the current problem. In this way,
DISCIPLE progressively evolves from a helpful assistant in problem
solving to a genuine expert.

 In DISCIPLE we have adopted a problem reduction approach to
problem solving. That is, a problem is solved by successively
reducing it to simpler subproblems. This process continues until the
initial problem is reduced to a set of elementary problems, that is,
problems with known solutions. Moreover, the problem to solve may
be initially imprecisely formulated, becoming better and better
formulated as the problem solving process advances.
 Therefore, the task of the learning system is that of learning
general problem reduction rules from examples.

 2.2 DISCIPLE as an Expert System
 2.2.1 Problems to solve with DISCIPLE
 Problem Reduction is a general method, suitable for solving a
large variety of problems.
 In the following, however, we shall consider only problems of
designing action plans for achieving partially specified goals. These
problems are similar to those solved by NOAH [Sacerdoti, 1975],

13

NONLIN [Tate, 1977], HILARE [Giralt & al. 1979], MOLGEN
[Stefik, 1980], PLANX10 [Sridharan & Bresina, 1982], SIPE
[Wilkins, 1984], and others.

 An example of such a problem is the following one:
 - given the incomplete specifications of a loudspeaker;
 - design the actions needed to manufacture the loudspeaker.

 This problem is solved by a successive decomposition of the
complex operation of manufacturing the loudspeaker into simpler
operations, and better defining these simpler operations by choosing
tools, materials, or verifiers, which are in turn successively refined.
 In this process, DISCIPLE will have to completely design the
loudspeaker, as well as the tools needed to manufacture it.

 2.2.2 Elementary knowledge about an application
 domain

 In order to be able to build a manufacturing technique for a
loudspeaker, DISCIPLE needs various types of knowledge:
 - knowledge about the components of the loudspeakers, about
the tools and the materials one can use to manufacture loudspeakers;
 - knowledge about the actions that may be performed to
manufacture loudspeakers;
 - knowledge about general technological solutions for the
manufacturing of loudspeakers;
 - knowledge to choose between various solutions of the
problems to solve.

 These types of knowledge are represented into the knowledge
base of DISCIPLE in the form of object descriptions, action models,
problem reduction rules, and meta-rules, respectively.
 An object is described by specifying its relevant factual
properties, as well as its relations with other objects, as illustrated in
figure 2.2.

14

collector air-jet-device
REM OVES

ISA ISA

air-sucker ABSORBS

dust

. . .

.

Figure 2.2. Object descriptions.

 An action is described by specifying its name (as CLEAN in the
example below), some of its cases (the object on which the action is
performed, the instrument used, etc.), as well as the descriptions of these
cases (which are always object descriptions):

CLEAN OBJECT entrefer
 WITH air-sucker

 Very important additional features of an action are its preconditions
(i.e. the states of the world in which the action may be executed) and
effects (i.e. the states that will result after the execution of the action).
The traditional action planning systems make intensive use of these
features. Nevertheless, when acquiring knowledge from an expert,
requiring from him/her a complete description of the preconditions and
effects of an action may quickly lead to a dead end in the relationship
between system and human. This is why the preconditions and the
effects are only optional features of an action. As we shall see,
DISCIPLE is built precisely in order to overcome this problem.
 The object descriptions and the action models are elementary
knowledge about the application domain.
 Using such elementary knowledge, DISCIPLE learns general
problem reduction rules from examples of reductions provided by its
user.
 The meta-rules, for choosing between the rules applicable to
reduce a problem, are supposed to be defined by the user, once such
competing rules have been learned.

15

 2.2.3 The problem solving method

 Let us consider designing the manufacturing of some given
loudspeaker.
 We start with the following top-level operation, which can be seen as
the current goal:

MANUFACTURE OBJECT loudspeaker

 DISCIPLE will try to solve this problem by successive decompositions
and specializations, as illustrated in figure 2.3 and in figure 2.4.

In order to solve the problem
 MANUFACTURE OBJECT loudspeaker
 solve the subproblems
 1. MAKE OBJECT chassis-assembly
 In order to solve this subproblem solve the sub-subproblems
 1.1 FIX OBJECTS contacts ON chassis
 1.2 MAKE OBJECT mechanical-chassis-assembly
 1.3 FINISHING-OPERATIONS ON entrefer
 In order to solve this subproblem solve the sub-subproblems
 1.3.1 CLEAN OBJECT entrefer
 1.3.2 VERIFY OBJECT entrefer
 2. MAKE OBJECT membrane-assembly
 3. ASSEMBLE OBJECT chassis-assembly WITH membrane-assembly
 In order to solve this subproblem solve the sub-subproblems
 3.1 ATTACH OBJECT membrane-assembly ON chassis-assembly
 3.2 ATTACH OBJECT ring ON chassis-membrane-assembly
 In order to solve this subproblem solve the sub-subproblems
 3.2.1 APPLY OBJECT mowicoll ON ring
 3.2.2 PRESS OBJECT ring ON chassis-membrane-assembly
 4. FINISHING-OPERATIONS ON loudspeaker

Figure 2.3. Problem solving operations:
decompositions of problems into simpler subproblems.

16

 In order to solve the problem
 CLEAN OBJECT entrefer
 solve the specialization
 CLEAN OBJECT entrefer WITH air-jet-device

 In order to solve the problem
 CLEAN OBJECT entrefer WITH air-jet-device
 solve the specialization
 CLEAN OBJECT entrefer WITH air-sucker

 In order to solve the problem
 APPLY OBJECT mowicoll ON ring
 solve the specialization
 APPLY OBJECT mowicoll-C107 ON ring

Figure 2.4. Problem solving operations:
specializations of problems.

 DISCIPLE will combine such decompositions and
specializations building a problem solving tree like the one in figure
2.5.

 This process continues until all the leaves of the tree are
elementary actions, that is, actions which may be executed by the
entity manufacturing the loudspeaker.

17

M ANUFACTURE OBJECT loudspeaker

M AKE
OBJECT
chassis-
assembly

M AKE
OBJECT
membrane-
assembly

ASSEM BLE
OBJECT
chassis-
assembly
WITH
membrane-
assembly

FINISHING-
OPERATIONS
ON
loudspeaker

FIX
OBJECTS
contacts
ON
chassis

M AKE
OBJECT
mechanical-
chassis-
assembly

FINISHING-
OPERATIONS
ON
entrefer ATTACH

OBJECT
membrane-
assembly
ON
chassis-
assembly

ATTACH
OBJECT
ring
ON
chassis-
membrane-
assembly

CLEAN
OBJECT
entrefer

VERIFY
OBJECT
entrefer

CLEAN
OBJECT
entrefer
WITH
air-jet-device

APPLY
OBJECT
mowicoll
ON
ring

PRESS
OBJECT
ring
ON
chassis-
membrane-
assembly

CLEAN
OBJECT
entrefer
WITH
air-sucker

APPLY
OBJECT
mowicoll-C107
ON
ring

Figure 2.5. A problem solving tree.
The tree was built by using the decompositions from

figure 2.3 and the specializations from figure 2.4.

18

 This is a standard AND tree, the solution to the problem from
the top of this tree consisting of the leaves of the tree.
 That is, to manufacture the loudspeaker, one has to perform the
following sequence of operations:

 FIX OBJECTS contacts ON chassis
 MAKE OBJECT mechanical-chassis-assembly
 CLEAN OBJECT entrefer WITH air-sucker
 VERIFY OBJECT entrefer
 MAKE OBJECT membrane-assembly
 ATTACH OBJECT membrane-assembly ON chassis-assembly
 APPLY OBJECT mowicoll-C107 ON ring
 PRESS OBJECT ring ON chassis-membrane-assembly
 FINISHING-OPERATIONS ON loudspeaker

 The decompositions and the specializations model in fact the
main operations used in design, where one usually starts with a very
general specification of an object and successively imposes different
constraints on the specification and reduces object design to subparts
design.

 2.4 DISCIPLE as a Learning System

 The reductions in figure 2.5 resulted from the application of
reduction rules or were indicated by the user.
 From each reduction (decomposition or specialization) indicated
by the user, DISCIPLE will try to learn a general reduction rule.
 Let us suppose, for instance, that DISCIPLE was not able to
solve the problem:

 ATTACH OBJECT ring ON chassis-membrane-assembly

and that the solution was indicated by the user:

19

 Example 1:
 Solve the problem
 ATTACH OBJECT ring ON chassis-membrane-assembly
 by solving the subproblems
 APPLY OBJECT mowicoll ON ring
 PRESS OBJECT ring ON chassis-membrane-assembly

 Figure 2.6. A decomposition indicated by the user.

 From this example, representing the decomposition of the
problem of attaching two particular parts of the loudspeaker to a
process of gluing, DISCIPLE learns a general decomposition rule
indicating the conditions under which one may reduce an
'attachment' problem to a process of gluing:

 IF
 condition
 (x TYPE solid) & (y TYPE solid) &
 (x PARTIALLY-FITS y) &
 (z ISA adhesive) & (z TYPE fluid) &
 (z GLUES x) & (z GLUES y)
 THEN
 solve the problem
 ATTACH OBJECT x ON y
 by solving the subproblems
 APPLY OBJECT z ON x
 PRESS OBJECT x ON y

Figure 2.7. The general decomposition rule learned from Example 1:
if 'x' and 'y' are two solid objects that partially fits each other, and
there is a fluid adhesive 'z' that glues both 'x' and 'y', then one may
attach 'x' on 'y' by first applying 'z' on 'x' and then pressing 'x' on 'y'.

20

 Once learned, this rule may be used to reduce other attachment
problems to gluing processes. For instance, it may be used to reduce
the problem

 ATTACH OBJECT membrane-assembly ON chassis-assembly

from the problem solving tree in figure 2.5, to the following
subproblems:

 APPLY OBJECT neoprene ON membrane-assembly
 PRESS OBJECT membrane-assembly ON chassis-assembly

 As one may notice, the structure of the learned rule is identical
with the structure of the example. Therefore, rule learning is reduced
to learning the features that the objects 'x', 'y', and 'z' should have so
that the attachment of 'x' and 'y' to be reduced to a process of gluing
them with 'z'. That is, one should learn the concepts represented by
these objects.

 The method of learning this rule depends of the knowledge
(theory) of the system about Example 1.
 We have considered three types of theories: complete, weak,
and incomplete.

 A complete theory about Example 1 consists of the complete
descriptions of all the objects and the actions of this example.
 In this case, DISCIPLE uses an explanation-based learning
method, being able to learn at once a general rule from Example 1
alone.

 A weak theory about Example 1 consists only of incomplete
descriptions of the objects from this example. It differs qualitatively
from a complete theory in that it does not contain action models.
 In this case, DISCIPLE uses an interactive learning method that
synergistically combines explanation-based learning, learning by
analogy, and empirical learning.

21

 The intermediate case, between a complete theory and a weak
theory, is the incomplete theory. As compared to a complete theory,
an incomplete theory may lack some object descriptions or action
models. Also, it may contain incomplete descriptions of objects and
actions. As compared to a weak theory, an incomplete theory
contains action models, while a weak theory does not.
 In this case, DISCIPLE learns the decomposition rule in figure
2.7 by combining the method corresponding to the weak theory with
the method corresponding to the complete theory.

 Although, in each of the above cases, the system learns the same
rule, this rule has a different impact on the future behavior of the
system. In a complete theory, it improves the performance of the
system, in a weak theory it develops the competence of the system,
and, in an incomplete theory, it develops both the performance and
the competence.

 An important side effect of learning in the context of a weak
theory or an incomplete theory is that of developing the domain
theory.

22

 3. KNOWLEDGE REPRESENTATION

 One of our prime concern was to define a knowledge
representation and organization suitable for both problem solving
and learning.

 The knowledge base of DISCIPLE is organized around the
notion of 'concept', supporting the fundamental operations with the
concepts:
 - comparing the generality of concepts;
 - generalizing concepts;
 - particularizing concepts.
 The problem solving and learning mechanisms of DISCIPLE are
based on these elementary operations.

 The knowledge base contains object descriptions, action models,
reduction rules, and meta-rules.
 The object descriptions and the action models are concepts. The
reduction rules and the meta-rules are more complex entities which
are built with concepts.

 In this section we define the notion of concept and the basic
operations with concepts. The reduction rules are defined in section
4 and the meta-rules are defined in section 5.

 3.1 Concepts

 Let 'U' be a universe of instances.
 An instance may represent an object, an action, a goal or a state.
 Let 'SP' be a set of predicates over the universe 'U'.
 Each predicate 'P' from 'SP' splits the set 'U' into two subsets:

E = { e ∈ U | (P e) = TRUE }
C = { c ∈ U | (P c) = FALSE }

23

 One says that the predicate 'P' asserts the concept representing
the set of instances 'e' having the property

'(P e) = TRUE'.

 An instance 'e' from 'E' is called an example or a positive
example of the concept asserted by 'P' (for short, the concept 'P'),
and an instance 'c' from 'C' is called a counterexample or a negative
example of the concept 'P'.

 Let 'adhesive' be the concept representing the set of objects
which could be used for gluing other objects.

 To state that 'mowicoll' is a positive example of 'adhesive' one
may write:

(adhesive mowicoll) = TRUE
or

(mowicoll ISA adhesive)

 To state that 'water' is a negative example of 'adhesive' one may
write:

(adhesive water) = FALSE
or

 NOT(water ISA adhesive)

 3.2 Representation language

 As in [Kodratoff & Ganascia, 1986], we define a representation
language as follows:

 Let 'V' be a countable set of variables.

 Let FF = F0 U F1 U ... U Fn U ... be a family of functions,
where 'Fn' is the set of functions of arity 'n' and 'F0' is the set of
constants.

24

 The set of terms on 'V' and 'FF' is defined by:
 - v ∈ V is a term;
 - f(t1,...,tn) is a term if and only if f�Fn and t1,...,tn are terms.
 Thus, the set of terms is the set of expressions built with
functions of some arity, constants, and variables.

 Let SP = SP0 U SP1 U ... U SPn U ... be a set of predicates,
where 'SPn' is the set of predicates of arity 'n' and 'SP0' is the set of
the constants 'TRUE' and 'FALSE'.
 These predicates may be related by one or several generalization
hierarchies as, for instance, the following one:

object

ISA ISA

adhesive

ISA ISA

neoprene mowicoll

ISA

mowicoll-C107

ISA

. . .

. . .

 Let 't1', ... , 'tn' be terms and 'p � SPn'. Then '(p t1 ... tn)' and
'NOT(p t1 ... tn)' are called literals.
 Because most of the used predicates are binary ones, we shall
further write the literals in the following, more intuitive, form:

'(t1 p t2)'

 The predicates may have properties or may be related by
theorems as, for instance, the following ones:
 commutativity:
 ∀x, ∀y (x NEAR y) −−> (y NEAR x)

25

 transitivity:
 ∀x, ∀y (x ON y) & (y ON z) −−> (x ON z)

 theorem:
 ∀x, ∀y (x ABSORBS y) −−> (x GETS y)

 The quadruple (FF, SP, H, L) is called a representation
language, where H is the set of the theorems and properties of the
predicates, variables, and constants, and L is the set of the logical
connectors 'AND' and 'NOT', and of the connectors for specifying
action concepts.

 3.3 Object concepts

 The knowledge base of DISCIPLE contains generic object
concepts which are represented into hierarchical semantic networks,
as the one in figure 3.1.

air-mover cleaner

ISA ISA ISA ISA

ventilator

dust

REM OVES

air-jet-device solvent

DISSOLVES

glueISA ISA ISA ISA

ABSORBS

air-sucker air-press alcohol acetone

emery-paper

ISA

Figure 3.1. A hierarchical representation of generic object concepts.

26

 In general, an object concept is defined as belonging to one or
more super-concepts and having additional properties. The value of
a property may be a constant or another concept.

 Other object concepts may be defined in terms of such generic
object concepts as, for instance, the following one, denoted by the
variable 'y':

 (y ISA cleaner) & (y REMOVES glue) &
 NOT(y DESTROYS membrane)

 Two types of theorems are implicitly represented into the
concept hierarchies.
 One is the transitivity of 'ISA' as, for instance,

 (alcohol ISA solvent) & (solvent ISA cleaner)
 −−> (alcohol ISA cleaner)
or
 ∀x (x ISA ventilator) & (ventilator ISA air-mover)
 −−> (x ISA air-mover)

 The other theorem which is implicitly represented into the
object hierarchies is the inheritance of properties from a more
general concept to a less general one as, for instance,

 (air-jet-device REMOVES dust) & (air-press ISA air-jet-device)
 −−> (air-press REMOVES dust)
or
 ∀x (x ISA air-sucker) & (air-sucker ABSORBS dust)
 −−> (x ABSORBS dust)

 3.4 Action concepts

 In DISCIPLE, an action concept is defined by specifying its name,
some of its cases [Filmore, 1968] (the agent performing the action, the
object on which the action is performed, the instrument used, etc.), as

27

well as the descriptions of these cases (which are always object
descriptions).

 For instance, the following action concept represents the set of all the
cleaning actions where the object to be cleaned is an 'entrefer' and the
instrument used is an 'air-sucker':

 CLEAN OBJECT e WITH a
 where (e ISA entrefer) & (a ISA air-sucker)
 or
 CLEAN OBJECT (entrefer e)
 WITH (air-sucker a)

 Optional features of an action concept are its preconditions (i.e. the
states of the world in which the action may be executed) and effects (i.e.
the states of the world that will result after the execution of the action).
 For instance, the following is a "complete" description of the action
'APPLY':

Action Preconditions Effects

APPLY OBJECT z ON x (z TYPE fluid) &
(z ADHERENT-ON x) &
(x TYPE solid)

(z APPLIED-ON x)

 This action may be performed if and only if 'x' is a solid object
and 'z' is a fluid object which is adherent on 'x'. As an effect of
performing this action, 'z' will be applied on 'x'.
 One may notice that the features of the objects are specified in
the action's preconditions.

 3.5 States and goals

 A state of the world is a specification of all the objects and their
current properties and relations.

28

 A goal is a desired partial specification of a world state. That is,
a goal is also a specification of objects.

 For instance
 (membrane-assembly ATTACHED-ON chassis-assembly)
represents the goal of having the membrane-assembly attached on
the chassis-assembly. This goal is identified with the set of states in
which this property holds.

 3.6 Intuitive definition of generalization

 Generalization is a fundamental property of a concept.
 Intuitively, a concept 'P' is said to be more general than another
concept 'Q' if 'P' takes the value TRUE in all the cases in which 'Q'
takes the value TRUE.

 Let 'P' and 'Q' be the concepts representing the following sets of
instances:

{Ptrue} = { x | (P x) = TRUE }
{Qtrue} = { x | (Q x) = TRUE }

 One says that the concept 'P' is more general than the concept
'Q' if and only if {Qtrue} is included into {Ptrue}.

 Let 'mowicoll' be the set of adhesives of type mowicoll. The
concept 'adhesive' is clearly more general than the concept
'mowicoll'. One may express it as follows:

(mowicoll ISA adhesive)

 Notice that this definition of generalization is extensional, based
upon the instance sets of concepts. It is useful in practice only for
showing that 'Q' is not more general than 'P'. Indeed, in such a
situation, it is enough to find an instance 'x' such that

(P x) = TRUE and (Q x) = FALSE

29

 In order to show that 'P' is more general than 'Q', this definition
would require the computation of the (possible infinite) sets of the
instances of 'P' and 'Q'.
 However, in a representation language, one may define a more
operational definition of the more general than relation, as will be
shown in the next section.

 3.7 Generalization in a representation language

 The generalization is defined in terms of substitutions, as in
[Kodratoff & Ganascia, 1986].

 A substitution has the following form:
 σ = (x1<−f1, ... , xn<−fn)
 In DISCIPLE, each 'xi' (i=1,...,n) is a variable or a concept and
each 'fi' (i=1,...,n) is a term or a concept.
 If 'xi' is a variable then 'fi' is a term, and if 'xi' is a concept then
'fi' is a less general concept (according to a generalization hierarchy
from the representation language).

 If 'li' is a literal, then 'σli' is the literal obtained by substituting
each 'xi' from 'li' with 'fi'.

 3.7.1 Term generalization

 We say that the term 't1' is more general than the term 't2' if
there exists a substitution σ such that σt1=t2.

 Let t1 = VOLUME-CYLINDER(r h)
 t2 = VOLUME-CYLINDER(3 7)
 σ = (r<−3, h<−7)
 σt1 = t2
 so 't1' is more general than 't2'

30

 This definition does not take into account the properties of the
functions. In general, however, one needs to use these properties to
show that two terms are equal.

 Let t1 = VOLUME-CUBOID(x y z)
 t2 = VOLUME-CUBOID(x z y)
 To show that these terms are equal one needs to use the axiom
of commutativity of the arguments of the function VOLUME-
CUBOID.

 Therefore, we say that the term 't1' is more general than the
term 't2' iff there exist 't1"', 't2"', and a substitution σ, such that:
 t1" = t1
 t2" = t2
 σt1"= t2"

 Let
 t1 = VOLUME-CUBOID(x y x)
 t2 = VOLUME-CUBOID(5 5 7)
 t1"= VOLUME-CUBOID(x x y)
 σ = (x<−5, y<−7)
 σt1" = t2.
 Therefore, 't1' is more general than 't2'.

 3.7.2 Literal generalization

 The literal 'l1 = (p1 t11 ... t1n)' is more general than the literal
'l2 = (p2 t21 ... t2n)' if and only if there exist 'l1"', 'l2"', and 'σ' such
that:
 l1" = l1
 l2" = l2
 σl1"= l2"
 If 'l1' is more general than 'l2' then 'p1 = p2' or 'p1' is more
general than 'p2', according to a generalization hierarchy from the
representation language.

31

 3.7.3 Conjunctive formula generalization

 Let us consider two conjunctive formulas:

A = A1 & A2 & ... & An
B = B1 & B2 & ... & Bm

where 'Ai' (i = 1, ... ,n) and 'Bj' (j = 1, ... ,m) are literals.
 'A' is more general than 'B' if and only if there exist 'A"', 'B"',
and 'σ' such that:

 A" = A, A" = A1" & A2" & ... & Ap"
 B" = B, B" = B1" & B2" & ... & Bq"
 ∀ i∈{1,...,p}, ∃ j∈{1,...,q} such that σAi" = Bj".

 Otherwise stated, one transforms the formulas 'A' and 'B', using
the theorems and the properties of the representation language, so
that to make each literal from 'A"' more general than a corresponding
literal from 'B"'.
 Notice that some literals from 'B"' may be "left-over", i.e. they
are matched by no literal of 'A"', as in the following example.

 Let
 A = (u ISA adhesive) & (u GLUES v) & (u GLUES w)
 B = (x ISA adhesive) & (x GLUES y) & (x TYPE fluid)
 One may transform 'B' by using the idempotence of the '&'
operator (P=P&P), thus obtaining:
 B"= (x ISA adhesive) & (x GLUES y) & (x GLUES y) &
 (x TYPE fluid)
 There exists 'σ = (u<−x, v<−y, w<−y)' such that:
 σA = (x ISA adhesive) & (x GLUES y) & (x GLUES y)
 That is, 'σA' is a part of 'B"'. Therefore, 'A' is more general than 'B'.

 We have defined the more general relation in the context of the
representation language of DISCIPLE.
 In the next section we shall show how one can effectively
generalize or particularize concepts, by applying syntactic rules of

32

generalizations/particularizations (which may be regarded as
elementary substitutions).

 3.8 Syntactic rules of generalization/particularization

 To generalize concepts, DISCIPLE uses syntactic rules of
generalization [Michalski, 1983; Kodratoff & Ganascia, 1986].
 It is important to notice that these rules do not preserve the truth.
That is, if 'A' is true and is generalized to 'B', then the truth of 'B' is
not guaranteed. Therefore, one fundamental problem of the learning
systems is to make those generalizations that preserve the truth.

 To particularize concepts, one may use the same rules in the
reverse order.

 3.8.1 Turning constants into variables

 This rule consists in generalizing an expression by replacing a
constant with a variable.

 For instance, the expression

(x ISA cleaner) & (x ABSORBS dust)
may be generalized to

(x ISA cleaner) & (x ABSORBS y)
by turning the constant 'dust' into the variable 'y'.

 The first expression represents the set of 'cleaners' that absorb
'dust' while the second expression represents the set of 'cleaners' that
absorbs something. Since the second set includes the first one, it is
more general.

33

 3.8.2 Turning occurrences of a variable into different variables

 According to this rule, the expression

 TIN OBJECTS (terminal-wires t)
 WITH (tinning-bath x)
 TIN OBJECTS (coil-ends c)
 WITH (tinning-bath x)

may be generalized to

 TIN OBJECTS (terminal-wires t)
 WITH (tinning-bath u)
 TIN OBJECTS (coil-ends c)
 WITH (tinning-bath v)

 The first expression represents the set of the sequences
consisting of two TIN operations, both using the same 'tinning-bath'
named 'x'.
 The second expression represents the set of the sequences
consisting of two TIN operations, using the 'tinning-bathes' named 'u'
and 'v', respectively.
 In particular, 'u' and 'v' may represent the same 'tinning-bath'.
Therefore, the second set includes the first one, and the second
expression is more general than the first one.

 3.8.3 Climbing the generalization hierarchies

 The concepts from DISCIPLE's knowledge base are organized
into generalization hierarchies, as has been shown in section 3.3.
 Using such hierarchies, DISCIPLE may generalize an
expression by replacing a concept with a more general one.
 For instance, the expression

(x ISA emery-paper) & (x REMOVES y)
may be generalized to

(x ISA cleaner) & (x REMOVES y)

34

by replacing the concept 'emery-paper' with the more general concept
'cleaner'.

 3.8.4 Dropping conditions

 This rule consists in generalizing a concept by removing a
constraint from its description [Kodratoff & al. 1984].

 For instance, the expression (x ISA adhesive) & (x TYPE
fluid)
may be generalized to (x ISA adhesive)
by removing a constraint on the 'adhesive' to be of type fluid.

 3.8.5 Using theorems

 The knowledge base of DISCIPLE also contains theorems for
deducing properties and relations between concepts from other
properties and relations. If 'B−>C' is such a theorem, then one may
generalize 'B' to 'C', or 'A & B' to 'A & C'.

 For instance, using the theorem
 ∀x ∀y [(x GLUED-ON y) −> (x ATTACHED-ON y)]
one may generalize the expression
 (r ISA ring) & (c ISA chassis-membrane-assembly) &
 (r GLUED-ON c)
to
 (r ISA ring) & (c ISA chassis-membrane-assembly) &
 (r ATTACHED-ON c)

 As has be shown in section 3.3, two types of theorems are
implicitly represented into the concept hierarchies. They are the
transitivity of the generalization relation and the inheritance of
properties from a more general concept to a less general one.

35

 Let us notice that the above syntactic rules of generalization are,
in fact, special cases of using theorems rule [Vrain, 1987]. However,
making them explicit, improves the efficiency of the system.

 3.8.6 Structural generalization

 This rule consists in the reverse application of a decomposition
rule 'A −−> C(A1, ... ,An) '.

 Let us consider, for instance, the following decomposition rule:

 IF
 NOT (x MATERIAL fragile) &
 (x THICKNESS thick) &
 (y MATERIAL rigid)
 THEN
 solve the problem
 ATTACH OBJECT x ON y
 by solving the subproblems
 MAKE OBJECTS rivets ON x
 MAKE OBJECTS holes IN y
 RIVET OBJECT x WITH y

 This rule suggests that we might generalize the following
sequence of actions

 MAKE OBJECTS rivets ON (upper-flange u)
 MAKE OBJECTS holes IN (chassis c)
 RIVET OBJECT u WITH c
to
 ATTACH OBJECT (upper-flange u) ON (chassis c)

 The second expression represents the set of the technological
solutions for attaching an 'upper-flange' on a 'chassis'. This set
includes, among others, the attachment by riveting (that is, the
technological solution represented by the first expression).

36

 4. PROBLEM SOLVING MECHANISMS

 The problem solving mechanisms of DISCIPLE are based on
techniques of problem reduction [Nilsson, 1971], formulation,
propagation and evaluation of constraints [Stefik, 1980], and
problem solving by analogy [Carbonell, 1986]. All these techniques
are reduced to the basic operations with concepts, and are integrated
into a unitary problem reduction method.
 In the following we shall describe these problem solving
mechanisms.

 4.1 Problem reduction

 4.1.1 The problem reduction method

 The problem reduction method may be formulated as follows:

 Given:
 - the description of an initial problem;
 - a set of reduction rules for transforming problems into
 subproblems;
 - a set of primitive problems, i.e. problems with known
 solutions.

 Determine:
 - a set of primitive problems that solve the initial problem,
 by successively applying the reduction rules.

Figure 4.1. The problem reduction method.

37

 4.1.2 Decomposition rules

 In DISCIPLE, a reduction rule has the following form:

 IF
 condition
 K(x1,...,xn,...,xq)
 THEN
 solve the problem
 P(x1,...,xn)
 by solving the subproblems
 C(P1(x1,...,xn,...,xq),
 P2(x1,...,xn,...,xq),
 ...
 Pm(x1,...,xn,...,xq))

 This rule indicates the decomposition of the problem 'P' into a
set of subproblems 'P1', 'P2', ... , 'Pm'. Therefore we shall call such a
rule a decomposition rule.
 'C' is a combinator which indicates the way of combining the
solutions of the problems 'P1', 'P2', ... , 'Pm', in order to obtain the
solution of the problem 'P'.
 'K' is a conjunction of predicates that have to be true in order for
the rule to be applicable.
 One should notice that 'K', 'P1', 'P2',..., and 'Pm' may contain
variables not present in 'P'. These variables are supposed to be
existentially quantified.

 The rule form given here is general in that it does not represent
the decomposition of a specific problem, but the decomposition of an
entire set of problems. This set contains any problem which is less
general than 'P' and satisfies 'K'. It is defined as follows:

 { Pa | there exists σ such that σP = Pa and σK = TRUE }

38

 Let 'Pa' be the problem to be solved and 'σ' a substitution such
that 'σP = Pa' and 'σK = TRUE'.
 Then, the above rule indicates the following decomposition of
the problem 'Pa': 'C(σP1, σP2, ... , σPm)'.

 4.1.3 Decomposition of problems

 Let us consider the following decomposition rule, indicating a
way to perform the attachment of two objects:

 IF
 (x TYPE solid) &
 (y TYPE solid) &
 (x PARTIALLY-FITS y) &
 (z ISA adhesive) &
 (z TYPE fluid) &
 (z GLUES x) &
 (z GLUES y)
 THEN
 solve the problem
 ATTACH OBJECT x ON y
 by solving the subproblems
 APPLY OBJECT z ON x
 PRESS OBJECT x ON y

 The variable 'z', in the condition of this rule, is considered to be
existentially quantified.

 Let us now consider the following problem to solve:
 ATTACH OBJECT membrane-assembly ON chassis-assembly

 In order to decompose this problem one must first find a
substitution 'σ' such that:

 σ(ATTACH OBJECT x ON y) =
 ATTACH OBJECT membrane-assembly ON chassis-assembly

39

 This substitution is

 σ = (x <− membrane-assembly, y <− chassis-assembly)

 Next, one has to verify that, in the current situation,

 σ(condition) = TRUE

 That is, one has to verify that the following expression

 (membrane-assembly TYPE solid) &
 (chassis-assembly TYPE solid) &
 (membrane-assembly PARTIALLY-FITS chassis-assembly)&
 (z ISA adhesive) &
 (z TYPE fluid) &
 (z GLUES membrane-assembly) &
 (z GLUES chassis-assembly)

is true, where the variable 'z' is considered to be existentially
quantified.

 If the above expression is true, then one can solve the problem

 ATTACH OBJECT membrane-assembly ON chassis-assembly

by solving the subproblems

 APPLY OBJECT z ON membrane-assembly
 PRESS OBJECT membrane-assembly ON chassis-assembly
 where: (z ISA adhesive) &
 (z GLUES membrane-assembly) &
 (z GLUES chassis-assembly) &
 (z TYPE fluid)

 Notice that the choice of an appropriate adhesive is a problem to
be addressed later.

40

 Another decomposition rule is the following one:

 IF
 (l ISA loudspeaker) &
 (l HAS s) &
 (s ISA screening-cap)
 THEN
 solve the problem
 FINISHING-OPERATIONS ON l
 by solving the subproblems
 VERIFY OBJECT l
 ATTACH OBJECT s ON l
 MARK OBJECT l

 This rule states that the finishing operations for a 'loudspeaker'
having a 'screening-cap' consist in verifying the 'loudspeaker',
attaching the 'screening-cap' on the 'loudspeaker', and marking the
'loudspeaker'.

 4.2 Problem solving by constraints

 DISCIPLE is designed to solve problems which are initially
imprecisely formulated but become better and better formulated as
the problem solving process advances. To this purpose it formulates,
propagates, and evaluates constraints.

 4.2.1 Constraint formulation

 Constraint formulation is the process of imposing constraints on
the problems to solve.
 One way of formulating constraints in DISCIPLE is to apply
specialization rules.
 A specialization rule has the following form:

41

 IF
 condition
 K(x1,...,xn,...,xq)
 THEN
 solve the problem
 P(x1,...,xn)
 by solving the specialization
 Pi(x1,...,xn,...,xq)

 This rule states that if the condition 'K' is satisfied then the
problem 'P' may be constrained to the problem 'Pi'.
 In DISCIPLE, constraining a problem means providing a more
precise specification of it.
 As in the case of the decomposition rules, a specialization rule is
general in that 'P' does not represent a particular problem, but an
entire set of problems. This set contains any problem that is less
general than 'P' and satisfies 'K'. It is defined as follows:

 { Pa | there exists σ so that σP = Pa and σK = TRUE }

 Given a problem 'Pa' from this set, the above rule will suggest to
constrain 'Pa' to 'σPi'.

 If 'P' represents an action, then a specialization rule may
constrain the action to use a certain instrument, as in the case of the
following examples:

42

 IF
 (x HAS z) &
 (z ISA waste-material) &
 (y ISA cleaner) &
 (y REMOVES z) &
 NOT(y DESTROYS x)
 THEN
 solve the problem
 CLEAN OBJECT x
 by solving the specialization
 CLEAN OBJECT x WITH y

 Figure 4.2. A specialization rule.
 This rule states that, in order to clean an object 'x' which presents a waste material
'z', one should use a cleaner 'y' which removes 'z' but does not destroys 'x'.

 Another specialization rule is the following one:

 IF
 (y ISA feature) &
 (z ISA measurement-instrument) &
 (z MEASURES y)
 THEN
 solve the problem
 VERIFY OBJECT x
 FEATURE y
 by solving the specialization
 VERIFY OBJECT x
 FEATURE y
 INSTRUMENT z

Figure 4.3. Another specialization rule.
 This rule states that, in order to verify a feature 'y' of an object 'x',
 one should use a measurement instrument 'z' which measures 'y'.

43

 If the current problem is to design an object, then a
specialization rule may specify a new feature of the object.

 DISCIPLE solves problems in a hierarchical manner,
formulating more and more detailed constraints as the problem
solving process advances. In this way, it is not forced to consider all
the details from the very beginning, but only when they are needed.

 4.2.2 Constraint propagation

 Constraint propagation is the process of transmitting the
constraints from one problem to another problem. This is the way
the problems communicate between themselves.

 A problem is usually under-constrained in that there are many
possible specializations of it which achieve the desired goal.
 By constraint propagation this problem receives constraints
from other problems.
 Constraint propagation thus makes a least-commitment
strategy possible. That is, DISCIPLE keeps open its options and
reasons by elimination when constraints from other problems are
received.

 In DISCIPLE, constraint propagation is an instantaneous
process due to the fact that the objects from the problems to solve are
uniquely represented.
 Let us consider, for instance, two tinning operations, each using
the same tinning-bath 'x':

 TIN OBJECTS (terminal-wires t)
 WITH (tinning-bath x)
 TIN OBJECTS (coil-ends c)
 WITH (tinning-bath x)

 DISCIPLE maintains a unique description of 'x'. Therefore, if
one of these two operations is specialized by imposing a constraint to

44

the tinning-bath 'x', then the other tinning operation is automatically
specialized, since it refers the same object 'x'.

 DISCIPLE maintains a history of the successive constraints of a
variable, being able to undo these constraints when it fails to solve a
problem.

 4.2.3 Constraint evaluation

 Constraint evaluation is the process of determining values for
variables, values satisfying the constraints imposed on the variables.
 In DISCIPLE, the constraints describe the features which are
needed for the objects specified in the problems to be solved.

 Constraint evaluation is a decision problem of the type buy or
build [Stefik, 1980]. First of all, DISCIPLE looks in its knowledge
base for an object that satisfies the constraints. If no object is found
then the system will try to design the object. Thus, the design of the
object becomes a new problem to solve.
 Let us consider, for instance, the following description:

(c ISA cleaner) & (c REMOVES t)
and the object hierarchy in figure 3.1.
 Each object concept from the hierarchy in figure 3.1 which is
less general than 'c' represents a valid value for 'c'.
 Following its least commitment strategy, DISCIPLE will choose
the most general possible concept among the ones less general than
'c'. That is, the above concept may be replaced with 'air-jet-device'
(by turning the variable 't' into the constant 'dust') or with 'solvent'
(by turning 't' into 'glue').

 The specialization rules proved very useful in the technology
design domain, allowing to introduce into an action description
information concerning tools, devices, verifiers or materials.

45

 4.3. Problem solving by analogy

 [Carbonell, 1986] defines problem solving by analogy as the
process of "transferring knowledge from past problem-solving
episodes to new problems that share significant aspects with
corresponding past experience and using the transferred knowledge
to construct solutions to the new problems."
 Two problems are considered to share significant aspects if they
match within a certain threshold, according to a given similarity
metric. In this case, the past problem solving episode is perturbed in
such a way as to satisfy the requirements of the new problem.

 From the past problem solving episodes DISCIPLE learns rules.
Therefore, a rule represents a generalized problem solving episode.
However, if the domain theory is incomplete or weak, the learned
rules may not specify a single applicability condition (as was
presented in the previous sections) but two conditions (as will be
presented in sections 8 and 9):

 IF
 analogy criterion
 Kg(x1,...,xn,...,xq)
 condition
 K(x1,...,xn,...,xq)
 THEN
 solve the problem
 P(x1,...,xn)
 by solving the subproblems
 C(P1(x1,...,xn,...,xq),
 P2(x1,...,xn,...,xq),
 ...
 Pm(x1,...,xn,...,xq))

 If the problem to solve does not satisfy the condition of the rule
but does satisfy the analogy criterion, then one may look for a

46

reduction of the problem by analogy with the reduction specified in
the rule.
 Let 'Pa' be the current problem to solve.

 If there exists a substitution 'σ' such that 'σP = Pa' and 'σK =
TRUE' then 'C(σP1, σP2, ... , σPm)' is a decomposition of 'Pa', no
analogy process taking place.

 If 'σK = FALSE' but 'σKg = TRUE' then 'C(σP1, σP2, ...
,σPm)' is a decomposition of 'Pa', obtained by analogy with the
decomposition of 'P' to 'C(P1, P2, ... , Pm)'.

 We do not go into further details on this process since it will
become evident after the presentation of the learning methods of
DISCIPLE.

47

 5. CONTROL MECHANISMS

 5.1 Definition of the search space

 Let us suppose that DISCIPLE has to solve the problem 'Pa'. In
principle, there may be several applicable rules, each indicating a
partial solution to 'Pa' (a decomposition or a specialization).

 Let R1, R2, and R3 be the applicable rules which suggest the
reduction of 'Pa' to 'C(Pb,Pc)', 'Pd', and 'C(Pe,Pf,Pg)', respectively.

 Therefore, to solve the problem 'Pa', one may either:
 - solve the problems 'Pb' and 'Pc', or
 - solve the problem 'Pd', or
 - solve the problems 'Pe', 'Pf' and 'Pg'.

 One may represent all these alternatives in the form of an
AND/OR tree:

Pa

R1 R2 R3

C(Pb,Pc) Pd C(Pe,Pf,Pg)

Pb Pc Pe Pf Pg

Figure 5.1 An AND/OR tree.

 The node 'Pa' is called an OR node since for solving the
problem 'Pa' it is enough to solve 'C(Pb, Pc)' OR 'Pd' OR 'C(Pe, Pf,
Pg)'.
 The node 'C(Pb, Pc)' is called an AND node since for solving it
one must solve 'Pb' AND 'Pc'.

48

 This tree may still be developed by considering all the rules
applicable to its leaves (Pb, Pc, Pd, Pe, Pf, Pg). In this way one may
build the entire search space for the problem 'Pa'. This space
contains all the solutions to 'Pa'.
 Usually, however, one solution is enough. To find it one needs
only to build enough of the tree to demonstrate that 'Pa' is solved.
Such a tree is called a solution tree.

 A node is solved in one of the following cases:
 1. it is a terminal node (a primitive problem);
 2. it is an AND node whose successors are solved;
 3. it is an OR node which has at least one solved successor.

 Similarly, a node is unsolvable in one of the following cases:
 1. it is a nonterminal node that has no successors
 (a nonprimitive problem to which no rule applies)
 2. it is an AND node which has at least one unsolvable
 successor.
 3. it is an OR node which has all the successors unsolvable.

 To solve the problem 'Pa', one has to build a solution tree. Once
the problem solver detects that a node is solved or unsolvable it
sends this information to the ancestors of the node. When the node
'Pa' becomes solved, one has found a solution to 'Pa'. If the node 'Pa'
becomes unsolvable, then no solution to 'Pa' exists.

 The presented method supposes an exhaustive search of the
solution space. Usually, however, the real world problems are
characterized by huge search spaces and one has to use heuristic
methods in order to limit the search.
 [Feigenbaum & Feldman, 1963] defines the heuristic as being "a
rule of thumb, strategy, trick, simplification, or any other kind of
device which drastically limits search for solutions in large problem
spaces. Heuristics do not guarantee optimal solutions; in fact they do
not guarantee any solution at all; all that can be said for a useful

49

heuristic is that it offers solutions which are good enough most of the
time".
 One may distinguish between two types of control decisions:
 1. Attention focusing: what problem, among the leaves of
the problem solving tree, to reduce next ?
 2. Meta-rule: what rule, among the applicable ones, to
use for reducing the current problem ?

 The first type of decision establishes the global strategy for
searching the solution tree.
 One may distinguish between different global search strategies:
 - breadth first search;
 - depth first search;
 - heuristic search (the heuristics establish the next problem to
 solve);
 - user directed search (the user establishes the next problem
 to solve);
 - etc.

 The second type of decision consists in choosing the solution of
a problem, in order to optimize certain criteria.

 In the next sections we shall discuss these two types of decisions
in detail.

 5.2 Global control of the search

 The AND/OR tree in figure 5.1 supposes parallel development
of several solution paths.
 In the current implementation of DISCIPLE one develops an
AND tree as the one in figure 2.5 and backtracks when problem
solving fails.
 Otherwise stated, DISCIPLE will not develop the problem
solving tree in figure 5.1. To reduce the problem 'Pa' it will apply
only one of the rules R1, R2 or R3 as, for instance, R1. When it will

50

discover that this path does not lead to a solution, it will backtrack to
'Pa' and will reduce it with another rule.

 The global control in DISCIPLE is based on the agenda
mechanism [Stefik, 1980].
 DISCIPLE maintains an agenda of the problems to be solved.
Initially this agenda contains only the problem indicated by the user.
 This initial problem evolves in a problem solving tree, as it is
successively decomposed and specialized (see figure 2.5).
 Each leaf of this tree is a new problem to reduce.
 First, one has to decide on the next problem to reduce, among
the leaf problems.
 Next, one has to establish the kind of reduction to apply:
 - to decompose the problem to a set of subproblems;
 - to specialize the problem to a better defined one;
 - to specialize an object from the problem.

 Although such a control strategy might itself be learned, we
have not yet considered this learning task. Instead, several control
strategies (depending on the application domain) are easy to
implement into the system. Such a special control strategy will be
presented in section 10.1.

 Depending on the implemented control strategy, the system may
decide itself which problem to reduce next and what kind of rule to
look for. However, for real world applications, it is important that
the user himself be able to control the problem solving process. To
this purpose, he may use the following commands:
 - decompose the current problem;
 - specialize the current problem to a better defined one;
 - specialize an object from the current problem;
 - print the current partial solution (the leaves of the current
 problem solving tree);
 - delete the subtree of the current problem (that is, disregard
 the partial solution of the problem);

51

as well as commands for crossing the current problem-solving tree:
move to the father (first son, left brother, left-most brother, right
brother, right-most brother, etc) of the current problem

 5.3. Meta-rules

 Once DISCIPLE has decided on the type of rule to apply, it has
to choose among the applicable rules. The Expert Systems literature
calls this the conflict resolution problem.
 This type of decision is modeled in DISCIPLE with so-called
meta-rules.

 The meta-rules are heuristics for ordering the rules applicable to
reduce a problem 'P', in order to optimize certain criteria. They have
the following form:

 To solve the problem
 P
 optimizing the criterion
 O C
 consider the applicable rules in the following order
 R1, ... , Rn

 This meta-rule defines an order on the rules that may reduce the
problem 'P' in that 'R1' is expected to give the best result and 'Rn' the
worst, with respect to the optimization criterion OC.
 Of course, other criteria may require other orderings on the same
set of rules.

 A heuristic search consists in using only those rules which are
recommended by meta-rules ('R1' in our case) and not all the
applicable rules (R1,R2, ... ,Rn).
 Only if 'R1' does not lead to a solution, the system will use 'R2'.

52

 The following is an example of meta-rule:

 To solve the problem
 ATTACH OBJECT x ON y
 optimizing the criterion
 INCREASE shock-resistance
 consider the applicable rules in the following order
 1.
 IF
 NOT (x MATERIAL fragile) &
 (x THICKNESS thick) &
 (y MATERIAL rigid)
 THEN
 solve the above problem by solving the subproblems
 MAKE OBJECTS rivets ON x
 MAKE OBJECTS holes IN y
 RIVET OBJECT x WITH y
 2.
 IF
 (x TYPE solid) &
 (y TYPE solid) &
 (x PARTIALLY-FITS y) &
 (z ISA adhesive) &
 (z TYPE fluid) &
 (z GLUES x) &
 (z GLUES y)
 THEN
 solve the above problem by solving the subproblems
 APPLY OBJECT z ON x
 PRESS OBJECT x ON y

 This meta-rule states that the attachment by riveting has a better
shock-resistance than the attachment by gluing.
 It is interesting to notice that the meta-rules corresponding to
object specializations may be associated with the nodes in the object
hierarchies.

53

 Let us consider, for instance, the object hierarchy in figure 3.1.
 An object concept from such a hierarchy may be specialized to
any of its sons. Therefore, the conflict set associated with an object
concept consists of all the sons of this concept.

 For instance, the conflict set associated with the concept

'air-jet-device' is {air-sucker, air-press}
since each element of this set may specialize the 'air jet device'
concept, in a problem description containing it.

 A meta-rule associated with the object 'air-jet-device', in the
hierarchy from figure 3.1, may be the following one:

 To specialize the concept
 air-jet-device
 optimizing the criterion
 INCREASE work-safety
 consider the specializations in the following order
 1. air-sucker
 2. air-press

 That is, if we want to increase the work-safety, then it is better
to specialize 'air-jet-device' to 'air-sucker' than to 'air-press'.

 The following meta-rules show that different optimizing criteria
may impose different orderings on the same conflict set:

 To specialize the concept
 dryer
 optimizing the criterion
 DECREASE time
 consider the specializations in the following order
 1. tunnel-kiln
 2. carrousel
 3. drying-shelf

54

 To specialize the concept
 dryer
 optimizing the criterion
 DECREASE cost
 consider the specializations in the following order
 1. drying-shelf
 2. carrousel
 3. tunnel-kiln

 To choose between such competing meta-rules, the system will
ask the user to specify the optimization criterion.

55

 6. THE LEARNING PROBLEM

 DISCIPLE is trying to learn a general problem solving rule from
each example received from the user.

 The learning problem of DISCIPLE may be formulated as
follows:

 Given:
 - a domain theory;
 - a problem to solve and a partial solution to the problem,
 in the form of a decomposition or a specialization of it.

 Determine:
 - a general decomposition or specialization rule.

 Figure 6.1 The learning problem of DISCIPLE.

 For instance,
 Given:
 - the theory of loudspeaker manufacturing;
 - the problem of attaching two parts of the loudspeaker and the
decomposition of this problem into two simpler subproblems
expressing the gluing of the two parts with an adhesive:

 Example 1:
 Solve the problem
 ATTACH OBJECT ring ON chassis-membrane-assembly
 by solving the subproblems
 APPLY OBJECT mowicoll ON ring
 PRESS OBJECT ring ON chassis-membrane-assembly

 Figure 6.2. A decomposition indicated by the user.

56

 Determine:
 - a general decomposition rule indicating the conditions under
which one may reduce an 'attachment' problem to a process of
gluing:

 IF
 x, y, and z satisfy <constraints>
 THEN
 General Rule 1:
 solve the problem
 ATTACH OBJECT x ON y
 by solving the subproblems
 APPLY OBJECT z ON x
 PRESS OBJECT x ON y

 Figure 6.3. The decomposition rule to be learned from Example 1

 As one may notice, the structure of General Rule 1 is identical
with the structure of Example 1. Therefore, rule learning is reduced
to learning the features that the objects 'x', 'y', and 'z' should have so
that the attachment of 'x' and 'y' may be reduced to a process of
gluing them with 'z'. Otherwise stated, one should learn the concepts
represented by these objects.

 The method of learning this rule depends on the system's theory
(knowledge) about Example 1. We distinguish between three types
of theories: complete, weak, and incomplete.

 A complete theory about Example 1 consists of the complete
descriptions of the objects 'ring', 'chassis-membrane-assembly',
'mowicoll', and of the actions 'ATTACH', 'APPLY', 'PRESS'.
 A complete description of an object specifies all the relevant
factual properties of the object, as well as all the relevant relations
with other objects. These may be explicitly specified or may be
deduced by using inference rules.

57

 A complete description of an action is an action model that
specifies all the necessary preconditions of the action, all its effects,
as well as, all the objects that may play certain roles in the action.
 In the case of a complete theory, DISCIPLE uses an
explanation-based learning method, being able to learn at once a
general rule from Example 1 alone.

 A weak theory about Example 1 consists only of incomplete
descriptions of the objects 'ring', 'chassis-membrane-assembly', and
'mowicoll'. It differs qualitatively from a complete theory in that it
does not contain the models of the actions 'ATTACH', 'APPLY', and
'PRESS'.
 In this case, DISCIPLE uses an interactive learning method that
synergistically combines explanation-based learning, learning by
analogy, and empirical learning.

 The intermediate case, between a complete theory and a weak
theory, is the incomplete theory.
 As compared to a complete theory, an incomplete theory may
lack some object descriptions or action models. Also, it may contain
incomplete descriptions of objects and actions.
 As compared to a weak theory, an incomplete theory contains
action models while a weak theory does not.
 An incomplete description of an object lacks some important
properties or relations of this object. Also, some inference rules for
deducing new properties and relations of this object may be
incompletely specified.
 An incomplete description of an action lacks some precondition
or effect predicates.
 In the case of an incomplete theory about Example 1, DISCIPLE
learns a general rule by combining the method corresponding to the
weak theory with the one corresponding to the complete theory.

 It is interesting to notice that the effect of the learned rule on the
future behaviour of the system depends on the type of the domain
theory.

58

 In a complete theory, the learned rule improves only the
performance of the system, in a weak theory it develops the
competence of the system, and, in an incomplete theory, it develops
both the performance and the competence.

 Another goal of learning in the context of a weak or incomplete
theory is that of developing the domain theory.

 The reason for dealing with all these three types of theories in a
single system is the following one. Most domain theories are
nonhomogeneous in that they provide complete descriptions of
some parts of the domain, and incomplete or even weak descriptions
of other parts of the domain. A learning episode, however, uses only
one part of the domain theory that may have the features of a
complete, incomplete or weak theory, even if, globally, the theory is
nonhomogeneous. Therefore, the learning system has to adopt the
learning method corresponding to the features of the theory about the
example from which it learns.

 In the following sections we shall present these three learning
methods of DISCIPLE.

59

 7. LEARNING IN A COMPLETE THEORY DOMAIN

 7.1 A sample of a complete theory

 In the case of DISCIPLE, a complete theory of a domain
consists of complete descriptions of all the objects and actions of the
domain.
 In particular, a complete theory about the problem solving
episode in figure 6.2, contains the complete descriptions of the
objects 'ring', 'chassis-membrane-assembly', and 'mowicoll', as well
as the complete models of the actions 'ATTACH', 'APPLY', and
'PRESS'.

 The objects are described by specifying all the relevant factual
properties and relations.
 Some object properties and relations may be explicitly specified,
as indicated in figure 7.1

adhesive solid black

SOURCE
ISA

TYPE

mowicoll
GLUES

ring
PART-OF

loudspeaker

TYPE
GLUES PARTIALLY-FITS

PART-OF

fluid

chassis-membrane-assembly
TYPE

solid

COLOR

. . .

Figure 7.1. A hierarchical semantic network containing explicit representations
of object properties and relations.

60

 Other properties and relations may be implicitly specified by
using inference rules for deducing them from other properties and
relations, as indicated in figure 7.2.

 ∀x ∀y [(x GLUED-ON y) ∅ (x ATTACHED-ON y)]
 ∀x ∀y ∀z [(z ISA adhesive) & (z GLUES x) & (z GLUES y) &
 (z BETWEEN x y) ∅ (x GLUED-ON y)]
 ∀x ∀y [(x GLUES y) ∅ (x ADHERENT-ON y)]

 Figure 7.2. Inference rules for deducing new properties and relations of objects.

 The action models describe the actions that may be performed in
the domain.
 Each action model specifies all the necessary preconditions of
the action (i.e. all the states of the world in which the action may be
executed), all its effects (i.e. the states that result after the execution
of the action), as well as, all the objects that may play certain roles in
the action (the agent executing the action, the object on which the
action is performed, the instrument used, etc.).
 Figure 7.3 presents the models of the actions from the problem
solving episode in figure 6.2.

Action Preconditions Effects

APPLY OBJECT z ON x (z TYPE fluid) &
(z ADHERENT-ON x) &
(x TYPE solid)

(z APPLIED-ON x)

ATTACH OBJECT x ON y (x TYPE solid) &
(y TYPE solid)

(x ATTACHED-ON y)

PRESS OBJECT x ON y (z APPLIED-ON x) & (z BETWEEN x y)
(x PARTIALLY-FITS y)&
(y TYPE solid)

Figure 7.3 Action models.

61

 7.2 General presentation of the learning method

 In the case of a complete theory about Example 1, the learning
method of DISCIPLE follows the explanation-based learning
paradigm developed by [Fikes & al. 1972], [DeJong & Mooney,
1986], [Mitchell & al. 1986] and others.

 First, one proves that the solution indicated by the user is indeed
a solution of the problem to solve.
 This proof isolates the relevant features of the objects in
Example 1, that is, those features which will be present in the
condition of General Rule 1.

 Secondly, one generalizes the proof tree as much as possible so
that the proof still holds.
 In this way one generalizes the problem, its solution, and the
relevant features.

 Thirdly, one formulates the learned rule from the generalized
proof by extracting the generalized problem, its generalized solution,
and the generalized relevant features which constitute the
applicability condition of the rule.

 7.3 Proving the example

 Let us consider again Example 1 (see figure 6.2).
 To prove this example means to show that the sequence of the
actions
 APPLY OBJECT mowicoll ON ring
 PRESS OBJECT ring ON chassis-membrane-assembly
achieves the goal of the action
 ATTACH OBJECT ring ON chassis-membrane-assembly
 This goal is:
 (ring ATTACHED-ON chassis-membrane-assembly)

62

 The proof is indicated in figure 7.4. It was obtained by using the
object descriptions in figure 7.1, the inference rules in figure 7.2, and
the action models in figure 7.3.

(ring ATTACHED-ON ch-mem-assembly)

(ring GLUED-ON ch-mem-assembly)

(mowicoll (mowicoll (mowicoll
ISA GLUES BETWEEN
adhesive) ch-mem-assembly) ring

ch-mem-assembly)

PRESS OBJECT ring ON ch-mem-assemb ly

(ch-mem-assembly (ring (mowicoll
TYPE APPLIED-ON
solid) ch-mem-assembly) ring)

APPLY OBJECT mowicoll ON ring

(mowicoll (mowicoll (ring
TYPE ADHERENT-ON TYPE
fluid) ring) solid)

(mowicoll GLUES ring)

PARTIALLY-FITS

Figure 7.4. A complete proof of Example 1.

63

 In the above proof, 'ch-mem-assembly' stands for 'chassis-
membrane-assembly'.
 The leaves of this tree are those features of 'ring', 'chassis-
membrane-assembly', and 'mowicoll' which allowed one to reduce
the problem of attaching the 'ring' on the 'chassis-membrane-
assembly', to the process of gluing them with 'mowicoll'.

 Thus, by proving the example, one isolates the relevant features
of it:

adhesive solid

ISA TYPE

mowicoll
GLUES

ring

TYPE
GLUES

fluid
TYPE

solid

PARTIALLY-FITS

chassis-membrane-assembly

 (ring TYPE solid) & (chassis-membrane-assembly TYPE solid) &
 (ring PARTIALLY-FITS chassis-membrane-assembly) &
 (mowicoll ISA adhesive) & (mowicoll TYPE fluid) &
 (mowicoll GLUES chassis-membrane-assembly) &
 (mowicoll GLUES ring)

 Figure 7.5. The relevant features of Example 1.

64

 The 'color' of the 'ring' or the 'source' of the 'mowicoll' were not
useful in proving the validity of the example. Therefore, these
features are not important for this example.

 7.4 Generalization of the proof

 The next step consists in the generalization of the proof, as
much as possible, so that the proof still holds.
 Since the proof in figure 7.4 was obtained by using instances of
inference rules and action models, one may generalize the proof by
generalizing these instances.
 One way to do this is to first replace each instantiated inference
rule or action model with its general pattern and then to unify these
patterns [Mooney & Bennet, 1986].

 First, one replaces the instances of the action models and
inference rules in figure 7.4 with their general patterns (taken from
the figures 7.2 and 7.3), thus obtaining the proof structure in figure
7.6.

65

(x1 ATTACHED-ON y1)

(x1 GLUED-ON y1)

(x2 GLUED-ON y2)

(z2 ISA adhesive) (z2 GLUES y2) (z2 BETWEEN x2 y2)

(z3 BETWEEN x3 y3)

PRESS OBJECT x3 ON y3

(y3 TYPE solid) (x3 PARTIALLY-FITS y3) (z3 APPLIED-ON x3)

(z4 APPLIED-ON x4)

APPLY OBJECT z4 ON x4

(z4 TYPE fluid) (z4 ADHERENT-ON x4) (x4 TYPE solid)

(z5 ADHERENT-ON x5)

(z2 GLUES x2)

(z5 GLUES x5)

Figure 7.6. The general structure of the proof.

 Secondly, one determines the most general unifying substitution
for each connection pattern (the patterns connected by |||) and
composes these substitutions, as indicated in figure 7.7.

66

 (x1 GLUED-ON y1) (x2 <− x1, y2 <− y1)
 |||
 (x2 GLUED-ON y2)

 (z2 GLUED-ON x2) (x2 <− x1, y2 <− y1,
 ||| z5 <− z2, x5 <− x2)
 (z5 GLUED-ON x5)

 (z2 BETWEEN x2 y2) (x2 <− x1, y2 <− y1,
 ||| z5 <− z2, x5 <− x2,
 (z3 BETWEEN x3 y3) z3 <− z2, x3 <− x2, y3 <− y2)

 (z3 APPLIED-ON x3) (x2 <− x1, y2 <− y1,
 ||| z5 <− z2, x5 <− x2,
 (z4 APPLIED-ON x4) z3 <− z2, x3 <− x2, y3 <− y2,
 z4 <− z3, x4 <− x3)

 (z4 ADHERENT-ON x4) (x2 <− x1, y2 <− y1,
 ||| z5 <− z2, x5 <− x2,
 (z5 ADHERENT-ON x5) z3 <− z2, x3 <− x2, y3 <− y2,
 z4 <− z3, x4 <− x3,
 z5 <− z4, x5 <− x4)

 Figure 7.7. The computation of the unifying substitution.

 Finally, one applies the composed substitution to the structure in
figure 7.6, thus obtaining the generalized proof in figure 7.8.

67

(x1 ATTACHED-ON y1)

(x1 GLUED-ON y1)

(z2 ISA adhesive) (z2 GLUES y1) (z2 BETWEEN x1 y1)

PRESS OBJECT x1 ON y1

(y1 TYPE solid) (x1 PARTIALLY-FITS y1) (z2 APPLIED-ON x1)

APPLY OBJECT z2 ON x1

(z2 TYPE fluid) (z2 ADHERENT-ON x1) (x1 TYPE solid)

(z2 GLUES x1)

Figure 7.8. The generalization of the proof in figure 7.4.

 7.5 The formulation of the general rule

 Just for the purpose of facilitating the comparison with the other
learning methods of DISCIPLE, let us apply to the generalized proof
in figure 7.8 the substitution

(x1<−x, y1<−y, z2<−z)
which does not change its generality:

68

(x ATTACHED-ON y)

(x GLUED-ON y)

(z ISA adhesive) (z GLUES y) (z BETWEEN x y)

PRESS OBJECT x ON y

(y TYPE solid) (x PARTIALLY-FITS y) (z APPLIED-ON x)

APPLY OBJECT z ON x

(z TYPE fluid) (z ADHERENT-ON x) (x TYPE solid)

(z GLUES x)

Figure 7.9. Equivalent form of the generalized proof in figure 7.8.

 The leaves of this generalized tree represent a justified
generalization of the relevant features in figure 7.5.

 (x TYPE solid) & (y TYPE solid) & (x PARTIALLY-FITS y) &
 (z ISA adhesive) & (z TYPE fluid) & (z GLUES x) & (z GLUES y)

 Figure 7.10. Justified generalization of the relevant features of Example 1.

69

 They also represent a general precondition for which the
sequence of the actions

 APPLY OBJECT z ON x
 PRESS OBJECT x ON y

achieves the goal of the action

 ATTACH OBJECT x ON y

 This may be expressed in the form of the following general
decomposition rule, which is precisely the decomposition rule
learned from Example 1:

 IF
 (x TYPE solid) &
 (y TYPE solid) &
 (x PARTIALLY-FITS y) &
 (z ISA adhesive) &
 (z TYPE fluid) &
 (z GLUES x) &
 (z GLUES y)
 THEN
 General Rule 1:
 solve the problem
 ATTACH OBJECT x ON y
 by solving the subproblems
 APPLY OBJECT z ON x
 PRESS OBJECT x ON y

Figure 7.11. The decomposition rule learned from Example 1.

70

 8. LEARNING IN A WEAK THEORY DOMAIN

 8.1 A sample of a weak theory

 A weak theory about the problem solving episode in figure 6.2
(Example 1) consists of the (possible incomplete) descriptions of the
objects from this episode. It does not contain the models of the
actions from this episode.

 A sample of such a theory is represented in figure 8.1.

adhesive solid

ISA
TYPE

mowicoll
GLUES

ring
PART-OF

loudspeaker

GLUES
PART-OF

chassis-membrane-assembly
TYPE

solid

Figure 8.1. Fragment of a weak theory.

 The idea of considering such a theory came from our experience
with building a knowledge base for loudspeaker manufacturing.
 We realized that it was very difficult for our expert (Zani
Bodnaru from the Industrial Electronic Enterprise in Bucharest) to
describe the actions in terms of their preconditions and effects.
 On the contrary, it was much easier for him to describe the
objects and to give us examples of decompositions and
specializations.

71

 This should not surprise anyone working in action planning who
knows the difficulty of defining action models for complex
operations.
 Therefore, instead of forcing the expert to completely formalize
his knowledge, we decided to accept the theory which was easily
provided by him and to learn the rest of the necessary knowledge.

 8.2 General presentation of the learning method

 In the context of a weak theory, the system will try to
compensate its lack of knowledge by using an integrated learning
method whose power comes from the synergism of different learning
paradigms: explanation-based learning, learning by analogy,
empirical learning, and learning by questioning the user.

 Rule learning takes place in several stages which are illustrated
in figure 8.2.

 First DISCIPLE looks for a shallow explanation of user's
solution. Then it uses this explanation to formulate a reduced
version space for the rule to be learned. Each rule in this space
covers only instances which are analogous with the user's example.
DISCIPLE carefully generates analogous instances to be
characterized as positive examples or as negative examples by the
user. These are used to further narrow the version space until it
contains only the rule illustrated by the user's solution.

72

Explanation
Based mode

Analogy
Based mode

reduced
version space

explanation

problem

solution
instance 2

rule
. . .

instance n
rule

examples
+ or -

version space
narrow

user

Empirical Learning mode

Figure 8.2 The learning method in the context of a weak theory.

 In the following sections we shall present in detail this learning
method by using again Example 1 from figure 6.2.

 8.3 Explanation-based mode

 In its first learning step, DISCIPLE enters the Explanation
Based Mode and tries to find an explanation (within its weak domain
theory) of the validity of the solution in figure 6.2.
 We shall first define what we mean by an explanation in a weak
theory and then we shall indicate a heuristic method to find such
explanations.

73

 8.3.1 Explanations in a weak theory domain

 Let 'P' be the problem to solve and 'S' a solution to this problem.
As has been shown in section 7, an explanation of the problem
solving episode

solve P by S
is a proof that 'S' solves 'P'.

 In the case of a complete theory about this problem solving
episode, the learning system is able to find itself such a proof.
 In the case of a weak theory, however, the system is no longer
able to find such a proof because it lacks the models of the actions
from 'P' and 'S'. In such a case, the explanation may be regarded as
being the premise of a single inference whose conclusion is:

S solves P

 Let us consider the problem solving episode in figure 6.2
(Example 1). In the context of a weak theory, a complete
explanation of this problem solving episode is the following one:

 (ring TYPE solid) & (chassis-membrane-assembly TYPE solid) &
 (ring PARTIALLY-FITS chassis-membrane-assembly) &
 (mowicoll ISA adhesive) & (mowicoll TYPE fluid) &
 (mowicoll GLUES chassis-membrane-assembly) &
 (mowicoll GLUES ring)

 Figure 8.3. A complete explanation of Example 1.

 The fact that the 'ring', the 'chassis-membrane-assembly', and the
'mowicoll' have the features in figure 8.3 explains (in a weak theory)
why the process of gluing the 'ring' and the 'chassis-membrane-
assembly' with 'mowicoll' solves the problem of attaching them.
 As can be seen, this explanation consists of the leaves of the tree
in figure 7.4. Since such a proof tree cannot be built in a weak

74

theory, one has to use heuristics, as well as the user's help, in order to
find the explanation.
 Moreover, it is very likely that one will not find the complete
explanation in figure 8.3. This is partially a consequence of using
heuristics, and partially a consequence of the incompleteness of the
domain theory (which may not contain all the relevant object
properties and relations).

 8.3.2 A heuristic to find explanations

 In a weak theory domain, the explanation of Example 1 is the
result of an interactive process in which the system uses heuristics to
propose plausible partial explanations to be validated by the user
who may himself indicate other pieces of explanations.

 In DISCIPLE, this process of finding the explanation is based on
the following heuristic: look for an explanation expressible in terms
of the relations between the objects from the example, ignoring
object features.

 Therefore, to find an explanation of Example 1, DISCIPLE will
look in its knowledge base for the links and for the paths (i.e.
sequences of links) connecting 'ring', 'chassis-membrane-assembly',
and 'mowicoll', and will propose the found connections as pieces of
explanations of the Example 1. It is the user's task to validate them
as true explanations:

 Do the following justify your solution:
 mowicoll GLUES ring ? Yes
 mowicoll GLUES chassis-membrane-assembly ? Yes
 ring PART-OF loudspeaker &
 chassis-membrane-assembly PART-OF loudspeaker ? No

 All the pieces of explanations marked by a user's yes form the
explanation of the example rule:

75

 Explanation 1:

ring

GLUES

mowicoll

GLUES

chassis-membrane-assembly

Figure 8.4. The explanation of Example 1.

 Notice that this explanation is incomplete. As already stated,
this is due partly to the incompleteness of the domain theory and
partly to the heuristic used to find explanations (DISCIPLE looks
only for the relations between objects, ignoring their properties).
However, the found explanation shows some important features of
the objects, features justifying the user's solution.
 This explanation will be used in the next learning mode (the
analogy-based mode) which will be described in the following
section. There we shall also give a justification of the above
presented heuristic.

76

 8.4 Analogy-Based Mode

 8.4.1 Learning by Analogy

 The central intuition supporting the learning by analogy
paradigm is that if two entities are similar in some respects then they
could be similar in other respects as well.
 A general scenario for learning by analogy is expressed by the
following statement:

'a T is like a B'
 The purpose of this statement is to convey knowledge from 'B'
to 'T'. 'B' is called the base since it is the entity that serves as a
source of knowledge, and 'T' is called the target since it is the entity
that receives the knowledge.

 A classical example of analogy is Rutherford's analogy:

"The hydrogen atom is like our solar system"
 By analogy with the solar system, one is able to get new
knowledge about the hydrogen atom.

 Let us notice that the base and the target are similar but not
identical. Therefore, nothing guarantees that the features imported
from the base are indeed features of the target. Otherwise stated,
analogy is a weak inference method and the inferences drown by
analogy have to be, somehow, validated.

 According to the structure-mapping theory of Gentner
[Gentner, 1983], which will be briefly presented in the following, the
relations between objects, rather than attributes of objects, are
mapped from the base to the target. Moreover, a relation that
belongs to a mappable system of mutually interconnecting
relationships is more likely to be imported into the target than is an
isolated relation (the systematicity principle).

 The analogy maps the objects of the base onto the objects of the
target: b1−> t1, b2 −> t2, ... , bn −> tn

77

 These object correspondences are used to generate the candidate
set of inferences in the target domain.
 Predicates from the base are carried across to the target, using
the node substitutions dictated by the object correspondences,
according to the following rules:

 1. Discard attributes of objects
 A(bi) -/-> A(ti)
 For instance, the yellow color of the sun is not transmitted to the
hydrogen nucleus.

 2. Try to preserve relations between objects
 R(bi, bj) -?-> R(ti, tj)
 That is, some relations are transmitted to the target, while others
are not.

 3. The systematicity principle: the relations that are most
probably to be transmitted are those belonging to systems of
interconnected relations
 R'(R1(bi,bj), R2(bk,bl)) −> R'(R1(ti,tj), R2(tk,tl))

 An important result of the learning by analogy research
([Bareiss & Porter 1987], [Burstein 1986], [Carbonell, 1983, 86],
[Chouraqui, 1982], [Forbus & Gentner, 1986], [Kedar-Cabelli,
1985], [Russel, 1987], [Winston, 1980, 86]), confirming the
structure-mapping theory, is that the analogy involves mapping some
underlying causal network of relations between analogous situations.
 The idea is that similar causes are expected to have similar
effects:

A A'

B B'

cause cause

similar

similar

78

 Since A, B, A', B' are usually networks of relations, the 'cause'
relation is a higher order relation. Therefore, this is in accordance
with the systematicity principle.

 8.4.2 The paradigm of analogy in DISCIPLE

 In DISCIPLE, the explanation of a problem solving operation
may be regarded as a cause for performing the operation:

ring

GLUES

mowicoll

GLUES

chassis-membrane-assembly

CAUSES

 Solve the problem
 ATTACH OBJECT ring ON chassis-membrane-
assembly
 by solving the subproblems
 APPLY OBJECT mowicoll ON ring
 PRESS OBJECT ring ON chassis-membrane-assembly

 Let us suppose that a new situation is characterized by the
following network:

79

GLUES

GLUES

neoprene

screening-cap

loudspeaker
Figure 8.5. Network similar with Explanation 1 (figure 8.4).

 Since this network is similar with Explanation 1, we may expect
that it will cause a decomposition of the problem

 ATTACH OBJECT screening-cap ON loudspeaker

similar with the one from Example 1:

 Solve the problem
 ATTACH OBJECT screening-cap ON loudspeaker
 by solving the subproblems
 APPLY OBJECT neoprene ON screening-cap
 PRESS OBJECT screening-cap ON loudspeaker

 Now, let us point out that the analogical decomposition is not
derived from any particular properties of 'screening-cap',
loudspeaker', and 'neoprene' other than those that 'neoprene' glues
both the 'screening-cap' and the 'loudspeaker'. Therefore, the system
making this inference must be equally willing to infer the
decomposition

 Solve the problem
 ATTACH OBJECT x ON y
 by solving the subproblems
 APPLY OBJECT z ON x
 PRESS OBJECT x ON y

80

for any other objects 'x', 'y', and 'z', such that the following network
holds:

GLUES

GLUES

z

x

y

 Therefore, this network may be regarded as an analogy
threshold, and the above inferences may be rewritten in the
following equivalent form:

 IF
 analogy threshold
 (z GLUES x) & (z GLUES y)
 THEN
 solve the problem
 ATTACH OBJECT x ON y
 by solving the subproblems
 APPLY OBJECT z ON x
 PRESS OBJECT x ON y

 The instances of this rule are decompositions of the ATTACH
operation that are analogous with Example 1. Since analogy is a
weak inference method, these decompositions may be acceptable
(i.e. valid decompositions) or not.

81

 Therefore, the analogy paradigm in DISCIPLE is the following
one:

CAUSE CAUSE?

LESS-GENERAL-THAN LESS-GENERAL-THAN

over-generalized explanation
(analogy criterion)

explanation explanation

episode

problem-
solving
episode

problem-
solving

SIM ILAR

SIM ILAR

 The following figure contains an example of analogy.

82

GLUES

GLUES

GLUES

GLUES

GLUES

GLUES

z

y

x

mowicoll neoprene

screening-cap

loudspeaker

ring

ch-mem-assembly

Solve the problem Solve the problem
ATTACH OBJECT ring ATTACH OBJECT screening-cap

ON ch-mem-assembly ON loudspeaker

By solving the subproblems By solving the subproblems
APPLY OBJECT mowicoll

ON ring ON screening-cap
PRESS OBJECT ring PRESS OBJECT screening-cap

ON ch-mem-assembly ON loudspeaker

LESS-GENERAL-THAN LESS-GENERAL-THAN

CAUSE CAUSE?

SIMILAR

SIMILAR

APPLY OBJECT neoprene

Figure 8.6. An example of analogy.

83

 While, usually, two situations are considered to be analogous if
they match within a certain pre-defined threshold, in DISCIPLE, two
situations are considered to be analogous if they generalize within a
pre-defined threshold (the analogy criterion). This is not at all
surprising since generalization may be reduced to structural matching
[Kodratoff & Ganascia, 1986].

 Now we can also justify the heuristic used by DISCIPLE to find
explanations of examples. Because these explanations are used in
analogical reasoning, the systematicity principle requires them to be
networks of relations. Indeed, in this case, the 'CAUSE' relation,
which is imported by analogy, is a higher order relation.

 8.4.3 Determining a reduced version space for the rule to be
learned

 The purpose of the previous sections was to justify the
following procedure for determining a reduced version space for the
rule to be learned. This space contains rules covering only instances
analogous with Example 1.

 First of all DISCIPLE over-generalizes Example 1 by turning all
the objects into variables, thus obtaining:

 General Rule 1:
 solve the problem
 ATTACH OBJECT x ON y
 by solving the subproblems
 APPLY OBJECT z ON x
 PRESS OBJECT x ON y

 Next Explanation 1 is rewritten as a lower bound of the
applicability condition of General Rule 1:

84

 (x ISA ring) & (y ISA chassis-membrane-assembly) &
 (z ISA mowicoll) & (z GLUES x) & (z GLUES y)

 Figure 8.7 Explanation 1 written as a lower bound of the
 applicability condition of General Rule 1.

 Notice that the above expression is indeed a lower bound
because it reduces General Rule 1 to Example 1, which is known to
be true.

 Further, DISCIPLE determines an analogy criterion which will
allow it to generate instances analogous to Example 1.
 The analogy criterion is a generalization of Explanation 1. In
the case of our example, it was obtained by simply transforming the
constants of Explanation 1 into variables, or, if we consider the form
of Explanation 1 in figure 8.7, by dropping the 'ISA' predicates.

 In general, the analogy criterion is defined as the most general
generalization of Explanation 1 that may still be accepted by the
user as an explanation of General Rule 1.

 The analogy criterion may be taken as an upper bound for the
applicability condition of General Rule 1:

analogy criterion:

(z GLUES x) & (z GLUES y)

Figure 8.8. An over-generalization of Explanation 1.

 The analogy criterion, Explanation 1, and the General Rule 1
define a reduced version space [Mitchell, 1978] for the rule to be
learned:

85

 IF
 G:analogy criterion
 (z GLUES x) & (z GLUES y)

 S:Explanation 1
 (x ISA ring) &
 (y ISA chassis-membrane-assembly) &
 (z ISA mowicoll) & (z GLUES x) & (z GLUES y)
 THEN
 General Rule 1:
 solve the problem
 ATTACH OBJECT x ON y
 by solving the subproblems
 APPLY OBJECT z ON x
 PRESS OBJECT x ON y

 Figure 8.9. A reduced version space for the rule to be learned.

 Each rule in this space has an applicability condition that is less
general that the analogy criterion and more general than Explanation
1. Also, it covers only instances that are analogous with Example 1.

 8.4.4 Generation of instances

 To search the rule in the space from figure 8.9, DISCIPLE needs
positive and negative instances of it. These instances may be
provided by future problem solving episodes or may be generated by
the system itself.

 To generate an instance, DISCIPLE looks in the knowledge base
for objects satisfying the analogy criterion.

86

 The objects 'screening-cap', 'loudspeaker', and 'neoprene' are
such objects.
 DISCIPLE calls Explanation-i the properties of these objects
that were used to prove that they satisfy the analogy criterion:

 Explanation-i:

GLUES

GLUES

neoprene

screening-cap

loudspeaker

 It uses the found objects to generate an instance of General Rule
1 (see figure 8.9) and asks the user to validate it:

 May I solve the problem
 ATTACH OBJECT screening-cap ON loudspeaker
 by solving the subproblems
 APPLY OBJECT neoprene ON screening-cap
 PRESS OBJECT screening-cap ON loudspeaker ?

 Figure 8.10. An instance generated by analogy with Example 1.

87

 8.5 Empirical Learning mode

 The instances generated in the analogy mode are accepted or
rejected by the user, being thus characterized as positive examples or
as negative examples of the rule to be learned. These instances are
used to search the rule in the version space from figure 8.9.

 8.5.1 The use of the positive examples

 Each positive example shows a true explanation. All these
explanations are generalized and the obtained generalization is used
as a new lower bound of the condition version space.

 Let us suppose that the user accepts the decomposition in figure
8.10. Then, Explanation-i, computed in the previous section, is a
true explanation which may also be rewritten as a lower bound for
the applicability condition of General Rule 1:

 Explanation i:
 (x ISA screening-cap) & (y ISA loudspeaker) &
 (z ISA neoprene) & (z GLUES x) & (z GLUES y)

 Therefore, DISCIPLE computes a maximally specific common
generalization of the lower bound in figure 8.9 and Explanation-i:

 (x TYPE solid) & (y TYPE solid) & (z ISA adhesive) &
 (z GLUES x) & (z GLUES y)

 This generalization is taken as a new lower bound of the
condition to be learned:

88

 IF
 G:upper bound
 (z GLUES x) & (z GLUES y)

 S:lower bound
 (x TYPE solid) & (y TYPE solid) &
 (z ISA adhesive) & (z GLUES x) & (z GLUES y)
 THEN
 General Rule 1:
 solve the problem
 ATTACH OBJECT x ON y
 by solving the subproblems
 APPLY OBJECT z ON x
 PRESS OBJECT x ON y

 Figure 8.11. The version space after the use of a new positive example.

 Notice that the new lower bound is always more specific than
the upper bound because both the previous lower bound and
Explanation i are less general than the upper bound.

 8.5.2 The use of the negative examples

 Each negative example shows the incompleteness of
Explanation 1 and of its over-generalization (the analogy criterion).
The explanation of why the instance is a negative example points to
the features which were not present in Explanation 1. These new
features are used to particularize both bounds of the version space.

 Let us consider the objects 'screening-cap', 'loudspeaker' and
'scotch'. They also satisfy the analogy criterion (the upper bound of

89

the condition version space) but the corresponding instance is
rejected by the user:

 May I solve the problem
 ATTACH OBJECT screening-cap ON loudspeaker
 by solving the subproblems
 APPLY OBJECT scotch ON screening-cap
 PRESS OBJECT screening-cap ON loudspeaker ? No

 Figure 8.12. A negative example of the rule to be learned.

 In this case, DISCIPLE looks for an explanation of the failure
because this explanation points to the important object features
which were not contained in Explanation 1.
 The explanation is that 'scotch' (an adhesive tape) is not fluid
(therefore, it might not be applied on a curved surface):

Failure Explanation:
NOT (scotch TYPE fluid)

 Figure 8.13. The explanation of the negative example in figure 8.12.

 That is, the concept represented by 'z' must not have the
following property:

'NOT (z TYPE fluid)'

 Therefore, DISCIPLE will specialize both bounds of the version
space by adding the negation of this explanation:

90

 IF
 G:upper bound
 (z GLUES x) & (z GLUES y) &
 (z TYPE fluid)

 S:lower bound
 (x TYPE solid) & (y TYPE solid) &
 (z ISA adhesive) & (z GLUES x) & (z GLUES y) &
 (z TYPE fluid)
 THEN
 General Rule 1:
 solve the problem
 ATTACH OBJECT x ON y
 by solving the subproblems
 APPLY OBJECT z ON x
 PRESS OBJECT x ON y

 Figure 8.14. The version space after the use of a negative example.

 In another situation, failing to glue two objects whose surfaces
do not fit each other, DISCIPLE discovers the condition that the
objects should partially fit:

91

 IF
 G:upper bound
 (z GLUES x) & (z GLUES y) &
 (z TYPE fluid) &
 (x PARTIALLY-FITS y)

 S:lower bound
 (x TYPE solid) & (y TYPE solid) &
 (z ISA adhesive) & (z GLUES x) & (z GLUES y) &
 (z TYPE fluid) &
 (x PARTIALLY-FITS y)
 THEN
 General Rule 1:
 solve the problem
 ATTACH OBJECT x ON y
 by solving the subproblems
 APPLY OBJECT z ON x
 PRESS OBJECT x ON y

 The learning process decreases the distance between the two
bounds of the version space. This process should, in principle,
continue until the lower bound becomes identical with the upper one.
 In our case, other negative examples will show that

(x TYPE solid) & (y TYPE solid) & (z ISA adhesive)
are necessary features of the objects 'x', 'y', and 'z'.
 Thus one learns the rule in figure 7.11.

 However, since the domain theory is weak, we should expect
that this will not always happen. Therefore, we will be forced to
preserve two conditions (the upper bound and the lower bound),
instead of a single applicability condition.
 We propose to define such a case as being typical of an
uncertain explanation (in which uncertainty is not expressed by
numerical means).

92

 It should be noticed that the degree of generalization of the
learned rule is determined by the degree of generalization of the
over-generalized explanation in figure 8.8. However, this rule may
still be generalized in the future. This opportunity arises when the
user indicates that two objects may be attached by a gluing process
even if the rule does not apply. In such a case, the conditions of the
rule may be generalized, so that to cover the explanation of the new
example.

 8.5.3 Active experimentation

 In the Analogy-Based Mode DISCIPLE may generate many
instances of the rule to be learned. However, they are not equally
useful for searching the version space. Therefore, in the Empirical
Learning Mode, DISCIPLE will determine the features of the most
useful instances, asking for the generation of such instances.

 DISCIPLE's strategy is to generalize the lower bound of the
version space by generalizing the referred objects (i.e. 'mowicoll',
'ring', and 'chassis-membrane-assembly'). It will therefore try to
climb the generalization hierarchy of these objects in such a way as
to preserve consistency with the necessary condition.

 During this generalization process, several situations may occur:
 - there are different ways to generalize;
 - the generalization may cover objects that are not guaranteed to
produce positive examples of the rule.
 When faced with such problems, DISCIPLE will ask the user
"clever" questions whose answers allow it to take the right decision.
 This process is illustrated in section 8.8.

 8.6 Developing the domain theory

 As has been shown in section 8.3.2, DISCIPLE looks for
explanations in its knowledge base.

93

 Because the domain theory is weak, we may expect that it will
not always contain the right pieces of explanations. In such situations
the pieces of the explanation must be provided by the user.
 Let us consider, for instance, that the failure explanation in
figure 8.13 was provided by the user. In this case the domain theory
will be enriched by storing this explanation:

NOT (scotch TYPE fluid)

 More significantly, as a consequence of updating the Lower
Bound of the version space, the following relations between the
objects that previously generated positive examples of the rule are
added to the domain theory:

(mowicoll TYPE fluid)
 (neoprene TYPE fluid)

 8.7 The learning algorithm

 The purpose of the previous sections was to justify the
following learning algorithm.

 Explanation-Based Mode:

 1. Find an explanation of the user's solution (Example 1) and
call it Explanation 1.

 Analogy-Based Mode:

 2. Over-generalize Example 1, by simply turning all the objects
into variables, and call it General Rule 1.

 3. Take Explanation 1 as a Lower Bound for the applicability
condition of General Rule 1.

 4. Over-generalize Explanation 1 to the most general
expression that may still be accepted by the user as an explanation of
General Rule 1.

94

 5. Take the over-generalized explanation as an Upper Bound
for the applicability condition of General Rule 1.
 The Upper Bound, the Lower Bound, and the General Rule 1
define a reduced version space for the rule to be learned.

 6. Look in the knowledge base for "interesting" objects
satisfying the Upper Bound.
 If there are such objects then Call Explanation-i the properties
of these objects which were used to prove that they satisfy the Upper
Bound and go to step 7.
 If there are no such objects then show the Upper Bound, the
Lower Bound, and the General Rule 1 to the user as an uncertain rule
and stop.

 7. Use the objects found in step 6 to generate an instance of
General Rule 1. Call it Instance-i. This instance is analogous with
Example 1.

 8. Propose Instance-i to the user and ask him to characterize it
as a valid or as an invalid reduction. If Instance-i is rejected by the
user then go to step 9. Otherwise go to step 14.

 Explanation-Based Mode:

 9. Take Instance-i as a near miss (negative example) of the rule
to be learned.

 10. Find an explanation of why Instance-i was rejected by the
user and call it Failure-Explanation-i.

 Empirical Learning Mode:

 11. Specialize the Upper Bound as little as possible, so that not
to cover Failure-Explanation-i.

95

 If the new Upper Bound is identical with the Lower Bound then
take it as a necessary and sufficient condition of General Rule 1,
show them to the user and stop, else go to step 12.

 12. Specialize (if necessary) the Lower Bound as little as
possible, so that not to cover Failure-Explanation-i.

 13. Go to step 6.

 14. Take Instance-i as a new positive example of the rule to be
learned and Explanation-i as a true explanation of Instance-i.

 15. Look for a maximally specific common generalization of
the Lower Bound and Explanation-i, which is less general than the
Upper Bound. Several cases may occur:
 - if such a generalization exists and is not identical with the
Upper Bound, then take it as the new Lower Bound and go to step 6;
 - if such a generalization exists and is identical with the Upper
Bound, then take it as a necessary and sufficient condition of General
Rule 1, show them to the user and stop.

 8.8 A sample trace of the learning algorithm

 In this section we shall apply the learning algorithm in order to
learn a specialization rule.
 Let us consider the following example of specialization:

 Example 1:
 Solve the problem
 CLEAN OBJECT entrefer
 by solving the specialization
 CLEAN OBJECT entrefer WITH air-sucker

96

 1. Find an explanation of Example 1

 Look, in the knowledge base, for the links (or paths) connecting
'entrefer' and 'air-sucker'. They are illustrated in the following
network:

collector air-jet-device magnetic-circuit

ISA ISA ISA PART-OF

air-sucker entrefer

ABSORBS HAS

dust

. . .

.

 This network contains a single path between 'entrefer' and 'air-
sucker'. This is proposed to the user as a plausible explanation of
Example 1:

 Do the following justify your solution:
 entrefer HAS dust & air-sucker ABSORBS dust ? Yes

 Therefore, the explanation of Example 1 is:

 Explanation 1:

air-sucker entrefer

ABSORBS HAS

dust

97

 2. Build General Rule 1

 General rule 1:
 solve the problem
 CLEAN OBJECT x
 by solving the specialization
 CLEAN OBJECT x WITH y

 3. Rewrite Explanation 1 as a Lower Bound for the applicability
 condition of General Rule 1

 Lower Bound:
 (x ISA entrefer) & (y ISA air-sucker) & (z ISA dust) &
 (x HAS z) & (y ABSORBS z)

 4. Over-generalize Explanation 1

 DISCIPLE is first trying to generalize Explanation 1 by
generalizing the contained relations only.
 It will show the user the competing generalizations, asking him
to choose the right one:

 The explanation
 entrefer HAS dust & air-sucker ABSORBS dust
 may be expressed as:
 1.entrefer HAS dust & air-sucker REMOVES dust
 2.entrefer HAS dust & air-sucker GETS dust
 Choose the solution [number, No, Modify]: 1

 Therefore, a first generalization of Explanation 1 is:

 entrefer HAS dust & air-sucker REMOVES dust

 Next, the above explanation is over-generalized by turning all
the objects into variables, thus obtaining:

98

 Over-generalized explanation:
 (x HAS z) & (y REMOVES z)

 5. Build the reduced version space for the rule to be learned

 IF
 Upper Bound:
 (x HAS z) & (y REMOVES z)

 Lower Bound:
 (x ISA entrefer) & (y ISA air-sucker) &
 (z ISA dust) & (x HAS z) & (y ABSORBS z)
 THEN
 General rule 1:
 solve the problem
 CLEAN OBJECT x
 by solving the specialization
 CLEAN OBJECT x WITH y

 6. Look for objects satisfying the Upper Bound

 As has been written in section 8.5.3, DISCIPLE is trying to
generalize the Lower Bound by climbing the generalization
hierarchies of the contained objects.
 In our case, 'air-sucker' belongs to quite a rich generalization
hierarchy:

99

air-mover cleaner

ISA ISA ISA ISA

ventilator air-jet-device solvent

ISA ISA ISA ISA

air-sucker air-press alcohol acetone

emery-paper

ISA

 Therefore, DISCIPLE is trying to generalize 'air-sucker' (in the
Lower Bound) to its ancestors from the above hierarchy.
 As may be seen, a first generalization consists in generalizing
'air-sucker' to 'air-jet-device'. This generalization is plausible since
'air-press', 'entrefer', and 'dust' satisfy the Upper Bound:

 Explanation i:
 (x ISA entrefer) & (y ISA air-press) & (z ISA dust) &
 (x HAS z) & (y REMOVES z)

 7 & 8. Generate an instance analogous with Example 1 and
 propose it to the user

 May I solve the problem
 CLEAN OBJECT entrefer
 by solving the specialization
 CLEAN OBJECT entrefer WITH air-press ? Yes

100

 14 & 15. Generalize the Lower Bound in order to cover Explanation-i

 Lower Bound:
 (x ISA entrefer) & (y ISA air-jet-device) &
 (z ISA dust) & (x HAS z) & (y REMOVES z)

 6. Look for objects satisfying the Upper Bound

 Now there are two possible generalizations of the 'air-jet-
device': one to 'air-mover' and the other to 'cleaner'. To choose
between them, DISCIPLE will build an instance based on an object
belonging only to one of these competing generalizations. Such an
object is, for instance, 'acetone', the corresponding Explanation-i
being:

 Explanation i:
 (x ISA membrane-assembly) & (y ISA acetone) &
 (z ISA surplus-glue) & (x HAS z) & (y DISSOLVES z)

 7 & 8. Generate an instance analogous with Example 1 and
 propose it to the user

 May I solve the problem
 CLEAN OBJECT membrane-assembly
 by solving the specialization
 CLEAN OBJECT membrane-assembly WITH acetone ? Yes

 14 & 15. Generalize the Lower Bound in order to cover Explanation i

 Lower Bound:
 (x HAS z) & (y ISA cleaner) & (y REMOVES z) &
 (z ISA waste-material)

 6. Look for objects satisfying the Upper Bound

101

 The 'air-jet-device' was generalized to 'cleaner'. However, this
generalization is valid only if every son of 'cleaner' produces positive
examples of General Rule 1. Such a son is 'emery-paper'. It satisfies
the Upper Bound:

 Explanation i:
 (x ISA membrane-assembly) & (y ISA emery-paper) &
 (z ISA surplus-glue) & (x HAS z) & (y REMOVES z)

 Therefore, DISCIPLE may test the generalization of 'air-jet-
device' to 'cleaner'.

 7 & 8. Generate an instance analogous with Example 1 and
 propose it to the user

 May I solve the problem
 CLEAN OBJECT membrane-assembly
 by solving the specialization
 CLEAN OBJECT membrane-assembly WITH emery-paper ?
No

 9 & 10. Find an explanation of the negative example

 Since the user rejected the above specialization it follows that
the concept represented by 'y' must not cover 'emery-paper', that is, it
must be less general than 'cleaner'.
 The fact that Explanation i is true is not enough to justify the
above specialization.
 In such a case, DISCIPLE re-enters the Explanation-Based
Mode to find an explanation of why the above instance is a negative
example. This explanation is the following one:

 Failure Explanation i:
 (emery-paper DESTROYS membrane-assembly)

 11 & 12. Specialize the Upper Bound and the Lower Bound so

102

 that not to cover Failure Explanation i

 Failure-explanation-i shows that the concepts represented by 'x'
and 'y' must not have the following property:

'(y DESTROYS x)'
 Therefore, DISCIPLE will specialize both bounds of the version
space by adding the predicate

'NOT(y DESTROYS x)'

 Upper Bound:
 (x HAS z) & (y REMOVES z) & NOT(y DESTROYS x)

 Lower Bound:
 (x HAS z) & (y ISA cleaner) & (y REMOVES z) &
 (z ISA waste-material) & NOT(y DESTROYS x)

 It may happen that the domain theory does not contain the
explanation of the negative example. In such a case the user is asked
to provide himself the explanation. As a side effect, the domain
theory will be enriched by retaining the new link between 'emery-
paper' and 'chassis-assembly'.

 Moreover, as a consequence of updating the Lower Bound, the
following relations between the objects that generated positive
examples of the rule are added to the domain theory:

 NOT(air-sucker DESTROYS entrefer)
 NOT(air-press DESTROYS entrefer)
 NOT(acetone DESTROYS membrane-assembly)

 6. Look for objects satisfying the Upper Bound

 The domain theory does not contain other "interesting" objects
that would allow efficient improvement of the rule's conditions.
Therefore, the learned rule is:

103

 IF
 Upper Bound:
 (x HAS z) & (y REMOVES z) & NOT(y DESTROYS x)

 Lower Bound:
 (x HAS z) & (y ISA cleaner) & (y REMOVES z) &
 (z ISA waste-material) & NOT(y DESTROYS x)
 THEN
 General rule 1:
 solve the problem
 CLEAN OBJECT x
 by solving the specialization
 CLEAN OBJECT x WITH y

104

9. LEARNING IN AN INCOMPLETE THEORY DOMAIN

9.1 A sample of an incomplete theory

 In the case of DISCIPLE, an incomplete theory of a domain may
lack some object descriptions, inference rules, or action models. Also, it
may contain incomplete descriptions of these.
 An incomplete description of an object lacks certain properties or
relations with other objects, an incomplete action model lacks some
precondition predicates or some effect predicates, and an incomplete
inference rule lacks some left hand side or right hand side predicates.
 A sample of an incomplete theory about Example 1 (figure 6.2) is
given in the following figures:

adhesive solid

ISA
TYPE

mowicoll
GLUES

ring
PART-OF

loudspeaker

GLUES
PART-OF

chassis-membrane-assembly
TYPE

solid

 ∀x ∀y [(x GLUED-ON y) −> (x ATTACHED-ON y)]
 ∀x ∀y ∀z [(z ISA adhesive) & (z GLUES x) & (z GLUES y) &
 (z BETWEEN x y) −> (x GLUED-ON y)]
 ∀x ∀y [(x GLUES y) −> (x ADHERENT-ON y)]

 Figure 9.1. Incomplete descriptions of the objects from Example 1.

105

Action Preconditions Effects

APPLY OBJECT z ON x (z APPLIED-ON x)

ATTACH OBJECT x ON y (x TYPE solid) &
(y TYPE solid)

(x ATTACHED-ON y)

(z ADHERENT-ON x) &
(x TYPE solid)

Figure 9.2. Incomplete models of two actions from Example 1.

 As one may notice, the explicit properties of the objects 'ring',
'chassis-membrane-assembly' and 'mowicoll' are the ones considered in
the case of the weak theory (see figure 8.1).
 Let us also notice that this incomplete theory lacks entirely the
model of the action 'PRESS'. It also contains an incomplete model of
the action 'APPLY'. This model lacks the precondition predicate '(z
TYPE fluid)'.

 9.2 General presentation of the learning method

 In this case, the learning method combines the two learning
methods presented previously.
 First, the system will construct an incomplete proof of the user's
example and will generalize it, as in a complete theory.
 In this way, the system will determine an over-generalized
explanation of the example.
 Then, the system will use the over-generalized explanation as an
analogy criterion to perform experiments and to synthesize the general
rule, as in a weak theory.

 The first step may require asking focused questions to the user, in
order to fill the possible gaps in the proof.
 Also, the proof found in the first step will provide additional focus
for the second step.

106

 As a side effect of rule learning, one will develop the domain
theory.

 9.3. Incomplete proving of the example

 Even when the objects, the inference rules, and the actions are
incompletely specified, one may be able to construct a proof tree, which
lacks some parts of the complete proof tree.

 When the system lacks inference rules or action models, it will try
to sketch the proof tree both top-down and bottom-up, and will ask the
user focused questions, in order to connect the different parts of the
proof.

 Using the incomplete theory about Example 1, presented in the
previous section, the system may build the following proof of Example
1:

107

(ring ATTACHED-ON ch-mem-assembly)

(ring GLUED-ON ch-mem-assembly)

(mowicoll (mowicoll (mowicoll
ISA GLUES BETWEEN
adhesive) ch-mem-assembly) ring

ch-mem-assembly)

PRESS OBJECT ring ON ch-mem-assemb ly

APPLY OBJECT mowicoll ON ring

(mowicoll (ring
ADHERENT-ON TYPE
ring) solid)

(mowicoll GLUES ring)

(mowicoll APPLIED-ON ring)

Figure 9.3. An incomplete proof of Example 1.

108

 The dotted lines from the above proof tree do not result from the
domain theory but are hypotheses made by the system and confirmed by
the user.

 For instance, the system makes the hypothesis that

(mowicoll BETWEEN ring ch-mem-assembly)

is an effect of the action

PRESS OBJECT ring ON ch-mem-assembly

from the fact that all the other left hand side literals of the inference rule

 ∀x ∀y ∀z [(z ISA adhesive) & (z GLUES x) & (z GLUES y) &
 (z BETWEEN x y) ∅ (x GLUED-ON y)]

are true in the current situation, that is

 [(mowicoll ISA adhesive) & (mowicoll GLUES ring) &
 (mowicoll GLUES ch-mem-assembly)] = TRUE

and the literal

(mowicoll BETWEEN ring ch-mem-assembly)
is not known to be true.

 Comparing this proof tree with the one in figure 7.4, one may easily
notice that it lacks some of the portions of the complete proof tree.
Nevertheless, its leaves represent some important features of the objects
from Example 1, features which, in the case of a weak theory, would
correspond to the following explanation of Example 1:

109

 Explanation 1:
adhesive solid

ISA TYPE

mowicoll
GLUES

ring

GLUES

chassis-membrane-assembly

 (mowicoll ISA adhesive) & (mowicoll GLUES ring) &
 (mowicoll GLUES chassis-membrane-assembly) & (ring TYPE solid)

 Figure 9.4. The relevant features of Example 1, revealed by the
 proof tree in figure 9.3.

 9.4 Defining version spaces for the unknown actions

 The incomplete proof allows one to define initial version spaces for
the models of the unknown actions used in the proof.

 For instance, one may define the following version space for the
action 'PRESS':

110

Action Preconditions Effects

PRESS OBJECT x ON y upper bound: upper bound:
(z APPLIED-ON x) (z BETWEEN x y)

lower bound: lower bound:
(z APPLIED-ON x) &
(x ISA ring) &
(y ISA
 ch-mem-assembly)&
(z ISA mowicoll)

(z BETWEEN x y)&
(x ISA ring) &
(y ISA
 ch-mem-assembly)&
(z ISA mowicoll)

 The lower bounds for the preconditions and effects are taken
directly from the proof tree.

 The upper bound of the effects is the generalization of the lower
bound

(mowicoll BETWEEN ring ch-mem-assembly)
taken from the premise of the inference rule
 ∀x ∀y ∀z [(z ISA adhesive) & (z GLUES x) & (z GLUES y) &
 (z BETWEEN x y) ∅ (x GLUED-ON y)]

 The upper bound of the preconditions is the generalization of the
lower bound, taken from the effects of the model of the action

APPLY OBJECT z ON x

 During the learning of the decomposition rule in figure 6.3, the
system will also refine the model of the action 'PRESS'.

 9.5 Generalization of the incomplete proof

 Once the proof in figure 9.3 is built, the system will generalize it, as
in a complete theory:

111

(x ATTACHED-ON y)

(z ISA adhesive) (z GLUES y) (z BETWEEN x y)

PRESS OBJECT x ON y

(z APPLIED-ON x)

APPLY OBJECT z ON x

(z ADHERENT-ON x) (x TYPE solid)

(z GLUES x)

(x GLUED-ON y)

Figure 9.6. The generalization of the proof in figure 9.3.

 Let us notice that, for generalizing the proof, the system used the
upper bounds of the preconditions and effects of the action 'PRESS'.

 9.6 Determining a reduced version space for the rule to be learned

 As in the case of a weak theory, the Explanation 1 in figure 9.4 may
be rewritten as a Lower Bound for the applicability condition of
General Rule 1 (figure 6.3):

 Lower Bound:
 (x ISA ring) & (x TYPE solid) &
 (y ISA chassis-membrane-assembly) &
 (z ISA adhesive) & (z GLUES x) & (z GLUES y)

112

 Also, the leaves of the generalized proof tree provide an over-
generalized explanation of Example 1.
 This over-generalized explanation corresponds to the analogy
criterion from a weak theory and may therefore be considered as an
Upper Bound for the applicability condition of General Rule 1 (see
figure 6.3):

analogy criterion:
(x TYPE solid) & (z ISA adhesive) & (z GLUES x) & (z GLUES y)

 Figure 9.7. An over-generalization of Explanation 1 from figure 9.4.

 Therefore, as in a weak theory, the system is able to formulate the
following version space for the rule to be learned:

 IF
 Upper Bound:
 (x TYPE solid) &
 (z ISA adhesive) & (z GLUES x) & (z GLUES y)

 Lower Bound:
 (x ISA ring) & (x TYPE solid) &
 (y ISA chassis-membrane-assembly) &
 (z ISA adhesive) & (z GLUES x) & (z GLUES y)
 THEN
 General Rule 1:
 solve the problem
 ATTACH OBJECT x ON y
 by solving the subproblems
 APPLY OBJECT z ON x
 PRESS OBJECT x ON y

 Figure 9.8. A reduced version space for the rule to be learned.

113

 9.7 Searching the rule in the version space

 As soon as the version space from figure 9.8 has been determined,
rule learning will continue as in a weak theory. This time, however,
the generalized proof tree in figure 9.6 provides a focus for the process
of finding the explanations of the failures.

 To illustrate this, let us consider again the failure in figure 8.12.

 May I solve the problem
 ATTACH OBJECT screening-cap ON loudspeaker
 by solving the subproblems
 APPLY OBJECT scotch ON screening-cap
 PRESS OBJECT screening-cap ON loudspeaker ? No

 In this case, the system generates the instance of the generalized
proof in figure 9.6, corresponding to this problem solving episode (by
replacing 'x', 'y', and 'z' with 'screening-cap', 'loudspeaker', and 'scotch',
respectively).

114

ISA GLUES BETWEEN
adhesive)

ADHERENT-ON TYPE
solid)

(scotch (scotch (scotch

screening-cap
loudspeaker)

PRESS OBJECT screening-cap ON loud speaker

(scotch APPLIED-ON screening-cap)

APPLY OBJECT scotch ON screening-c ap

(scotch

screening-cap)

(screening-cap

(scotch GLUES screening-cap)

(screening-cap ATTACHED-ON loudspe aker)

(screening-cap GLUED-ON loudspeake r)

loudspeaker)

 Figure 9.9. A wrong proof of the example from figure 8.12.

 The fact that the user rejected the solution proposed by the system
proves that the leaves of the instantiated tree in figure 9.9 do not imply
the top of the tree (the leaf predicates are true but the top predicate is
not).
 This means that some action models or inference rules are faulty
(incomplete, in our case). To detect them, the system follows the proof
tree from bottom up. If the user says that the effect of an action or the
consequent of an inference rule is not true, then the corresponding
action model (inference rule) may be the incomplete one.

115

 In our case, the predicate
(scotch APPLIED-ON screening-cap)

is not true. Because this predicate should have been the effect of the
action

APPLY OBJECT scotch ON screening-cap
it follows that the action 'APPLY' has a precondition which is not
contained in its model and this precondition is not true in the current
situation. This precondition is

(z TYPE fluid)
 It is not satisfied in the case of the problem solving episode in figure
8.12 because 'scotch' (which is an adhesive tape) is not fluid.
Therefore, the action 'APPLY' cannot be executed and its effect cannot
be achieved.
 It follows that the explanation of the failure in figure 8.12 is

NOT(scotch TYPE fluid).

 Therefore, in an incomplete theory, finding the explanations of the
failures reduces to finding the knowledge which is lacking from the
knowledge pieces.

 In this case, the generalized proof in figure 9.6 plays the role of a
justification structure for the rule to be learned [Smith & al. 1985].

 As it was also mentioned at the end of section 8.5.2, the generality
of the learned rule is limited by the generality of the over-generalized
explanation. However, the rule may be further generalized in response
to a problem solving situation in which the rule does not apply and the
user says that it should apply. In this case, the condition of the rule and
some action models or inference rules from the associated generalized
proof may be generalized to cover the new situation as well.

116

 9.8 Learning in an imperfect theory

 This section presents a future direction of our research: learning in
an imperfect theory.
 A theory may be imperfect from different points of view ([Mitchell
& al. 1986; Rajamoney & DeJong, 1987]). However, we shall consider
only imperfections resulting from the fact that certain pieces of
knowledge (objects, inference rules, action models) are lacking from
the domain theory or contain minor errors in their definitions in that
parts of these definitions may be either more general or less general
than they should be.

 For instance, the preconditions of an action may be:
 - more general than they should be, allowing the application of the
action in situations in which the action is not applicable;
 - less general than they should be, forbidding the application of the
action in situations in which the action is applicable;
 - may have some parts which are more general and other parts
which are less general than they should be, having both of the above
consequences.
 The same types of errors may manifest in the effects of an action, in
any of the two sides of an inference rule, or in the definition of an
object property or relation.

 Let us notice that the incomplete theory is a special case of the
above defined imperfect theory. For instance, an action lacking some
precondition predicates has a precondition that is more general than it
should be. In particular, an action having no precondition is supposed
to be applicable in any situation. Therefore, learning in an imperfect
theory may be similar to learning in an incomplete theory.

 Besides learning problem reduction rules, the system will also
correct the theory. This will consist in appropriate generalizations and
particularizations of parts of the knowledge pieces, in response to the
encountered failures.

117

 10. A SAMPLE SESSION WITH DISCIPLE IN THE
 TECHNIQUE DESIGN DOMAIN

 10.1 General presentation

 The design of technologies for the manufacturing of loudspeakers,
at the Industrial Electronic Enterprise in Bucharest, has been chosen as
a real world application for testing the problem solving and learning
methods of DISCIPLE.
 In this section we shall present in some detail this application, by
commenting a sample session with DISCIPLE.
 Our goal is to present the external behavior of the system.

 The context for using DISCIPLE can be described by the interaction
among the system, the human expert (i.e. the user of DISCIPLE), the
background knowledge about the concerned technology (the domain
theory which, in this case, is weak), and the current application of the
system.
 DISCIPLE and its user are in constant interaction, both proposing
solutions and explanations to the other. The system has access to a
knowledge base containing the domain theory, but its user does not.
 The user has access to the features of the current application, but the
system does not.
 This last feature may be felt as a serious drawback. This is wrong
because, while needing to know if the current loudspeaker has a certain
feature, the system will simply ask the user, waiting for one of the
following answers: yes, no, irrelevant, as exemplified in the next
section.

 DISCIPLE receives a very general specification of a problem (plan
the manufacturing of a loudspeaker, in our example) and the system
will start solving this problem without knowing the specific features of
the current loudspeaker. Only when the known technological solution
depends on the presence (or absence) of a certain feature, will the
system ask the user if the loudspeaker has the respective feature.

118

 The set of all questions asked during a session, together with their
answers, provides a complete description of the current loudspeaker.

 In this application DISCIPLE uses an implicit global control
strategy which we consider suitable for the technology design domain in
general.
 The system will design the technology in three consecutive steps:
 - design of the detailed (elementary) operations of the technology
(i.e. use decomposition rules);
 - design (choice) of the tools, devices or verifiers for each
elementary operation (i.e. use specialization rules);
 - design (choice) of the materials needed for each operation (i.e. use
specialization rules).
 During each of the above three stages, the system will implicitly use
a depth first strategy in building the design tree. That is, it will always
reduce the left most leaf of the tree, as long as there is a rule
corresponding to the current stage. When there are no more nodes to
reduce, the system will go to the next step, and the depth first strategy is
resumed. Of course, the user may modify the system's global control.
For instance, he may ask for the design of tools for a given action,
although the system is in the first stage.

 10.2 A sample design session

 In this section we present a sample session with DISCIPLE. The
session is put between /* ... */, our comments are outside these
delimitors. Moreover, to differentiate between the user and the system,
the answers of the first are underlined.

 The session starts with the user indicating the top level action of
manufacturing a loudspeaker. The system will present the possible
reductions of the current operation (in this case MANUFACTURE),
ranked in order of its preference. The user may accept the system's
suggestion, may prefer a lower ranked reduction, if any, may reject all
the system's suggestions, or may wish to modify the rule corresponding
to one of the system's suggestions.

119

/*
 Solve the problem
 MANUFACTURE OBJECT LOUDSPEAKER.

 I propose the following solution
 MAKE OBJECT CHASSIS-ASSEMBLY.
 MAKE OBJECT MEMBRANE-ASSEMBLY.
 ASSEMBLE OBJECT CHASSIS-ASSEMBLY
 WITH MEMBRANE-ASSEMBLY.
 FINISHING-OPERATIONS ON LOUDSPEAKER.

 Do you agree ? [Yes, No, Modify]: Yes

 To solve the problem
 MAKE OBJECT CHASSIS-ASSEMBLY.

 I propose the following solution
 FIX OBJECTS CONTACTS
 ON CHASSIS.
 MAKE OBJECT MECHANICAL-CHASSIS-ASSEMBLY.
 FINISHING-OPERATIONS ON ENTREFER.

 Do you agree ? Yes
*/

 DISCIPLE indicated a possible decomposition of the
MANUFACTURE operation into simpler operations, and the user
agreed with system's suggestion.

 Further on, following the implicit control strategy, DISCIPLE
proposed a decomposition of the action:
 MAKE OBJECT CHASSIS-ASSEMBLY.
 This decomposition was also accepted by the user.

120

/*

 LOUDSPEAKER HAS TERMINAL-BLOCK ? Yes
 To solve the problem
 FIX OBJECTS CONTACTS
 ON CHASSIS.

 I propose the following solution
 *CRIMP OBJECTS CONTACTS
 ON SUPPORT.
 *CONNECT OBJECT TERMINAL-BLOCK
 ON CHASSIS.
 Do you agree ? Yes
*/

 DISCIPLE tried to decompose the FIX operation but the known
rules are dependent on the loudspeaker features. Therefore, DISCIPLE
asked the user a question and the answer received allowed it to choose
the right rule.
 It is by means of such questions that DISCIPLE becomes
progressively aware of loudspeaker features. Describing the
loudspeaker in advance would not only be too cumbersome, but even
impractical, since we do not know in advance which features are
important and which are not important for the technology design.

 The system prints an asterisk before each action which may no
longer be decomposed into simpler ones (CRIMP and CONNECT, in
this case).

/*
 ...
 To solve the problem
 MAKE OBJECT MEMBRANE-ASSEMBLY.

121

 I propose the following solution
 CONNECT OBJECTS TERMINAL-WIRES
 ON COIL.
 ASSEMBLE OBJECT MEMBRANE
 WITH COIL.
 ASSEMBLE OBJECT MEMBRANE
 WITH CENTERING-DEVICE.
 FINISHING-OPERATIONS ON MEMBRANE-ASSEMBLY.
 Do you agree ? Yes

 To solve the problem
 CONNECT OBJECTS TERMINAL-WIRES
 ON COIL.

 I propose the following solution
 TIN OBJECTS TERMINAL-WIRES.
 SHORTEN OBJECTS COIL-ENDS.
 TIN OBJECTS COIL-ENDS.
 TIN OBJECTS TERMINAL-WIRES
 WITH COIL-ENDS.

 Do you agree ? No

 Could you indicate a solution ? Yes
 SHORTEN OBJECTS COIL-ENDS.
 SOLDER OBJECTS TERMINAL-WIRES
 WITH COIL-ENDS.

 Does your solution work because
 COIL-ENDS PART-OF COIL ? No
 COIL-ENDS ISA TERMINALS &
 TERMINAL-WIRES ISA TERMINALS ? No

 Could you give me an explanation ? No

122

 I cannot make any generalization
 I learned the following rule:

 Solve the problem
 CONNECT OBJECTS TERMINAL-WIRES
 ON COIL.
 by solving the subproblems
 SHORTEN OBJECTS COIL-ENDS.
 SOLDER OBJECTS TERMINAL-WIRES
 WITH COIL-ENDS.

 Do you agree ? Yes
*/

 As stated in the previous section, the system has an implicit control
strategy to choose the next problem to solve. Nevertheless, the user can
direct the system to solve another problem. To this purpose it uses
commands for traversing the problem-solving tree. Using such
commands (not shown in our example) the user positioned DISCIPLE
on the problem:

MAKE OBJECT MEMBRANE-ASSEMBLY.
 Then, the implicit control strategy was resumed. Therefore,
DISCIPLE proposed a decomposition of the MAKE operation. Then it
automatically chose to decompose the first operation of this reduction
(i.e. CONNECT) and proposed a possible decomposition of it.
 The user rejected this decomposition because he had in mind
another technological solution.
 DISCIPLE tried to learn a general rule from user's solution.
Therefore it started looking for an explanation of this solution. Because
neither DISCIPLE nor the user were able to provide an explanation, no
generalization was possible. Nevertheless, DISCIPLE retained the
specific rule indicated by the user because it was told to do so.
 This example shows that generalization is not always possible or
desirable.

123

/*
 ...
 Unable to solve the problem
 ATTACH OBJECT RING
 ON CHASSIS-MEMBRANE-ASSEMBLY.

 Could you indicate a solution ? Yes
 APPLY OBJECT MOWICOLL
 ON RING.
 PRESS OBJECT RING
 ON CHASSIS-MEMBRANE-ASSEMBLY.

 Does your solution work because:
 MOWICOLL GLUES RING ? Yes
 MOWICOLL GLUES CHASSIS-MEMBRANE-ASSEMBLY ? Yes
 RING PART-OF LOUDSPEAKER &
 CHASSIS-MEMBRANE-ASSEMBLY PART-OF
LOUDSPEAKER ? No
*/
 Since DISCIPLE did not know any reduction of the ATTACH
operation, it asked the user for one and proposed an explanation of it, as
shown in section 8.3.2.

 Note that the explanation says why the decomposition is good and
not why the ATTACH operation should be performed. Therefore the
user's answer to the third question was "No".

/*
 May I solve the problem
 ATTACH OBJECT SCREENING-CAP
 ON LOUDSPEAKER.
 by solving the subproblems
 APPLY OBJECT NEOPRENE
 ON SCREENING-CAP.
 PRESS OBJECT SCREENING-CAP
 ON LOUDSPEAKER ? Yes

124

 May I solve the problem
 ATTACH OBJECT SCREENING-CAP
 ON LOUDSPEAKER.
 by solving the subproblems
 APPLY OBJECT SCOTCH
 ON SCREENING-CAP.
 PRESS OBJECT SCREENING-CAP
 ON LOUDSPEAKER ? No

 Could you give me an explanation ? Yes
 NOT(SCOTCH TYPE FLUID)

 I learned the following rule:
 IF
 G:upper bound
 (z GLUES x) & (z GLUES y) &
 (z TYPE fluid)

 S:lower bound
 (x TYPE solid) & (y TYPE solid) &
 (z ISA adhesive) & (z GLUES x) & (z GLUES y) &
 (z TYPE fluid)
 THEN
 solve the problem
 ATTACH OBJECT x ON y.
 by solving the subproblems
 APPLY OBJECT z ON x.
 PRESS OBJECT x ON y.
 Do you agree ? Yes
*/

 DISCIPLE proposed two other decompositions (consistent with the
found explanation) which were validated by the user. This allowed the
system to learn a more general rule, validated by the user.
 During the second stage of technology design, the system will try to
propose tools for the established operations, by using specialization rules.

125

/* ...
 Unable to specialize the problem
 CLEAN OBJECT ENTREFER.

 Could you indicate a solution ? Yes
 CLEAN OBJECT ENTREFER
 WITH AIR-SUCKER.

 Does your solution work because:
 ENTREFER HAS DUST & AIR-SUCKER ABSORBS DUST ?
Yes

 This explanation may expressed as:
 1. ENTREFER HAS DUST & AIR-SUCKER REMOVES DUST
 2. ENTREFER HAS DUST & AIR-SUCKER GETS DUST

 Choose the solution [number, No, Modify]: 1
*/
 DISCIPLE was unable to propose any tool for the CLEAN
operation, therefore it asked for a solution from the user. Then it found
an explanation which was generalized.
/*
 May I solve the problem
 CLEAN OBJECT ENTREFER
 by solving the specialization
 CLEAN OBJECT ENTREFER
 WITH AIR-PRESS ? Yes

 May I solve the problem
 CLEAN OBJECT MEMBRANE-ASSEMBLY
 by solving the specialization
 CLEAN OBJECT MEMBRANE-ASSEMBLY
 WITH ACETONE ? Yes

126

 May I solve the problem
 CLEAN OBJECT MEMBRANE-ASSEMBLY
 by solving the specialization
 CLEAN OBJECT MEMBRANE-ASSEMBLY
 WITH EMERY-PAPER ? No

 Could you give me an explanation ? Yes
 EMERY-PAPER DESTROYS MEMBRANE-ASSEMBLY.

 I learned the following rule:
 IF
 Upper Bound:
 (x HAS z) & (y REMOVES z) & NOT(y DESTROYS x)

 Lower Bound:
 (x HAS z) & (y ISA cleaner) & (y REMOVES z) &
 (z ISA waste-material) & NOT(y DESTROYS x)
 THEN
 solve the problem
 CLEAN OBJECT x
 by solving the specialization
 CLEAN OBJECT x WITH z.
 Do you agree ? Yes
*/

 DISCIPLE proposed other specializations of the CLEAN operation
(analogous with user's solution) and synthesized a more general
specialization rule.

/* ...
 DRY OBJECT LOUDSPEAKER
 DEVICE DRYER.

 Trying to constrain the dryer.
 1. DECREASE COST.
 2. DECREASE TIME.

127

 Choose the optimization criterion [Number, No]: 2

 I propose the following solutions
 1. TUNNEL-KILN
 2. CARROUSEL
 3. DRYING-SHELF

 Choose the solution: 1
*/

 The system knows several specialized dryers. It also knows two
meta-rules corresponding to the specializations of dryers: one for
minimizing the cost and the other for minimizing the time.
 The system is unable to choose among the dryers until the user
expresses his preference for one of the above optimization criteria.
/*
 Print

 problem:
 MANUFACTURE OBJECT LOUDSPEAKER.

 loudspeaker's features:
 LOUDSPEAKER HAS TERMINAL-BLOCK

 optimization criterion:
 DECREASE TIME.

 partial technology:
 *CRIMP OBJECTS CONTACTS
 ON SUPPORT.
 *CONNECT OBJECT TERMINAL-BLOCK
 ON CHASSIS.
 ASSEMBLE OBJECT MECHANICAL-CHASSIS-ASSEMBLY.
 CLEAN OBJECT ENTREFER
 WITH AIR-SUCKER.
 ...

128

 SHORTEN OBJECTS COIL-ENDS.
 SOLDER OBJECTS TERMINAL-WIRES
 WITH COIL-ENDS.
 ASSEMBLE OBJECT MEMBRANE
 WITH COIL.
 ASSEMBLE OBJECT MEMBRANE
 WITH CENTERING-DEVICE.
 FINISHING-OPERATIONS OBJECT MEMBRANE-ASSEMBLY.
 ...
 *APPLY OBJECT MOWICOLL
 ON RING.
 *PRESS OBJECT RING
 ON CHASSIS-MEMBRANE-ASSEMBLY.
 ...
 *DRY OBJECT LOUDSPEAKER
 DEVICE TUNNEL-KILN.
 ...
*/

 The user asked for a print-out of the technology so far designed.
 The session continues until a detailed enough technology was
designed.

 The performance of DISCIPLE in the technique design domain is
very encouraging. Presently, the knowledge base for the design of
loudspeakers contains several hundreds of rules and objects.

 The utility of DISCIPLE in technique design results from the fact
that there are many types of products (belonging to a certain family
as, for instance, the loudspeaker family) which are not very different
from each other. As a consequence, many of the technological solutions
used to manufacture a certain type of loudspeaker, are also applicable to
a new type.

129

 11. AN EXAMPLE FROM MANAGEMENT

 In this section we shall present a hypothetical utilization of DISCIPLE in a
management application which consists in defining the production and commercial
strategy of an electronic company.
 In this application, DISCIPLE acts as an aid to the manager of a company and,
meanwhile, learns company management.
 The theory of this domain is weak. It consists of knowledge about objects as, for
instance, about electronic components (their features, who produces them and in what
conditions, etc.), about possible partners, as well as knowledge about the possibilities
of the manager's company (the components it can manufacture, general management
strategies, etc).
 In this domain, a problem for DISCIPLE is a management goal as the following
one:

 PENETRATE IN India WITH electronic-equipment

 A solution to this goal consists of a plan of "elementary" actions which achieves
it.
 DISCIPLE has rules which decompose a problem into simpler problems or
specialize a problem. These rules indicate in fact partial solutions to problems.

 An example of a decomposition rule is the following one:

 IF
 (x ISA new-product) &
 (y ISA market)
 THEN
 solve the problem
 PENETRATE IN y WITH x
 by solving the subproblems
 GET OBJECT x
 MAKE-PUBLICITY TO x IN y
 SELL OBJECT x IN y WITH promotion-price
 SELL OBJECT x IN y WITH value-price

130

 This rule gives a partial solution to the problem of penetrating a market with a
new product.
 Other rules would indicate how to make a good publicity or how to sell the
product.

 The following is an example of a specialization rule:

 IF
 (x ISA product) &
 (y ISA company) &
 (y PRODUCES x)
 THEN
 solve the problem
 GET OBJECT x
 by solving the specialization
 GET OBJECT x FROM y

 The specialization rules are used to better define the problems to solve.

 DISCIPLE solves a given problem by successively decomposing it into simpler
subproblems and by specializing it to better defined problems. Therefore, the problem
solving paradigm of DISCIPLE is problem-reduction.

 During problem-solving, it develops a problem solving tree whose top represents
the initial problem and whose leaves represent the solution to this problem:

131

PENETRATE IN India WITH electronic -equipment

GET
OBJECT
electronic-
equipment

M AKE-PUBLICITY
TO
electronic-
equipment
IN India

SELL
OBJECT
electronic-
equipment
IN India
WITH
promotion-
price

SELL
OBJECT
electronic-
equipment
IN India
WITH
value-
price

GET
OBJECT
electronic-equipment
FROM
Hitachi

 The leaves of the tree may be elementary actions (i.e. actions which can be
directly executed) or general strategies which must themselves be reduced to
elementary actions.
 Let us suppose that, while trying to solve the problem of penetrating India with
electronic equipment, the system encounters the following problem:

GET OBJECT vax-780
 Suppose further that the user does not accept any of the system's suggestions
('BUY OBJECT vax-780 FROM Digital', for instance) and decide to make an
exchange agreement with Digital, to buy 'vax-780' from it, and to sell 'displayscreen of
type 0021' to it:

 EXCHANGE-AGREEMENT WITH Digital
 TO-BUY vax-780
 TO-SELL displayscreen-0021
 BUY OBJECT vax-780
 FROM Digital
 SELL OBJECT displayscreen-0021
 TO Digital

132

 Having received a solution from the user, the system is facing the problem of
inferring a general rule, one instance of which is:

 Solve the problem
 GET OBJECT vax-780
 by solving the subproblems
 EXCHANGE-AGREEMENT WITH Digital
 TO-BUY vax-780
 TO-SELL displayscreen-0021
 BUY OBJECT vax-780
 FROM Digital
 SELL OBJECT displayscreen-0021
 TO Digital

 This instance suggests the system to learn a general rule of the form:

 IF
 v, d, ds satisfy <constraints>
 THEN
 solve the problem
 GET OBJECT v
 by solving the subproblems
 EXCHANGE-AGREEMENT WITH d
 TO-BUY v
 TO-SELL ds
 BUY OBJECT v
 FROM d
 SELL OBJECT ds
 TO d

 Note that 'EXCHANGE-AGREEMENT' might be an action previously unknown
to the system.

 Next, DISCIPLE will use its weak domain theory to find an explanation of user's
solution.

133

 Let us suppose that the theory is represented by the following network:

Digital
USES-A-

NETWORK-OF
vax-780

PRODUCES NEEDS NEEDS

vax-780
micro-vax-2

. . .

human-needs material-needs

ISA ISA ISA

tape-unit-079 displayscreen-0021A.I.-qualified-people

 DISCIPLE will look for an explanation in terms of the relations between the
objects from the rule instance (vax-780, Digital, displayscreen-0021). It will propose
partial explanations, asking the user to validate them:

 Does your solution work because:
 Digital PRODUCES vax-780 ? Yes
 Digital USES-A-NETWORK-OF vax-780 ? No
 Digital NEEDS displayscreen-0021 ? Yes

 All the pieces of explanation validated by the user form the explanation of the
example:

Digital

PRODUCES NEEDS

vax-780 displayscreen-0021

134

 This explanation is used to define the following reduced version space for the
rule to be learned:

 IF
 Upper bound:
 (d PRODUCES v) &
 (d NEEDS ds)

 Lower Bound:
 (d ISA Digital) &
 (v ISA vax-780) &
 (ds ISA display-0021) &
 (d PRODUCES v) &
 (d NEEDS ds)
 THEN
 solve the problem
 GET OBJECT v
 by solving the subproblems
 EXCHANGE-AGREEMENT WITH d
 TO-BUY v
 TO-SELL ds
 BUY OBJECT v
 FROM d
 SELL OBJECT ds
 TO d

 Next, DISCIPLE will look in its knowledge base for other objects satisfying the
upper bound of the above rule:

IBM CONTROL-DATA

PRODUCES NEEDS PRODUCES NEEDS

IBM -PC disk-unit-027

135

 These objects will be used to generate instances of the above rule, the user being
asked to validate or to reject them.
 The positive examples thus produced will be used to generalize the lower bound
of the above version space, and the negative examples will be used to particularize
both bounds.
 Finally, DISCIPLE will learn the following general rule:

 IF
 (d ISA company) &
 (d PRODUCES v) &
 (d NEEDS ds) &
 (v ISA product) &
 (ds ISA my-product) &
 (ds STATE available)
 THEN
 solve the problem
 GET OBJECT v
 by solving the subproblems
 EXCHANGE-AGREEMENT WITH d
 TO-BUY v
 TO-SELL ds
 BUY OBJECT v
 FROM d
 SELL OBJECT ds
 TO d

 This rule may be expressed in English as follows: "to get an object produced by
a company needing one of my available products, make an exchange agreement, buy
the object and sell my product".

136

 12. CONCLUSIONS

 In this thesis we proposed an approach to the knowledge transfer
from a human expert to an expert system. This approach is illustrated
by DISCIPLE, an interactive system which integrates an empty expert
system and a learning system, both using the same knowledge base.

 With DISCIPLE, the building of a practical Expert System is a two-
phase process.
 In the first phase, the human expert has to introduce, into the
knowledge base of DISCIPLE, elementary knowledge about the
application domain. It is expected that this knowledge represents a
"nonhomogeneous theory" of the domain, in that it provides complete
descriptions of some parts of the domain, and incomplete or weak
descriptions of other parts of the domain.
 In the second phase, DISCIPLE is used as an interactive problem
solver. From each contribution of the human expert to the problem
solving process, the system is trying to learn the general problem
solving rule illustrated by the user's solution. In this way, DISCIPLE
progressively evolves from a helpful assistant in problem solving to a
genuine expert.
 With DISCIPLE, the critical process of building the "complete"
knowledge base of an expert system is reduced to the process of
building a smaller knowledge base containing only the theory of the
application domain. Moreover, the resulting system is able to
progressively improve its competence and performance in problem
solving.

 DISCIPLE integrates many learning and problem solving
techniques. In spite of this, however, it appears as a unitary system, not
only in what regards its external behavior, but also in what regards its
internal behavior. The unity is given by the existence of a unique
knowledge base which is organized around the notion of concept and
supports the elementary operations with concepts (comparing the
generality of concepts, generalizing concepts, and particularizing
concepts).

137

 The problem solving mechanisms of DISCIPLE consist in problem
reduction, formulation, propagation and evaluation of constraints, and
problem solving by analogy. These "classical" problem solving
paradigms have been expressed in terms of the above mentioned
elementary operations with concepts, and have been integrated into an
advanced problem reduction method.

 Trying to cope with the complexity of the real world applications,
DISCIPLE makes the hypothesis that its theory about an application
domain is nonhomogeneous, describing completely some parts of the
domain, but only incompletely or even poorly, other parts of the same
domain. This is a very difficult learning environment. However,
DISCIPLE integrates different learning methods which allow it to learn
at different levels of knowledge. A common feature of all these
methods is that they are based on an understanding of the example from
which the rule is learned.

 In the context of a complete theory, DISCIPLE uses explanation-
based learning. It is thus able to learn a justified rule from a single
example, and may also reject incorrect examples.

 The learning method in the context of a weak theory integrates
different learning paradigms: explanation based learning, learning by
analogy, empirical learning, and learning by questioning the user.
Among the most important features of this learning method one could
mention:
 - the synergistic combination of different learning paradigm into a
unitary learning method;
 - the notion of "explanation" in a weak theory and a heuristic
method to find such explanations;
 - the use of analogy to define a reduced version space for the rule to
be learned;
 - the use of both the explanations of the successes and the
explanations of the failures to search the rule in its version space;

138

 - the formulation of "clever" questions, in order to extract useful
knowledge from the expert;
 - the possibility of hiding the learned rules to the expert;
 - a great confidence in the human expert.

 In the context of an incomplete theory, DISCIPLE learns by
combining the method corresponding to the complete theory with the
method corresponding to the weak theory. In this way, it is able to use a
generalization of an incomplete proof of an example:
 - for defining a justified analogy criterion;
 - for finding the explanations of the failures;
 - and as a justification structure of the general rule to be learned.
 This method borrows features from both the learning method in a
complete theory (may reject incorrect examples, learns justified rules)
and from the learning method in a weak theory (clever questions to the
user, use of analogy, etc.). It also opens a new research direction:
learning in an imperfect theory, a generalization of the incomplete
theory.

 Another important effect of learning in the context of a weak theory
or an incomplete theory is that of developing the domain theory.

 Let us notice that, by the integration of these three learning
methods, DISCIPLE proposes a solution to the so called "falling off the
knowledge cliff" problem of the current systems. This problem is that a
system performs well within the scope of the knowledge provided to it,
but any slight move outside its narrow competence causes the
performance to deteriorate rapidly [Michalski, 1986]. On the contrary,
in DISCIPLE, the move from one part of the application domain,
characterized by a complete theory, to another part, characterized by an
incomplete theory or by a weak theory, causes only a slight
deterioration of the performance, this effect being obtained by a
corresponding replacement of the learning method used.

139

 We have implemented DISCIPLE in Le_Lisp [Chailloux, 1985] and
we have used it to design techniques for the manufacturing of
loudspeakers.

 There are several weaknesses of DISCIPLE, on which will shall
direct our future research.

 For instance, the generality of the learned rule is limited by the
generality of the over-generalized explanation (the analogy criterion)
which may not be in the most general form. However, the rule may be
further generalized, in response to a problem solving situation in which
the rule does not apply and the user says that it should apply. In this
case, the condition of the rule and some action models or inference
rules from the associated generalized proof may be generalized to cover
the new situation as well.

 Also, the method of finding an explanation in a weak theory is not
powerful enough. Other sources of knowledge are needed, as well as
meta-rules for finding far off explanations;

 While DISCIPLE uses control knowledge in the form of meta-rules,
such knowledge is not learned, having to be provided by the user.
Therefore, if two experts provide different solutions to the same
problem, DISCIPLE simply generates two different rules. The learning
mechanisms of DISCIPLE should be used to propose explanations of
this difference and find meta-explanations that can become meta-
preconditions on the use of the rules.

 An important future direction of research consists in developing the
learning methods of DISCIPLE in order to be able to deal with an
imperfect theory in which the knowledge may contain minor errors.

 There are also several lessons we have learned from the design of
DISCIPLE.

140

 One is that, to cope with the complexity of real-world applications,
one should use any available learning technique. Indeed, the different
learning paradigms have many complementary prerequisites and effects.
Therefore they may be synergistically combined.

 Another lesson is that full formalization of weak theories is short-
time harmful. Indeed, forcing the expert to completely formalize a
domain theory (which may even not have such a complete theory) may
result in a degradation of the knowledge provided by him/her.

 Lastly, we have discovered that over-generalization is not only
harmless, but also useful and necessary, when interacting with a user,
allowing the identification of features usually neglected by the expert.

141

APPENDIX

 In this appendix we present other learning methods which are
complementary to DISCIPLE, and might therefore be used to further
develop our theory and methodology of expert knowledge acquisition.
More precisely, we show:
 - how one might improve the quality and efficiency of the empirical
generalizations.
 - how one might learn hierarchies of concepts (which constitute
elementary knowledge in DISCIPLE);

142

LEARNING BASED ON CONCEPTUAL DISTANCE

Abstract

We present a new approach to concept learning from examples and
concept learning by observation, which is based on a intuitive notion of
conceptual distance between examples (concepts) and combines
symbolical and numerical methods. Our approach is supported by the
observation that very different examples generalize to an expression
that is very far from each of them, while identical examples generalize
to themselves. Therefore, a generalization of two examples, as well as
the process of obtaining this generalization, represents indications of
the conceptual distance between the examples. Following this idea we
propose some domain independent and intuitively justified estimates for
the conceptual distance. Usually however, a set of examples may be
characterized by several generalizations, each suggesting a certain
conceptual distance. The minimum of these is taken as the estimation of
the real conceptual distance. Moreover, the corresponding
generalization is recommended as the one to be made by the learning
system because this generalization has the desirable property of
reflecting the greatest number of common features of the examples. We
also present a hierarchical conceptual clustering algorithm which
groups objects so that to maximize the cohesiveness (a reciprocal of the
conceptual distance) of the clusters. We further show that conceptual
clustering may improve learning from complex examples describing
objects and the relations between them. The idea is that learning good
generalizations of such examples requires matching the most similar
objects which, in turn, requires a clustering of these objects. Finally we
present a methodology of learning hierarchies of prototype objects
which is a step towards automating the construction of knowledge bases
for expert systems.

Keywords: Learning from examples, Preferable generalization,
Conceptual distance, Concept learning by observation, Conceptual
cohesiveness, Conceptual clustering, Hierarchies of prototype objects.

143

I. INTRODUCTION

 Machine learning may be defined as any process by which a
computer increases its knowledge and improves its skills.
 One of the basic types of learning is inductive learning, that is,
learning by generalizing specific facts or situations.
 Inductive learning has received considerable attention in Artificial
Intelligence ([Cohen & Feigenbaum, 1982], [Dietterich & Michalski,
1981], [Langley, 1987], [Michalski, Carbonell & Mitchell, 1983, 1986],
[Mitchell, Carbonell & Michalski, 1985]). Two different kinds of
inductive learning are: learning from examples and conceptual
clustering.

 In concept learning from examples, the learning system is presented
with independent instances representing a certain class, and the task is
to induce a general description of the class. The instances can be
specific physical objects, actions, processes, images, etc. Let us suppose
that they are different cars (CITROEN, RENAULT, OPEL, etc). In this
case, the system's task is to learn the concept of car, represented by
what is common to all the given examples (objects with four wheels,
used to transport people, etc). Having formed such a concept, the
system will be able to recognize other objects as being or not being
cars, as they have or have not the properties of the car concept.

 In conceptual clustering, the learner is also presented with a set of
examples, but these examples are no longer said to represent the same
class. In this case, the learner has to solve two problems:
 - the aggregation problem of distinguishing classes (defined as
extensionally enumerated sets of objects) into which the examples can
be grouped;
 - the characterization problem of inducing an intentional
description for each class.
 The examples presented to the learner could be, for instance,
descriptions of specific cars, ships, airplanes, or trains, and the system
would learn the following concepts:

144

.

vehicle

aerial-vehicle terrestrial-vehicle acquatic-vehicle

car train

 As defined, the characterization problem is very similar with the
problem of learning from examples. Conceptual clustering processes
must address this problem since the quality of a clustering is dependent
on the description of the clusters (the simplicity of these descriptions,
the map between these descriptions and the clusters they cover, etc.
[Michalski & Stepp, 1983a]).
 Although nobody is claiming that the aggregation and
characterization problems should be independent, the present
conceptual clustering algorithms [Fisher & Langley, 1985] first solve
the aggregation problem, and then use the methods of learning from
examples to obtain a description for each cluster. The so obtained
descriptions are further used to estimate the quality of the clustering and
may suggest to search for another clustering.

 In this paper we present a new approach to concept learning from
examples and concept learning by observation, which is based on a
intuitive notion of conceptual distance [Michalski & Stepp, 1983a]
between examples (concepts) and combines symbolical and numerical
methods.
 Our approach is supported by the observation that very different
examples generalize to an expression that is very far from each of them,
while identical examples generalize to themselves. Therefore, a
generalization of two examples, as well as the process of obtaining this
generalization, represent indications of the conceptual distance between
the examples. Following this idea, in section III, we propose some

145

domain independent and intuitively justified measures for the
conceptual distance.
 However, the process of obtaining a generalization of a set of
examples is not a deterministic one. Several generalizations are
possible, and each suggests a certain conceptual distance between them.
Therefore, we propose to estimate the real distance by the minimum of
these distances. Moreover, the corresponding generalization is
recommended as the one to be made by the learning system since this
generalization has the desirable property of reflecting the most
commonalties between the examples.

 In section IV, we present a conceptual clustering algorithm which is
based on the reciprocal of the conceptual distance, called conceptual
cohesiveness [Michalski & Stepp, 1983a], and on a partial ordering
defined on conceptual cohesiveness. The main feature of the conceptual
cohesiveness is that it takes into consideration not only the properties of
the individual objects, but also their relationship to other objects and,
most importantly, their relationship to some pre-defined concepts
characterizing object collections.
 To cluster a set of examples E1, ... En, our algorithm first looks for
the two examples Ei, Ej for which the conceptual cohesiveness is
maximum. These examples form the seed of a cluster. A new example
Ek is added to this cluster only if the conceptual cohesiveness of the set
{Ei,Ej} is not greater than the conceptual cohesiveness of the set
{Ei,Ej,Ek}.

 While, in general, only conceptual clustering is based on learning
from examples, in our approach learning from complex examples is also
based on conceptual clustering. Here by a complex example we mean
an example describing several objects and the relations between them.
The idea is that learning good generalizations of complex examples
requires matching the most similar objects which, in turn, requires a
clustering of these objects. This method is presented in section V. For
instance, it should be of use in Scene Analysis where the recognition of
each individual scene component and the recognition of the whole
scene are dependent of each other.

146

 We consider that the approach presented in this appendix is also
significant to automatic knowledge acquisition for expert systems and,
in section VI, we present a methodology for generating hierarchies of
prototype objects.

II. CONCEPT LEARNING FROM EXAMPLES

 Concept learning from examples means forming a general
description (concept) of a class of objects given a set of objects
(examples) from this class.

 We assume that both the examples and the concepts are described in
the same representation language, as conjunctions of literals. For
instance, Fig. 1 represents two examples of toy trains. They are taken
from the famous Michalski's train problem [Michalski, 1984], which
consists in finding a common characterization of a set of such trains.

 As can be seen in Fig. 1, each train is described as a conjunction of
literals of the form (p a1,...,an), where p is a predicate and a1,...,an are
the arguments of the predicate. For instance:
 (car-shape open-rectng C2)
means that the shape of the car C2 is an open rectangle, and
 (length long C2)
means that the length of C2 is long.

147

T1:
(infront C1 C2) (infront C2 C3) (infront C3 C4) (infront C4 C5)
(length long C1) (length long C2) (length short C3) (length long C4)
(length short C5) (car-shape machine C1)(car-shape open-rectng C2)
(car-shape sloping-top C3) (car-shape open-rectng C4)
(car-shape open-rectng C5) (contains C2 L2) (contains C3 L3)
(contains C4 L4) (contains C5 L5) (load-shape square L2)
(load-shape triangle L3) (load-shape hexagon L4)
(load-shape circle L5) (nrpts-load 3 L2) (nrpts-load 1 L3)
(nrpts-load 1 L4) (nrpts-load 1 L5) (nr-wheels 2 C1)
(nr-wheels 2 C2) (nr-wheels 2 C3) (nr-wheels 3 C4)(nr-wheels 2 C5)

T2:
(infront C6 C7) (infront C7 C8) (infront C8 C9)
(length long C6) (length short C7) (length short C8) (length short C9)
(car-shape machine C6) (car-shape U-shape C7)
(car-shape open-trapeze C8) (car-shape closed-rectng C9)
(contains C7 L7) (contains C8 L8) (contains C9 L9)
(load-shape triangle L7) (load-shape rectangle L8)
(load-shape circle L9) (nrpts-load 1 L7) (nrpts-load 1 L8)
(nrpts-load 2 L9) (nr-wheels 2 C6)(nr-wheels 2 C7)(nr-wheels 2 C8)
(nr-wheels 2 C9)

 Figure 1. The first two trains from Michalski's train problem

 The argument of a predicate, also called term, may be a constant, a
variable, or f(t1,...,tn), where f is a function and t1,...,tn are terms.

148

 For each variable a domain is defined, containing all possible values
the variable can take. As in [Michalski & Stepp, 1983a], we distinguish
among nominal (categorical), linear (quantitative), and structured
variables, whose domains are unordered, totally-ordered, and graph-
oriented sets, respectively. Structured variables represent generalization
hierarchies of related values as, for instance, the following one:

* l
(any load shape)

polygon oval

triangle rectangle hexagon circle ellipse

square

Fig. 2. A generalization hierarchy for the load shapes in Fig.1.

 The predicates may be related by theorems as, for instance, the
following one:
 ∀x∀y∀z, (contains x y) & (contains y z) −−> (contains x z)

 We shall use the predicates from Michalski's train problem to
present our approach. The following, for instance, are two simple
examples:

E1: (car-shape open-rectng A1) (length short A1)
E2: (car-shape open-trapeze A2) (length short A2)

Fig. 3. Two simple examples.

149

 The first example describes the car A1 as having the shape open
rectangle and being short. The second example describes the car A2 as
having the shape open trapeze and being also short.

 A generalization of an example is an expression which "describes"
a set containing the example. That is, by replacing the variables of the
generalization by suitable constants, one finds back the example (see
precise definition below).
 For instance, the following is a generalization of E1:
 G: (car-shape open-rectng x) (length y x)
 It describes a set of open rectangle cars of any length. One finds
back E1 by replacing 'x' by 'A1' and 'y' by 'short'.

 A generalization of several examples E1,...,En is an expression
which describes a set containing all these example. For instance, the
following is a generalization of E1 and E2:
 G1: (car-shape z x) (length short x)
 It describes a set of short cars of any shape.

 A key characteristic of the concept learning from example problem
is that there is an important structure inherent to the language used to
represent the concepts. This structure is based on the relation less-
general-than, which was defined in the section 3.7 of the thesis.

 For instance
 E1: (car-shape open-rectng C1)
is less general than
 G: (car-shape z x) (length y x)
 Indeed, one may use the theorem that any car has a length
 ∀v ∃u (length u v) = TRUE
and may rewrite E1 as
 E1: (car-shape open-rectng C1) (length u C1)
 Now, there exists the substitution σ = (z<−open-rectng, x<−C1, y<−u)
such that 'σoG=E1'. Therefore, E1 is less general than G.

150

 Let us consider again the examples in Fig. 3. Some of their
generalizations are the following ones:

 G1: (car-shape z x) (length y x)
 G2: (car-shape z x) (length short x)
 G3: (car-shape z x) (length y t)
 G4: (car-shape x y)
 G5: (length short x)
 G6: (length x y)

 A learning system will always have the problem of choosing among
the competing generalizations. We define the notion of preferable
generalization as being the generalization which is less general than all
the other generalizations.
 In our case, the preferable generalization is G2 since it is less
general than all the other generalizations. For instance, G2 is less
general than G1 because there is the substitution 'σ = (y <− short)' such
that σoG1=G2.

 The notion of preferable generalization is relative to the knowledge
about the learning universe and cannot be considered absolute. New
knowledge may lead to an improvement. For instance, let us consider
that we have acquired new knowledge about car shapes. Suppose that
this knowledge is expressed by the following hierarchy:

machine open-top close-top

(any car shape)
*c

-rectng -trapeze -rectng -rectng -top -top
open- U-shaped ell ipse closed- jagged- slopping-dbl-open-open-

Fig. 4. A generalization hierarchy for the shapes of the cars in Fig. 1.

151

 In this case
 G7: (car-shape open-top x) (length short x)
is also a generalization of E1 and E2. Since G7 is less general than G2
(there is 'σ =(z<−open-top)' such that 'σoG2=G8'), G7 is less general
than all the other generalizations. Therefore G7 is the preferable
generalization in the new context.

 Given a set of generalizations, it is most probable that there is no
generalization that is the least general. For instance, the set {G1, G3,
G4, G5, G6} does not contain a least general expression.

 Given two expressions G1 and G2, if neither G1 is less general than
G2 nor G2 less general than G1, then G1 and G2 are said to be
incomparable from a generalization point of view.

 In a given learning situation, there are many generalizations which
are incomparable, and the main difficulty of learning is to choose the
right one [Kodratoff & al. 1984]. Therefore, we have to look for
another, more relaxed, definition of the preferable generalization.

 Let us notice that, if Gi is the preferable among G1, ... ,Gn, then
the set of instances of Gi is included into the set of instances of each of
these generalizations. It follows that the number of instances of Gi is
less than the number of instances of any other generalization. Based on
this observation we may compare two generalizations G1 and G2 even
if they are incomparable from a generalization point of view. We shall
say that G1 is preferable if the number of instances of G1 is less than
the number of instances of G2.

 But this definition is still unsatisfactory for the simple reason that
learning is not an isolated aim. One is learning in a given universe, with
a well-defined goal in that universe. As a consequence, a generalization
has also to point to the essential common properties of the examples.
Therefore, a good generalization is not one which represents many of
the properties common to the examples, but that one which represents
many of the important properties common to the examples.

152

 Let us consider, for instance, the case of a robot which learns
concepts from examples representing physical objects. Each object is
described by specifying the actions which could be performed on it, the
relations which could be established between this object and other
objects, the shape of the object, its color, etc. Although all these
properties are relevant for a robot their relative importance depends on
robot goals. If the robot intends to use the learned concepts for action
planning, then the action and relation properties are to be considered
more important the the color, for instance. On the other hand, if the
robot intends to use the learned concepts for recognizing objects, then
the color property should be considered more important.
 This problem is treated in detail in section VI.
 In our approach, the relative importance of the predicates must be
defined by the teacher. One way to do it is to associate a weight to each
predicate. Based on the weights of the predicates we could estimate the
relevance (value) of a generalization as the sum of the weights of the
predicates included into the generalization. We may therefore consider
that the preferable generalization is the one which maximizes the
relevance and minimizes the number of instances.

 We may now informally define the preferable generalization of the
examples E1, E2, ... , En, as follows:
 - if there is a generalization Gi which is less-general-than all the
other generalizations of the examples then Gi is the preferable
generalization;
 - if Gi1, ... , Gim, are all the incomparable generalizations of the
examples, then consider the preferable generalization the one which is
the most relevant (contains the most important predicates) and has the
least number of instances.

 In the following section we shall propose a more computational
definition of the preferable generalization, definition based on domain-
independent and intuitively justified heuristics.

153

III. CONCEPTUAL DISTANCE AND CONCEPTUAL
COHESIVENESS

A. The general approach

 Given two descriptions, we could notice similarities and
dissimilarities. For instance, the descriptions:
 E1: (car-shape open-rectng B1)
 E2: (car-shape U-shaped B2)

are similar because both are characterized by the predicate car-shape
and each car-shape is open-top (see Fig. 4), but the first shape is open-
rectng, while the second one is U-shaped.
 If we could estimate the similarity S(E1,E2) and the dissimilarity
D(E1,E2) between the descriptions E1 and E2, then we could estimate
the conceptual distance between E1 and E2 by a function of S and D.
This function would quantify the contribution of S and D to the
conceptual distance.

 Since a generalization of two examples is able to reveal subtile
commonalties between these examples it seems to be a suitable means
of estimating their conceptual distance. Indeed, let us notice that very
different examples generalize to a general expression that is very far
from each of them, while identical examples generalize to themselves.
Moreover, we want to take into account that the fewer changes are
made to the examples in order to obtain a generalization, the greater the
similarities and the less the dissimilarities are.

 Here we shall propose an estimation of the conceptual distance
which is based on the learning algorithm developed at LRI [Kodratoff
& Ganascia, 1986]. This algorithm uses the principle of structural
matching: the examples are successively transformed until they acquire
approximately the same form. Then the generalization is obtained by
retaining only the common features.
 To illustrate this algorithm let us consider the following two
examples:

154

 E1: (car-shape open-rectng C1) (contains C1 L1)
 (car-shape open-trapeze C3)

 E2: (car-shape U-shaped C2) (length short C2)

 The first example represents two cars, an open rectangle one
containing an object and an open trapeze one. The second example
represents a short U-shaped car (see Fig. 4).
 The algorithm first rewrites the examples revealing their common
features:

 E1: (car-shape open-top X1) (contains X1 L1)
 (car-shape open-trapeze C3)
 (X1<−C1)

 E2: (car-shape open-top X1) (length short X1)
 (X1<−C2)

 Next, it will use the theorems of the representation language in
order to reveal in one example features exhibited by the other. Such a
theorem expresses, for instance, the fact that any object has a length:
 ∀z ∃t (length t z)=TRUE
 Using this theorem one rewrites the two examples as follows:

 E1: (car-shape open-top X1) (length Y1 X1) (contains X1 L1)
 (car-shape open-trapeze C3)
 (X1<−C1, Y1<−t)

 E2: (car-shape open-top X1) (length Y1 X1)
 (X1<−C2, Y1<−short)
 If one example exhibits a certain feature more times than the other,
one uses the idempotency of the AND operator to make the feature
appear the same number of times:
 (car-shape open-top X1) =
 (car-shape open-top X1) & (car-shape open-top X1)

155

 Therefore, the two expressions are farther rewritten as follows:

 E1: (car-shape open-top X1) (length Y1 X1) (contains X1 L1)
 (car-shape open-top X2)
 (X1<−C1, Y1<−t, X2<−C3)

 E2: (car-shape open-top X1) (length Y1 X1)
 (car-shape open-top X2)
 (X1<−C2, Y1<−short, X2<−C2)

 When no other common features may be revealed, one simply drops
the differences between the two expressions and obtains the
generalization of the initial examples:

 G(E1,E2): (car-shape open-top X1) (length Y1 X1)
 (car-shape open-top X2)
 (may-be-the-same X1 X2)

 Let us notice that the operations made in order to obtain a structural
matching and a generalization of the examples are indications of
similarities and dissimilarities between these examples.

 The predicates of E1, E2, and G(E1,E2) could be classified in four
categories (thus obtaining four lists of predicates), as follows:

COMMON
Predicates from G(E1,E2) which were initially present in E1 and E2:
 { (car-shape open-top X1) }

THEOREMS
Predicates introduced in G(E1,E2) by using the theorems of the
representation language:
 { (length Y1 X1) }
IDEMPOTENCY

156

Predicates introduced in G(E1,E2) by using the idempotency of the
AND operator:
 { (car-shape open-top X2) }

DROPPED
Predicates dropped from E1 and E2, in order to obtain G(E1,E2):
 { (contains X1 L1) }

 The general intuition is that each such type has a specific influence
to the estimation of the similarities and dissimilarities between the
examples.
 In the following sections we shall propose and justify measures for
each type of predicates.

B. Common predicates

 Let us consider the following four examples:
 E1: (car-shape open-rectng C1)
 E2: (car-shape U-shaped C2)
 E3: (car-shape open-rectng C3)
 E4: (car-shape ellipse C4)

 Since each of these four descriptions is characterized by the same
predicate, the conceptual distance between them is exclusively
determined by the distance between their arguments.

 Intuitively, distance(E1,E3) < distance(E1,E2) < distance(E1,E4)

 Let us also consider the following generalizations (see Fig. 4):
 G(E1,E3): (car-shape open-rectng X1)
 G(E1,E2): (car-shape open-top X2)
 G(E1,E4): (car-shape *c X3)

 Let us notice that open-rectng, open-top, and *c are all values from
the structured domain in Fig. 4, and that open-rectng is less general
than open-top which in its turn is less general than *c. While open-

157

rectng is an instance, open-top is a generalization with 4 instances and
*c is a generalization with 9 instances.

 We could define the degree of generality of an argument, as the
ratio of the number of argument's instances to the total number of
instances from argument's domain, that is:

 number of instances of "a"
 g(a) = --
 number of instances of the domain of "a"
 For example:

 g(open-rectng) = 0. g(open-top) = 0.44 g(*c) = 1.

 This definition applies also to the so-called linear (quantitative)
variables [Michalski & Stepp, 1983a].

 Let us notice that there is no dissimilarity between E1 and E3.
Indeed, C1 and C3 are just different names for the same entity (i.e. the
car) and X1, in the expression G(E1,E3)=(car-shape open-rectng X1),
is just another name for the car. X1 denotes a definite object and,
therefore, g(X1)=0.

 Intuitively, the more similar two descriptions containing only
common predicates are, the less general are the arguments of their
generalizations. Also, the more dissimilar two such descriptions are, the
more general are these arguments.
 All the arguments of a predicate being a priori of the same
importance, one should propose an estimation for the similarity
(dissimilarity), between two examples E1 and E2, by a function of the
mean degree of generality of the arguments of the generalization
G(E1,E2).

 Let us now consider the following three examples:
 E5: (COLOR RED C5)
 E6: (COLOR BLUE C6)
 E7: (SIZE BIG C7)

158

and the generalization:
 G(E5,E6): (COLOR *d X8)
 It is quite obvious that E5 is more similar to E6 than to E7, in spite
of the fact that the arguments of G are variables. The simple fact that E5
and E6 are characterized by the same predicate makes them similar.
Therefore, the similarity estimation function should also indicate a
certain similarity between two examples even when all the arguments of
G are variables, but both examples are characterized by the same
predicate.

 To sum up, let us consider two examples
 E1: (P a1 a2 ... an) & . . .
 E2: (P b1 b2 ... bn) & . . .
and their generalization
 G(E1,E2): (P c1 c2 ... cn) & . . .
 Let also g(ci) be the generality degree of the argument ci.

 Then we propose to estimate the contribution of P to the
dissimilarity and similarity between E1 and E2 by the following
functions on the degree of generality of the arguments of P:

 D(E1,E2,P) = 0.5(Σg(ci)) / n
 S(E1,E2,P) = 1 - D(E1,E2,P)

 That is, we take the total contribution of a predicate P to the
conceptual distance between E1 and E2 as being equal to 1, and we
distribute it between similarity and dissimilarity in accordance with the
generality degree of its arguments.

C. Dropped predicates

 Let us consider two examples and their generalization:

 E1: (car-shape open-rectng C1) & (contains C1 L1)
 E2: (car-shape U-shaped C2)
 G(E1,E2): (car-shape open-top X1)

159

 In order to obtain a generalization of E1 and E2 one has to drop the
predicate contains because it represents a feature of E1 which has
nothing in common with any feature of E2. Therefore, this predicate is
an indication of dissimilarity between the two examples.
 Therefore we propose to estimate the contribution of a dropped
predicate P to the estimation of the dissimilarity and similarity between
E1 and E2 as follows:
 D(E1,E2,P) = 1
 S(E1,E2,P) = 1 - D(E1,E2,P) = 0

D. Predicates introduced by idempotence

 We consider that the necessity of using idempotency of the logical
'AND' (for computing a generalization of two descriptions) is an
indication of dissimilarity. But this dissimilarity has to be considered
less than in the case of dropping predicates. Indeed, the predicate
involved is present in both descriptions (that is, both descriptions have
the property expressed by the predicate) but a different number of
times.

 Let us consider the following examples:
 E1 = (length short C1)
 E2 = (length short C2)(length short C3)
 E3 = (length short C4)(length long C5)

 We could obtain the following generalizations (by applying
idempotency in the first example):
 G(E1,E2) = (length short X1)(length short X2)
 G(E1,E3) = (length short X3)(length *l X4)

 Intuitively, one sees that distance(E1,E2) < distance(E1,E3).

 G(E1,E2) and G(E1,E3) differ only by the predicate which was
introduced by idempotency. The only significant dissimilarity between
(length short X2) and (length *l X4) consists in the generality degree of
the first argument: g(short)=0, g(*l)=1.

160

 As in the case of the common predicates, we could estimate the
dissimilarity, due to a predicate introduced by idempotency, by the
mean of the degree of generality of its arguments.
 For intuitive, but also for formal reasons, we cannot accept any
contribution of idempotency to the similarity estimation . Indeed, if
idempotency would contribute to similarity estimation, then the
similarity of two descriptions would be undefined and arbitrary since
idempotency can be applied any number of times.

 Therefore, the contribution to the estimation of the dissimilarity and
similarity between E1 and E2 of the predicate P, introduced in
G(E1,E2) by idempotency, is taken as follows:

 D(E1,E2,P) = 0.5(Σg(ci)) / n
 S(E1,E2,P) = 0.

 The generalization algorithm will always prefer idempotency to
dropping, but will also try to use idempotency as few times as possible.

E. Predicates introduced by theorems

 In principle, these predicates should be treated as the common
predicates. Let us consider, for instance, the examples:

 E1: (on A B)
 E2: (near C D)

 We may use the theorem '∀x∀y (on x y) ∅ (near x y)' and rewrite
the first example as:

 E1: (on A B) (near A B)

 In this way we have revealed a common feature of E1 and E2: both
represent two objects which are near one another.

161

 However, we must take care avoiding counting several times the
contribution of a predicate to the similarity and dissimilarity estimation,
as shown by the following example.

 Let us consider, for instance, the examples
 E1: (on A B)
 E2: (on C D)
and their rewritten form
 E1: (on A B) (near A B)
 E2: (on C D) (near C D)

 In this case we should consider the on predicate as the only
predicate common to the examples. Adding near would almost mean
counting several times the on predicate.

F. Relative importance of the predicates

 A system learning concepts from examples is supposed to have its
own goals that are intended to be achieved by using the learned
concepts. Since these goals are also known by the teacher supplying the
examples, it is reasonable to suppose that the examples specify only the
properties relevant to the system's goals. Even in such a case however
some properties may be regarded as more important than others.

 We assume that the relative importance of the properties is given by
the teacher in the form of a weight associated to each predicate.
Therefore, the previously estimated contributions of a predicate, to the
similarity and the dissimilarity of two descriptions will be multiplied by
the weight of the predicate. For instance, if P is a common predicate
with the weight 'w', then its contribution to the dissimilarity and
similarity estimation will be taken as:

 D(E1,E2,P) = 0.5w((Σg(ci)) / n
 S(E1,E2,P) = 1 - D(E1,E2,P)

162

G. Estimation of conceptual distance and conceptual cohesiveness

 Let us consider two examples E1, E2, and one of their
generalizations G(E1,E2). As shown in the previous sections, one may
estimate the contribution to similarity and dissimilarity of each involved
predicate. By adding these estimations, one obtains the total estimation
of similarity S(E1,E2,G) and the total estimation of dissimilarity
D(E1,E2,G). These estimations depend of course on the generalization
G(E1,E2). Another generalization G'(E1,E2) would produce different
estimations D'(E1,E2,G') and S'(E1,E2,G').
 Having estimated the similarity and the dissimilarity between E1
and E2 (corresponding to G(E1,E2)), one is able to estimate the
conceptual distance between E1 and E2 (corresponding to G), as a
function of D and S. Hereafter we shall consider the following distance
function:

 f(E1,E2,G) = D(E1,E2,G)/S(E1,E2,G)

 Using G'(E1,E2) instead of G(E1,E2), one obtains another
estimation of the conceptual distance between E1 and E2:

 f(E1,E2,G') = D(E1,E2,G')/S(E1,E2,G')

 We take, as the conceptual distance between E1 and E2, the
minimum of f(E1,E2,G) over all possible generalizations of E1 and E2:

 conceptual-distance(E1,E2) = MIN {f(E1,E2,G(E1,E2))}
 G(E1,E2)

 Moreover, the generalization for which f is minimum is
recommended as the concept to be learned from E1 and E2 since this
generalization has the desirable property of revealing the greatest
number of common features between the examples and of being the
least general among the generalizations revealing the same amount of
common features.

163

 Since the definition of the conceptual distance is based on the
generalizations of the examples, this definition applies for any number
of examples.
 Let us consider n examples E1,E2,...,En and G(E1,E2,...,En), one of
their generalization. Based on this generalization one can compute the
four lists:

CM: predicates from G(E1,...,En) which were initially present in
E1,...,En;

TH: predicates from G(E1,...,En) which were introduced in at least one
example, by using the theorems of the representation language (but not
idempotency);

ID: predicates from G(E1,...,En) which were introduced in at least one
example by using the idempotency of the AND operator;

DR: predicates dropped from E1,...,En, in order to obtain G(E1,...,En).

 Further on, using the above four lists, one can estimate the
similarity S(E1,...,En,G), the dissimilarity D(E1,...,En,G), and the
conceptual distance f(E1,...,En,G). The minimum of f taken over all
possible generalizations of E1,...,En is the conceptual distance between
E1,...,En:

 conceptual-distance(E1,...,En) = MIN f(E1,...,En,G)
 G(E1,...,En)

 The reciprocal of the conceptual distance is called the conceptual
cohesiveness of the set {E1,...,En}. The more similar and less dissimilar
are the examples, the greater is their conceptual cohesiveness.
 In the next section we shall present a hierarchical clustering
algorithm based on the above notion of conceptual cohesiveness.

IV. CLUSTERING BY GENERALIZING

164

 Conceptual clustering was introduced by Michalski and Stepp
[Michalski & Stepp, 1983a] as an extension of processes of numerical
taxonomy (a collection of methods used to form classification schemes
over data sets) [Van Ryzin, 1977]. The main quality of the conceptual
clustering is that it is able to capture the "Gestalt properties" of object
clusters, that it, properties that characterize a cluster as a whole and are
not derivable from properties of individual entities.
 To illustrate this idea, let us consider the following example taken
from [Michalski & Stepp, 1983a]:

.
. .
.

.. ..
. A B

Fig. 5. An illustration of conceptual clustering.

 A person considering this figure would typically describe the
observed points as representing two diamonds. Thus, the points A and
B, although closer to each other than to other points, are placed into
different clusters.
 CLUSTER/2 [Michalski & Stepp, 1983a] is a conceptual clustering
algorithm able to make such classifications. In this section we present
another clustering algorithm which is based on the conceptual
cohesiveness defined in the previous section.
 The goal of our clustering algorithm is to group the examples in
such a way so that to maximize the conceptual cohesiveness of the
clusters.
 Our algorithm is based on the following observation: if
{E1,E2,...,En} is a cluster with high conceptual cohesiveness and {Ei,
... , Ek} is a subset of this cluster, then the conceptual cohesiveness of
{Ei, ... , Ek} is a good approximation of the conceptual cohesiveness of
{E1,E2,...,En}. Let us now suppose that we add a new example Ea to
this cluster. If the conceptual cohesiveness does not decrease
significantly, then Ea belongs to the same concept as {E1,E2,...,En}.
Otherwise, {E1,E2,...,En} and Ea belong to different concepts.

165

 To illustrate this idea, let us consider that each example represents
either a man or a woman. The conceptual cohesiveness of each subset
of women is approximately the same with the conceptual cohesiveness
of the set of all women. However, adding a man to such a set would
significantly decrease the conceptual cohesiveness of the set.

 To make this approach operational, one has to be able to determine
when a conceptual cohesiveness decreases significantly. This is
analogous to the definition of what we call resolution, a measure that
indicates the minimum distance that has to exist between two elements
to be perceived as distinct.
 Our claim is that, in a given domain, one could experimentally
determine the resolution by measuring the distances between concepts
thought as distinct.
 We propose to express this resolution as a threshold µ, where
0<µ≤1, and to state that the conceptual cohesiveness of two sets S1
and S2 are different if and only if
 cohesiveness(S1) is less than µ*cohesiveness(S2)
or
 cohesiveness(S2) is less than µ*cohesiveness(S1).

 Let {E1, , Et} be the examples to be clustered. The clustering
algorithm first determines the pair of examples {Ep,Eq} for which the
conceptual cohesiveness is maximum and takes it as the seed of a
cluster. A new example is introduced into this cluster only if it does not
decrease the cohesiveness of the cluster below the cohesiveness of
{Ep,Eq}.
 Once a cluster is completed, it replaces, in the set of examples, all
the examples it contains, and the process is restarted with the new
examples.

 In greater detail the clustering algorithm is the following one:

 Step 1: ask for the resolution of the application domain.
 The resolution of the application domain is defined by the user as a
threshold µ, where 0<µ≤1.

166

 Given two sets S1 and S2, cohesiveness(S1) < cohesiveness(S2) if
and only if cohesiveness(S1) is less than µ*cohesiveness(S2).
 If neither "c(S1) < c(S2)" nor "c(S2) < c(S1)" we say that c(S1) and
c(S2) are incomparable, were by c(Si) we denoted the cohesiveness of
Si.

 Step 2: compute the conceptual cohesiveness of each pair of
examples.
 Let E = {E1, ... ,En} be the set of examples.
 For each pair {Ep,Eq} compute its cohesiveness by using the
generalizations G(Ep,Eq) and the corresponding quadruples
 L(Ep,Eq) = (CO(Ep,Eq), TH(Ep,Eq), ID(Ep,Eq), DR(Ep,Eq))
as presented in section III.

 Step 3: choose a seed of the clustering.
 Determine the pair {Ep,Eq} for which c(Ep,Eq) is maximum. If
several such pairs exist, choose one of them.
 Let {Ep,Eq} be the chosen pair. It is called seed of the clustering.
 G(Ep,Eq) is one of the most relevant concepts among those
represented by pairs of examples.
 Let M = {Ep,Eq}.
 We shall discover a first cluster by introducing in M other elements
from E.

 Step 4: determine the examples which could be members of the
cluster represented by the chosen seed.
 That is, determine the set:
 T = { Ek | "c(Ep,Eq) and c(Ek,Ep) are incomparable"
 "c(Ep,Eq) and c(Ek,Eq) are incomparable" }

 Let us suppose that c(Ek,Ep) < c(Ep,Eq). In this case also
c(Ep,Eq,Ek) < c(Ep,Eq) so Ek may not be member of the concept
represented by {Ep,Eq}.
 Step 5: introduce examples into the cluster.
 For each Ek from T, if c(Ep,Eq) and c(M,Ek) are incomparable,
then introduce Ek into M.

167

 Initially M = {Ep,Eq}. Therefore, c(M,Ek) means c(Ep,Eq,Ek).
 If M = {Ep,Eq, ... ,Et} then c(M,Ek) means c(Ep,Eq, ... ,Et,Ek).
 At the end of this step one has discovered the cluster represented by
the seed {Ep,Eq}:
 M = {Ep,Eq, ... ,Es}.

 Step 6: replace the examples contained in the cluster with the
cluster.
 Remove from the set of examples E, the elements of the discovered
cluster M = {Ep,Eq, ... ,Es}.
 Consider M as a complex example Em and introduce it into E.
 That is, E ♦ (E - M) U {Em}.
 If Ei is an initial example and Em = {Ep,Eq, ... ,Es}, is a complex
example, then we consider that
 G(Ei,Em) = G(Ei,Ep,Eq, ... ,Es) and
 c(Ei,Em) = c(Ei,Ep,Eq, ... ,Es)
 If Ms is a cluster containing the complex example Em then Ms
represents a super-concept of the concept Em.

 Step 7: rerun the algorithm.
 Repeat from step 1 with the new set of examples until E is reduced
to one element (Ek) or to two elements (Ek1,Ek2). Ek (respectively
G(Ek1,Ek2)) is the concept representing all the examples.

 The presented algorithm is only a basic one. Several improvements
are obvious. For instance, let us consider again step 2. If E =
{Ei1,...,Eit} U {Em}, Em being the last complex example formed, then
we have to consider only the pairs {Eik,Em} since the other pairs have
been already considered in the previous steps 1.
 One could also modify the step 3 of the above algorithm by working
with several seeds simultaneously. Indeed, instead of choosing one seed
(among the incomparable ones) and to determine the corresponding
cluster, one could consider all the competing seeds at the same time and
determine simultaneously the corresponding clusters.

168

 Let us also notice that although the discovered clusters are disjoint
with respect to the clustered examples (or one is included into the other)
their descriptions are not guaranteed to be disjoint. That is, they may
have common instances.

 Since an example of using this algorithm is presented in section 6,
here we will only make clear its differences with CLUSTER/2
[Michalski & Stepp, 1983a]. Both these algorithms are able to discover
hierarchies of concepts and each concept is represented as a conjunction
of predicates. Even more, they are both based on a notion of seed.
However, in CLUSTER/2 a seed is an example, while in our algorithm
a seed is represented by a pair of examples.
 CLUSTER/2 requires as input the number of clusters to be
determined. The analog in our algorithm is the "resolution".
CLUSTER/2 may successively consider different numbers, until it finds
the right one. Similarly, our algorithm may do experiences with
different resolutions.
 Another difference between these algorithms is that CLUSTER/2 is
looking for non-overlapping concepts that optimize pre-defined criteria,
while our algorithm is looking for the most relevant concepts (as
defined in section III), be these overlapping or not.

 Finally, we may contrast the presented algorithm with the other
clustering algorithm developed in our team [Benamou & Kodratoff,
1986]. While both algorithms combines symbolical and numerical
methods, the presented algorithm is more symbolically oriented while
the other one relies more on the numerical approach. The two
approaches complement each other in a natural way. While the
clustering algorithm presented in this paper tends to discover more
relevant concepts, it also requires more processing resources.

169

V. GENERALIZING BY CLUSTERING

 In this section we present an interesting relation which exists
between generalization and clustering, in our approach.
 Recall, from the previous section, that our clustering algorithm uses
generalizations in order to cluster. We shall show that computing good
generalizations of complex examples requires in turn a clustering phase.
 By complex examples we mean examples containing objects. For
instance, the examples in Fig. 1 contain car and load objects. The
description of an object "O", from such an example, consists of all the
predicates containing "O" as an argument. For instance, the description
of the first car of the first train is the following one:

 C1: (car-shape machine C1) (length long C1) (infront C1 C2)
 (nr-wheels 2 C1)

 The description of the load in the second car is:

 L2: (contains C2 L2) (load-shape square L2) (nrpts-load 3 L2)

 One may easily notice that the description of a train is the conjunct
of the descriptions of the objects it contains, except that, in the latter,
some predicates are duplicated. For instance, (infront C1 C2) appears
both in the description of C1 and in that of C2.

 Provided that the two trains in Fig. 1 are examples of a general train
concept, the objects from these examples are instances of the objects
from the general train description. Therefore, one way to determine the
general train concept is to match and generalize the descriptions of the
objects from the examples.
 Our claim is that for computing good generalizations of complex
examples one should match the most similar objects.

 We shall illustrate this generalization strategy by applying it to
compute a generalization of the two trains in Fig. 1.

170

 First of all we extract from each of the two train examples the
descriptions of the objects. We find 9 objects (5 cars and 4 loads) in the
first example and 7 objects (4 cars and 3 loads) in the second one.
 Next we look for the two objects (one from E1 and the other from
E2) for which the conceptual distance is minimum. These objects will
be matched, that is, they are supposed to represent the same object in
the generalization of E1 and E2. This matching will of course influence
the following matchings. For instance, if two cars Ci and Cj are
matched, and are represented in the generalization by X1, then the loads
contained into these cars (Li and respectively Lj) became more similar
to each other. This is represented by replacing, in the descriptions of Li
and Lj, the predicates (contains Ci Li) and (contains Cj Lj) by (contains
X1 Li) and (contains X1 Lj), respectively.
 Having established the matching between the most similar objects,
we look for the other two objects which are the most similar. We
continue this way, matching each object from E1 with an object from
E2 (using idempotency, if needed).
 We find the generalization of E1 and E2 as the union of the
generalizations of the corresponding objects (eliminating of course the
identical predicates):

(car-shape machine X1)(length long X1)(infront X1 X5)(nr-wheels 2 X1)
(car-shape * X2)(length short X2)(contains X2 Y1)(infront X2 X4)
(infront * X2)(nr-wheels 2 X2)(load-shape triangle Y1)(nrpts-load 1 Y1)
(car-shape * X3)(length short X3)(contains X3 L2)(infront X4 X3)
(nr-wheels 2 X3)(load-shape circle Y2)(nrpts-load * Y2)
(car-shape open-top X4)(length * X4)(contains X4 Y3)(nr-wheels * X4)
(load-shape polygon Y3)(nrpts-load 1 Y3)
(car-shape open-top X5)(length * X5)(contains X5 Y4)(infront X5 *)
(nr-wheels 2 X5)(load-shape polygon Y4)(nrpts-load * Y4)

 This description represents a type of train having the following
features:
 - the first car is a two wheel machine. It is followed by a two wheel
open car containing polygons;

171

 - the last car is a two wheel short one, containing circles. It is
preceded by an open car containing one polygon which, in its turn, is
proceeded by a two wheel short car containing a triangle;

 When there are more than two examples to generalize, one needs to
cluster the objects and to match objects belonging to the same cluster.

 The main advantage of this approach is that it reduces a process of
finding a generalization of complex descriptions to several processes of
finding generalizations of much simpler descriptions.
 The clustering of the objects may raise, however, complex
combinatorial problems. In such a case, one may use heuristics (or a
very simple clustering algorithm) to limit the objects to be clustered.
For instance, it should be easy to establish that one must try to match
cars with cars and loads with loads. Moreover, one does not need to
cluster all the examples, but only to find out one cluster containing an
object from each example.

VI. ACQUIRING OBJECT KNOWLEDGE

 In this section we shall illustrate the relevance of our learning
approach to the automation of knowledge base construction for expert
systems.

 A commonly used method of representing knowledge in artificial
intelligence systems is to use prototypes ([Bobrow & Winograd, 1977],
[Kodratoff & Tecuci, 1987a], [Minsky, 1975], [Sridharan & Bresina,
1983]). Each prototype represents a class of objects which is relevant
for the system's application domain. The prototype is a parameterized
representation of the properties common to the objects in the class.
These prototypes are ordered in a class-subclass hierarchy in which
each prototype inherits the properties of its super-class prototypes. The
main feature of such a representation is that knowledge is organized
around conceptual entities, in a memory efficient manner.

172

 Therefore, automated construction of hierarchies of prototypes is an
attempt towards automated construction of knowledge bases for expert
systems.

 The clustering algorithm presented in section IV is able to discover
a hierarchy of concepts characterizing a set of examples. The only thing
which remains to be done, for building a hierarchy of prototypes, is to
fill up this structure, by computing a description for each concept (node
in the tree). Each such description has to be in terms of its ancestors in
the tree, inheriting and particularizing their descriptions.

 We shall illustrate this problem in the robot world [Tecuci & al.
1983] presented in Fig. 6. It consists of mechanical parts to be used in
assembling tasks.

Fig. 6. A robot assembly world.

 The robot is told the description of each part (AXLE1, AXLE2,
WHEEL1, WHEEL2, ...) and is asked to learn the general concepts
represented by these examples. Such concepts are, for instance, axle,
wheel, graspable-object etc. The goal is to use the learned concepts in

173

planning assembling tasks (for instance, planning the assembly of a
car).

 For instance, the following is the description of AXLE1:

 (RELATION ATTACHED R1) (RELATION ATTACHED R3)
 (RELATION THRU R2) (ACTION GRASP R2) (ACTION MOVE R2)
 (ACTION INSERT R1) (ACTION INSERT R3) (POSITION P2)
 (GRASPING G2) (APPROACHING L2)
 (SUBPART SOLID CYLINDER(5 1) R1)
 (SUBPART SOLID CYLINDER(20 4) R2)
 (SUBPART SOLID CYLINDER(5 1) R3) (ALIGNED R1 R2 R3)

Figure 6'. Details of an axle.

 The symbols R1, R2, and R3 are the names of AXLE1's sub-parts.
P2, G2, L2, are constants representing spatial positions. R1 and R3
could be in the relation ATTACHED with other entities (ATTACHED
to a WHEEL, for instance) and R2 could be in the relation THRU with
other entities (THRU a CARBODY HOLE, for instance). The actions
which could be performed on AXLE1 are GRASP (by grasping R2),
MOVE (by moving the grasped sub-part) and INSERT (by inserting
R1). AXLE1 is also characterized by a position (P2), a grasping point
(G2) and a corresponding approaching point (L2). The three sub-parts
R1, R2, R3, are solid cylinders, two of them (R1 and R3) having the
same dimensions (height and diameter). The parts are aligned.

 The robot is also given that the predicates describing the possible
relations between parts or the actions that may be performed with these
parts are to be considered more important than the predicates describing

174

the shape of the parts. This information is given by the teacher in the
form of the following weights associated with the predicates:

 w(RELATION) = w(ACTION) = 4
 w(GRASPING) = w(APPROACHING) = w(POSITION) = 3
 w(SUBPART) = 2
 w(ALIGNED) = w(INSIDE) = w(PARALLEL) = 1

 Running our clustering algorithm with these examples we obtained
the following hierarchy of concepts:

(object)

(axle) (wheel)

(graspable object)

AXLE1 AXLE2 WHEEL1 WHEEL2 WHEEL3 WHEEL4 CARBODY1

Fig. 7. Concepts learned from the robot world in Fig. 6.

 Notice that the robot discovered the concepts that are relevant to its
goal (planning assembling tasks).
 Let us now suppose that the robot goal is to recognize objects. In
this case, the teacher will have to state that the most important
predicates are those describing the shape of the parts and the robot may
discover the following concepts:

(object)

(axle) (wheel)

AXLE1 AXLE2 WHEEL1 WHEEL2 WHEEL3 WHEEL4 CARBODY1

(object with holes)

Fig. 8. Another set of concepts learnable from Fig. 6.

175

 Let us consider again the hierarchy in Fig. 7. We want to transform it
into a hierarchy of prototypes [Tecuci 1984a]. In such a hierarchy, each
prototype is defined in terms of its ancestors. For instance, one says that
graspable object is an object that has specific properties and that axle is a
graspable object that has specific properties. The description that is
actually associated with a prototype consists of its specific properties.
Therefore, the description of object consists of the features common to all
the objects from Fig. 6. Also, the description of graspable object consists
of the features common to the axles and wheels, except those that are
already present in the description of object because they are automatically
inherited.

 Our clustering algorithm has already computed a description of each
concept. Therefore, to transform the hierarchy in Fig. 7 into a hierarchy of
prototypes one has only to remove, from the description of each concept,
the features which are already present into the descriptions of its ancestors.
Acting this way one obtains the following hierarchy of prototypes:

Fig.9. A hierarchy of prototypes learned from examples.

176

 The prototype object contains the properties common to all objects
in the robot world presented. These properties express the fact that an
object (be it a graspable one or not) could be in certain relations with
other objects (there is no relation common to all objects and this is the
reason for the presence of the variables in the description), that certain
actions can be performed on the object, that the object is characterized
by a certain spatial position and has cylinder sub-parts of the same
height. Implicitly, different names means different entities. Therefore
the MAY-BE-THE-SAME predicate indicates which variables can take
the same value. For instance "v" could take the same value as S1 or S2
or S3.
 The prototype graspable object contains the properties common
only to graspable objects (has a GRASPING point and a corresponding
APPROACHING point). It also inherits the properties of object and
establishes values for some of the variables in the inherited properties.
 y:=:{GRASP,MOVE} means that the property (ACTION y v),
which is inherited from object, has to be instantiated to (ACTION
GRASP v) & (ACTION MOVE v).
 (x,t):=:(ATTACHED,S1) means that any inherited property
containing the tuple (x,t) has to be instantiated by replacing x with
ATTACHED and t with S1.
 Similarly, axle defines the properties common only to axles, but not
common to all graspable objects or general objects. It also inherits the
properties of its ancestors.

 The significance and the advantages of the above description are
those generally mentioned in connection with the hierarchies of
prototypes: knowledge is organized around relevant conceptual entities
(prototypes) in a memory efficient manner (the inheritance mechanism
allows for a unique representation of a property common to some
objects as the property of a prototype of those objects). Moreover, the
generalization techniques are able to reveal subtle features that are
common to the objects.
 One disadvantage of the above descriptions is that they are
somehow complicated. Therefore they need to be simplified by

177

removing certain facts that may be proven to be useless for the
application domain.

 Once learned, these prototypes may be directly referred to by other
pieces of knowledge [Tecuci & al. 1983]. For instance, a rule may
indicate to the robot that, for moving a graspable object, it has to move
the hand to the object's approaching point, open the hand, move the
hand to the object, close the hand, and move the hand. This rule may be
used for each graspable object instance.

VII. CONCLUSIONS

 One of the most critical problems of inductive learning is that of
choosing among competing generalizations. In this appendix we
proposed and justified a solution to this problem which is based on the
notion of conceptual distance and consists in enhancing the symbolical
method of generalization with some numerical estimations.
 A distinctive feature of our approach is that learning from examples
and learning by observation are seen as complementary learning
paradigms:
 - learning by observation uses learning from examples to determine
the examples to cluster;
 - learning from examples uses learning by observation to determine
the objects to match.
 These relationships allowed the definition of a recursive learning
method in which a complex learning from examples task is reduced to a
task of clustering the objects contained in the examples, which in turn is
reduced to a task of learning from these objects.

178

BIBLIOGRAPHY

[Anderson, 1986] Anderson J.R.,
Knowledge Compilation: The General Learning Mechanism, in
Michalski R.S., Carbonell J.G., Mitchell T.M. (eds), Machine Learning:
An Artificial Intelligence Approach, Volume 2, Morgan-Kaufmann,
1986, pp.289-310.

[Anderson, 1986] Anderson J.R.,
Causal Analysis and Inductive Learning, Proceedings of the
International Machine Learning Workshop, Irvine, California, 1987,
pp.288-299.

[Attardi & Simi, 1986] Attardi G. & Simi M.,
A Description Oriented Logic for Building Knowledge Bases,
Technical Report ESP/86/3, Universita di Pisa, April 1986.

[Bareiss & Porter 1987] Bareiss E. & Porter B.,
PROTOS: An Exemplar-Based Learning Apprentice, in Langley P.(ed)
Proc. 4th Int. Workshop on Machine Learning, Irvine, 1987.

[Barr & Feigenbaum, 1981] Barr A. & Feigenbaum E. (eds),
The Handbook of Artificial Intelligence, Vol. 1, M. Kaufmann, 1981.

[Benamou & Kodratoff, 1986] N. Benamou N. & Kodratoff Y.,
Conceptual Hierarchical Ascending Classification, Research Report
305, LRI, Université de Paris-Sud, 1986.

[Benjamin & Harrison, 1983] Benjamin P.D., Harrison, M.C.,
A Production System for Learning Plans from an Expert, in
Proceedings AAAI-83, Washington, 1983, pp.22-26.

[Bobrow & Winograd, 1977] Bobrow D.G., Winograd T.,
An Overview of KRL, a Knowledge Representation Language,
Cognitive Science, 1, 1977.

[Bollinger, 1986] Bollinger T.,
Généralisation et Apprentissage à Partir d'Exemples, Thèse de 3e Cycle,
Université de Paris-Sud, 1986.

[Brachman, 1979] Brachman R.J.,
On the Epistemological Status of Semantic Networks, in N.V. Findler
(ed), Associative Networks, AP, New York, 1979.

179

[Brachman, 1983] Brachman R.J.,
What IS-A Is and Isn't: An Analysis of Taxonomic Links in Semantic
Networks, Computer, October 1983, pp.30-36.

[Brazdil, 1986] Brazdil P.B.,
Transfer of Knowledge Between Systems: Some Considerations
Concerning System's Abilities, in Proceedings of the First European
Working Session on Learning, Orsay, February, 1986.

[Bresina, 1981] Bresina J.L.,
An Interactive Planner that Creates a Structured, Annotated Trace of its
Operation, Research Report CBM-TR-123, Rutgers University,
December 1981.

[Bundy & Silver, 1982] Bundy A., Silver B.,
A Critical Survey of Rule Learning Programs, in Proceedings of ECAI-
82, Orsay, pp.151-157.

[Buntine, 1986] Buntine W.L.,
Induction of Horn Clauses: Methods and the Plausible Generalization
Algorithm, Technical Report 86.7, New South Wales Institute of
Technology and Macquarie University, October, 1986.

[Buntine & Stirling, 1987] Buntine W. & Stirling D.,
Interactive Induction, pp. 13, September 1987, submitted to IEEE
applied Artificial Intelligence.

[Burstein 1986] Burstein M. H.
Concept Formation by Analogical Reasoning and Debugging, in
Michalski R., Carbonell J. & Mitchell T. (eds) Machine Learning: An
Artificial Intelligence Approach, Vol. 2, Morgan Kaufmann 1986,
pp.351-370.

[Carbonell, 1983] Carbonell J.G.,
Learning by Analogy: Formulating and Generalizing Plans from Past
Experience, in Michalski R.S., Carbonell J.G., Mitchell T.M., (eds),
Tioga Publishing Company 1983, pp.137-162.

[Carbonell & al. 1983] Carbonell J.G., Michalski R.S., Mitchell T.M.,
An Overview of Machine Learning,in Michalski R.S., Carbonell J.G.,
Mitchell T.M., (eds), Tioga Publishing Company 1983, pp.3-24.

180

[Carbonell, 1986] Carbonell J.,
Derivational Analogy: A Theory of Reconstructive Problem Solving
and Expertise Acquisition, in Michalski R., Carbonell J. & Mitchell T.
(eds) Machine Learning: An Artificial Intelligence Approach, Vol. 2,
Morgan Kaufmann 1986, pp.371-392.

[Carbonell & Gil 1987] Carbonell J. & Gil Y.,
Learning by Experimentation, in Langley P.(ed) Proc. 4th Int.
Workshop on Machine Learning, Irvine, 1987.

[Chailloux 1985] Chailloux J.,
LE_LISP de l'INRIA, Le Manuel de Reference, INRIA, Rocquencourt,
February, 1985.

[Chisholm & Sleeman, 1979] Chisholm I.H., Sleeman D.H.,
An Aide for Theory Formation, in D. Michie (ed), Expert Systems in
the Microelectronic Age, 1979, pp.202-212.

[Chouraqui, 1982] Chouraqui E.,
Construction of a Model for Reasoning by Analogy, in Proceedings of
the European Conference on Artificial Intelligence, Orsay, France,
1982.

[Clavieras, 1984] Clavieras B.,
Modifications de la Représentation des Connaissances en Apprentissage
Inductif, Thèse de 3e Cycle, Université de Paris-Sud, 1984.

[Coelho & al. 1980] Coelho H., Cotta J.C., Pereira L.M.,
How to Solve it with PROLOG, Laboratorio National de Engenharia
Civil, Lisabona, 1980.

[Cohen & Feigenbaum, 1982] Cohen P. & Feigenbaum E. (eds),
The Handbook of Artificial Intelligence, Vol. 2, 3, M. Kaufmann, 1982.

[Cohen & Sammut, 1984] Cohen B., Sammut C.,
Program Synthesis Through Concept Learning, in Automatic Program
Construction Techniques, Biermann A.W., Guiho G., Kodratoff Y. eds,
Macmillan Publishing Company, 1984, pp. 463-482.

[Cornuejols, 1988] Cornuejols A.,
INFLUENCE: un Système d'Apprentissage par Adaptation, in Proc. of
JFA-88, Cassis, France, 5-6 May, 1988, pp. 39-55.

181

[Costa, 1986] Costa E.J.,
Artificial Intelligence and Education: The Role of Knowledge in
Teaching, in Proceedings of the First European Working Session on
Learning, Orsay, February, 1986.

[Daniel & Tate, 1982] Daniel L., Tate A.,
A Retrospective on the "Planning: A Joint AI:OR Approach" Project,
DAI Working Paper 125, University of Edinburgh, 1982.

[Davidoviciu, 1983] Davidoviciu A.,
Robotica si inteligenta artificiala, in Inteligenta artificiala si robotica,
Ed. Academiei, 1983, pp.214-222.

[Davis, 1979] Davis R.,
Interactive Transfer of Expertise: Acquisition of New Inference Rules,
Artificial Intelligence 12 (1979), 121-157.

[Davis & Lenat, 1983] Davis R., Lenat D.B.,
Knowledge-Based Systems in Artificial Intelligence, McGraw-Hill,
New York, 1981.

[DeJong, 1981] DeJong G.,
Generalizations Based on Explanations, Proc. 7th IJCAI, 1981, pp. 67-
69.

[DeJong & Mooney, 1986] DeJong G., Mooney R.,
Explanation-Based Learning: An Alternative View, Machine Learning
1, pp. 145-176.

[Deliyanni & Kowalski, 1979] Deliyanni A., Kowalski R.A.,
Logic and Semantic Networks, CACM, 22, 3, 1979.

[De Raedt & Bruynooghe, 1988] De Raedt L., Bruynooghe M.,
On Explanation and Bias in Concept Learning, Katholieke Universiteit
Leuven, 1988.

[Dietterich, 1980] Dietterich T.G.,
Applying General Induction Methods to the Card Game Eleusis, in
Proceedings AAAI-80, pp.218-220.

[Dietterich & Michalski, 1981] Dietterich G.T., Michalski R.S.,
Inductive Learning of Structural Descriptions: Evaluation Criteria and
Comparative Review of Selected Methods, Artificial Intelligence
Journal 16, 1981, pp. 257-294.

182

[Doyle, 1986] Doyle R.,
Constructing and Refining Causal Explanations from an Inconsistent
Domain Theory, in Proceedings AAAI-86, Philadelphia, 1986, pp.538-
544.

[Draganescu, 1980] Draganescu M.,
A doua revolutie industriala. Microelectronica, Automatica,
Informatica, Ed. Tehnica, Bucharest,1980.

[Draganescu, 1984] Draganescu M.,
Information, Heuristics, Creation, in Plander I. (ed), Artificial
Intelligence and Information-control Systems for Robots, North-
Holland, 1984.

[Draghici, 1988] Draghici M.,
A Psycho-Relational Approach to Data Base Conceptual Structuring,
PhD Thesis Abstract, Bucharest University, 1988.

[Dufay & Latombe, 1983] Dufay B., Latombe J-C.,
Robot Programming by Inductive Learning, Proceedings IJCAI-83,
Karlsruhe, 1983.

[Duval & Kodratoff, 1986] Duval B., Kodratoff Y.,
Automated Deduction in an Uncertain and Inconsistent Data Base,
Proceedings ECAI-86, Brighton, 1986, pp.101-108.

[Fahlman, 1974] Fahlman S. E.,
A Planning System for Robot Construction Tasks, Artificial
Intelligence, 5, pp. 1-49.

[Farreny, 1980] Farreny H.,
Un Système pour L'Expression et la Résolution de Problemes Orienté
vers le Controle de Robots, Thèse d'Etat, Université Paul-Sabatier,
1980.

[Feigenbaum, 1977] Feigenbaum E.,
The Art of Artificial Intelligence: Themes and Case Studies in
Knowledge Engineering, Proc. IJCAI 5, 1014-1029, 1977.

[Feigenbaum & Feldman, 1963] Feigenbaum E.A. & Feldman J.
(eds),Computers and Thought, New York: McGraw-Hill, 1963.

[Fikes & al. 1972] Fikes R.E., Hart P.E., Nilsson N.J.,
Learning and Executing Generalized Robot Plans, Artificial
Intelligence, 3, pp. 251-288, 1972.

183

[Filmore, 1968] Filmore C.,
The Case for Case, in E. Bach, R. Harms (eds), Universals in Linguistic
Theory, New York: Holt, Rinehert and Winston, 1968.

[Fisher & Langley, 1985] Fisher D., Langley P.,
Approaches to Conceptual Clustering, in Proceedings IJCAI-85, Los
Angeles, 1985, pp.691-697.

[Forbus & Gentner, 1986] Forbus K., Gentner D.,
Learning Physical Domains: Toward a Theoretical Framework, in
Michalski R.S., Carbonell J.G., Mitchell T.M. (eds), Machine Learning:
An Artificial Intelligence Approach, Volume 2, Morgan-Kaufmann,
1986, pp.311-348.

[Friedland, 1979] Friedland P.,
Knowledge-Based Experiment Design in Molecular Genetics, Ph.
Thesis, Stanford University, august 1979.

[Fu & Buchanan, 1985] Fu L-M., Buchanan B.G.,
Learning Intermediate Concepts in Constructing a Hierarchical
Knowledge Base, in Proceedings IJCAI-85, Los Angeles, 1985, pp.659-
666.

[Ghallab, 1982] Ghallab M.,
Optimisation de Processus Decisionnels pour la Robotique, Thèse
d'Etat, Université Paul Sabatier, Toulouse, 1982.

[Ganascia, 1983] Ganascia J-G.,
Détection des Pannes par Système Expert, Internal Paper, Univ. Paris-
Sud, Orsay, 1983.

[Ganascia, 1987] Ganascia J-G.,
AGAPE et CHARADE: deux Techniques d'Apprentissage Symbolique
Appliquées à la Construction des Bases de Connaissances. Thèse d'Etat,
Université de Paris-Sud, 1987.

[Gentner, 1983] Gentner D,
Structure-Mapping: a Theoretical Framework for Analogy, Cognitive
Science, 7, pp.155-170.

[Georgescu, 1986] Georgescu I.,
Inteligenta artificiala, Ed. Academiei, 1986.

[Giralt & al. 1979] Giralt G., Sobek R., Chatila R.,
A multilevel Planning and Navigation System for a Mobile Robot: a
First Approach to HILARE, Proceedings IJCAI-79, Tokio, 1979.

184

[Giumale, 1984] Giumale C.A.,
Inference Processes: A Mean to Shape Knowledge Control, in Plander
I. (ed), Artificial Intelligence and Information-control Systems for
Robots, North-Holland, 1984.

[Giumale & al. 1987] Giumale C.A., Preotescu D., Serbanati L.D.,
Tufis D., Tecuci G., Cristea D.,
LISP, Ed. Tehnica, Bucharest, 1987.

[Hall, 1986] Hall R., Learning by Failing to Explain, in Proceedings
AAAI-86, Philadelphia, 1986, pp.568-573. in Proceedings AAAI-86,
Philadelphia, 1986, pp.

[Hayes, 1977] Hayes P.J.,
In Defence of Logic, Proceedings IJCAI-77, Massachussets, 1977.

[Hayes-Roth & al. 1978] Hayes-Roth F., Waterman D., Lenat D.,
Principles of Pattern-Directed Inference Systems, in D.A. Waterman, F.
Hayes-Roth (eds), Pattern-Directed Inference Systems, Academic Press,
New York, 1978.

[Hayes-Roth, 1985] Hayes-Roth B.,
A Blackboard Architecture for Control, Artificial Intelligence, 26,
pp.251-321, 1985.

[Hendrix, 1979] Hendrix G.G.,
Encoding Knowledge in Partitioned Networks, in N.V. Findler (ed),
Associative Networks, AP, New York, 1979.

[Holte, 1984] Holte R.,
Artificial Intelligence Approaches to Concept Learning, in I. Alexander
(ed), Digital Information Systems, Prentice-Hall International,
Englewood Cliffs, N.J., 1984.

[Hutchinson, 1986] Hutchinson A.,
An Inheritance Mechanism, in Proceedings of the First European
Working Session on Learning, Orsay, February, 1986.

[Hutchinson, 1986] Hutchinson A.,
A Data Structure and Algorithm for a Self-Augmenting Heuristic
Program, The Computer Journal, Vol.29, No.2, 1986, pp.135-150.

[Jappinen, 1981] Jappinen H.,
Sense-Controlled Flexible Robot Behavior, International Journal of
Computer and Information Sciences, Vol. 10, No. 2, 1981.

185

[Kedar-Cabelli, 1985] Kedar-Cabelli S.,
Purpose-Directed Analogy, In Proceedings of the Cognitive Science
Society, pp.150-159, Irvine, California, 1985.

[Kodratoff, 1983] Kodratoff Y.,
Generalizing and Particularizing as the Techniques of Learning,
Computers and Artificial Intelligence, 4, pp. 417-441, 1983.

[Kodratoff & al. 1984] Kodratoff Y., Ganascia J.G., Clavieras B.,
Bollinger T., Tecuci G.,
Careful Generalization for Concept Learning, Proc. ECAI-84, Pisa
1984, pp. 483-492. Also in Advances in Artificial Intelligence, T.
O'Shea (ed), pp. 229-238, North-Holland Amsterdam 1985.

[Kodratoff, 1985] Kodratoff Y.,
Une théorie et une méthodologie de l'apprentissage symbolique, Actes
COGNITIVA 85, Paris, June 1985, pp 639-651.

[Kodratoff, 1986] Kodratoff Y.,
Learning Expert Knowledge and Theorem Proving, in C.R. Rollinger,
W. Horn (eds), GWAI-86 und 2 Osterreichische Artificial Intelligence
Tagung, Berlin: Springer Verlag, 1986.

[Kodratoff & Ganascia, 1986] Kodratoff Y. & Ganascia J-G.,
Improving the Generalization Step in Learning, in Michalski R.,
Carbonell J. & Mitchell T. (eds) Machine Learning: An Artificial
Intelligence Approach, Vol. 2, Morgan Kaufmann 1986, pp. 215-244.

[Kodratoff & Tecuci, 1986] Kodratoff Y. & Tecuci G.,
Rule Learning in DISCIPOL, Proceedings of the First European
Working Session on Learning, Orsay, 1986.

[Kodratoff & Tecuci, 1987a] Kodratoff Y. & Tecuci G.,
Techniques of Design and DISCIPLE Learning Apprentice,
International Journal of Expert Systems: Research and Applications,
vol.1, no.1, pp. 39-66, 1987.

[Kodratoff & Tecuci, 1987b] Kodratoff Y. & Tecuci G.,
What is an explanation in DISCIPLE, Proceedings of the Forth
International Working Session on Learning, Irvine, California, June,
1987, Morgan Kaufmann.

186

[Kodratoff & Tecuci, 1987c] Kodratoff Y. & Tecuci G.,
DISCIPLE1: Interactive Apprentice System in Weak Theory Fields,
Proceedings of the 10th International Joint Conference on Artificial
Intelligence, Milan, 1987, Morgan Kaufmann.

[Kodratoff & Tecuci, 1987d] Kodratoff Y. & Tecuci G.,
DISCIPLE: An Integrated Expert and Learning System for Weak
Theory Fields, LRI Research Report 371, 40 pg, Orsay, September
1987.

[Kodratoff & Tecuci, 1987e] Kodratoff Y. & Tecuci G.,
The Central Role of Explanations in DISCIPLE. First European
Knowledge Acquisition for Knowledge-Based Systems Workshop,
Geseke, October 1987.

[Kodratoff & Tecuci, 1988a] Kodratoff Y. & Tecuci G.,
Learning Based on Conceptual Distance, IEEE Transactions on Pattern
Analysis and Machine Intelligence, November 1988.

[Kodratoff & Tecuci, 1988b] Kodratoff Y. & Tecuci G.,
Learning with Different Levels of Knowledge, Proc. of the 2nd
European Knowledge Acquisition for Knowledge-Based Systems
Workshop, Bonn, 19-23 June, 1988.

[Kuipers, 1979] Kuipers B.,
On Representing Commonsense Knowledge, in N.V. Findler (ed),
Associative Networks, AP, New York, 1979.

[Laird, 1988] Laird J.E.,
Proc. Fifth Int. Workshop on Machine Learning, Ann Arbor, June,
Morgan-Kaufmann, 1988.

[Langley, 1978] Langley P.W.,
BACON.1: A General Discovery System, Proceedings CSCSI, Toronto,
1978, pp.173-180.

[Langley & Carbonell, 1984] Langley P., Carbonell J.G.,
Approaches to Machine Learning, Carnegie-Mellon University,
Pennsylvania, 1984.

[Langley & Nordhausen, 1986] Langley P., Nordhausen B.,
A Framework for Empirical Discovery, Proceedings of the International
Meeting on Advances in Learning, Les Arcs, 1986.

187

[Langley, 1987] Langley P. (ed),
Proc. Forth Int. Workshop on Machine Learning, University of
California, Morgan-Kaufmann, 1987.

[Lebowitz 1986] Lebowitz M.,
Integrated Learning: Controlling Explanation, Cognitive Science, 10,
1986.

[Lebowitz, 1986] Lebowitz M.,
Concept Learning in a Rich Input Domain: Generalization-Based
Memory, in Michalski R.S., Carbonell J.G., Mitchell T.M. (eds),
Machine Learning: An Artificial Intelligence Approach, Volume 2,
Morgan-Kaufmann, 1986, pp.193-213.

[Levesque & Mylopoulos, 1979] Levesque H., Mylopoulos J.,
A Procedural Semantics for Semantic Networks, in N.V. Findler (ed),
Associative Networks, AP, New York, 1979.

[Lieberman & Wesley, 1977] Lieberman L.I., Wesley M.A.,
AUTOPASS: An Automatic Programming System for Computer
Controlled Mechanical Assembly, IBM J.Res.Develop., July, 1977.

[Mahadevan, 1985] Mahadevan S.,
Verification-based Learning: A Generalized Strategy for Inferring
Problem Reduction Methods, Proc. IJCAI-85, Los Angeles 1985, PP.
616-623.

[Malita & Malita, 1987] Malita M.M., Malita M.,
Bazele Inteligentei Artificiale, Vol.I, Ed. Tehnica, Bucharest, 1987.

[Manago, 1986] Manago M.,
Object Oriented Generalization: A Tool for Improving Knowledge-
Based Systems, Proceedings of the International Meeting on Advances
in Learning, Les Arcs, 1986.

[Manago & Kodratoff, 1987] Manago M., Kodratoff Y.,
Noise and Knowledge Acquisition, Proceedings of the 10th
International Joint Conference on Artificial Intelligence, Milan, 1987,
Morgan Kaufmann.

[Mândutianu & al. 1983] Mândutianu D., Tecuci G., Voinea S.,
Programarea Textuala a Robotilor, in Inteligenta Artificiala si Robotica,
Ed. Academiei, Bucharest, 1983.

188

[McCarthy & Hayes, 1969] McCarthy J., Hayes P.J.,
Some Philosophical Problems from the Standpoint of Artificial
Intelligence, in Machine Intelligence 6, B. Meltzer, D. Michie (eds),
Edinburgh University Press, Edinburgh, 1969.

[Mooney & Bennet, 86] Mooney R. and Bennet S.,
A Domain Independent Explanation-Based Generalizer, Proc. AAAI-
86, Philadelphia, pp. 551-555.

[Minsky, 1975] Minsky M.L.,
A Framework for Representing Knowledge, in The Psychology of
Computer Vision, Winston P.H. (ed), McGraw-Hill, New-York, 1975,
pp. 211-277.

[Michalski, 1980] Michalski R.S.,
Pattern Recognition as Rule-Guided Inductive Inference, Vol. PAMI-2,
No.4, pp. 349-361, July 1980.

[Michalski & Chilausky, 1980] Michalski R.S., Chilausky R.L.,
Learning by Being Told and Learning from Examples: An Experimental
Comparison of Two Methods of Knowledge Acquisition in the Context
of Developing an Expert System for Soybean Disease Diagnosis,
International Journal of Policy Analysis and Information Systems, No.4,
pp.125-161.

[Michalski, 1983] Michalski R.S.,
A Theory and a Methodology of Inductive Learning, Artificial
Intelligence 20(1983), pp 111-161.

[Michalski, Carbonell & Mitchell, 1983] Michalski R., Carbonell J. &
Mitchell T. (eds)
Machine Learning: An Artificial Intelligence Approach, Vol. 1, Tioga
Publishing Company 1983.

[Michalski & Stepp, 1983a] Michalski R.S., Stepp R.,
Learning From Observation: Conceptual Clustering, in Michalski R.S.,
Carbonell J.G., Mitchell T.M., (eds), Tioga Publishing Company 1983,
pp.331-364.

[Michalski & Stepp, 1983b] Michalski R.S., Stepp R.,
Automated Construction of Classification: Conceptual Clustering
Versus Numerical Taxonomy, IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol.5, No.4, pp.396-410, July 1983.

189

[Michalski & Stepp, 1983c] Michalski R.S., Stepp R.E.,
How to Structure Structured Objects, Proceedings of the International
Machine Learning Workshop, Monticello, Illinois, 1983, pp.156-160.

[Michalski & Baskin, 1983] Michalski R.S., Baskin A.B.,
Integrating Multiple Knowledge Representations and Learning
Capabilities in an Expert System: The ADVICE System, in Proceedings
IJCAI-83, Karlsruhe, 1983, pp.256-258.

[Michalski, 1984] Michalski R.S.,
Inductive Learning as Rule-guided Transformation of Symbolic
Descriptions: a Theory and Implementation, in Automatic Program
Construction Techniques, A. W. Biermann, G. Guiho and Y. Kodratoff
(eds), Mac-Millan Publishing Company, 1984, pp. 517-552.

[Michalski, 1986] Michalski R.S.,
Understanding the Nature of Learning: Issues and Research Directions,
in Michalski R., Carbonell J. & Mitchell T. (eds) Machine Learning: An
Artificial Intelligence Approach, Vol. 2, Morgan Kaufmann 1986, pp.
3-25.

[Michalski, 1986] Michalski R.S.,
Inference-based Theory of Learning, Proc. International Meeting on
Advances in Learning, Les Arcs, 1986.

[Michalski & Winston, 1986] Michalski R.S., Winston P.H.,
Variable Precision Logic, Artificial Intelligence 29 (1986), pp.121-146.

[Michalski, Carbonell & Mitchell, 1986] Michalski R., Carbonell J. &
Mitchell T. (eds)
Machine Learning: An Artificial Intelligence Approach, Vol. 2, Morgan
Kaufmann 1986.

[Michalski & al. 1986] Michalski R.S., Mozetic I, Hong J, Lavrac N.,
The AQ15 Inductive Learning System: An Overview and Experiments,
Internal Paper, University of Illinois at Urbana-Champaign, 1986.

[Michie, 1974] Michie D.,
On Machine Intelligence, Edinburgh University Press, 1974.

[Michie, 1979] Michie D. (ed),
Expert Systems in the Microelectronic Age, 1979.

190

[Michie, 1982] Michie D.,
'Man-like' Capabilities in Computers: A note on Computer Induction,
Cognition, 12 (1982), pp.97-108.

[Minsky, 1975] Minsky M.,
A Framework for Representing Knowledge, in P.H. Winston (ed), The
Psychology of Computer Vision, New-York: McGraw-Hill, 1975.

[Minton, 1985] Minton S.,
Selectively Generalizing Plans for Problem Solving, in Proceedings
IJCAI-85, Los Angeles, 1985, pp.596-599.

[Mitchell, 1978] Mitchell T.M.,
Version Spaces: An Approach to Concept Learning, Doctoral
dissertation, Stanford University, 1978.

[Mitchell & al. 1981] Mitchell T.M., Carbonell J.G., Michalski R.S.,
Special Section on Machine Learning, SIGART Newsletter, No.76,
pp.25-64, April 1981.

[Mitchell, 1982] Mitchell T.M.,
Generalization as Search, Artificial Intelligence, Vol.18, No.2, pp.203-
226, March 1982.

[Mitchell, 1983] Mitchell T.M.,
Learning and Problem Solving, Proceedings IJCAI-83, Karlsruhe, 1983,
pp.1139-1151.

[Mitchell & al. 1983] Mitchell T.M., Utgoff P.E., Banerji R.,
Learning by Experimentation, Acquiring and Refining Problem-Solving
Heuristics, in Machine Learning: An Artificial Intelligence Approach,
Michalski R.S., Carbonell J.G., Mitchell T.M., (eds), Tioga Publishing
Company 1983, pp. 163-190, now distributed in the USA by Morgan
Kaufmann and in Europe by Springer Verlag.

[Mitchell, Carbonell & Michalski, 1985] Mitchell T., Carbonell J. and
Michalski R. (eds),
Machine Learning: A Guide to Current Research, Kluwer Academic
Publishers, 1985.

[Mitchell & al. 1985] Mitchell T., Mahadevan S. and Steinberg L.,
LEAP: a Learning Apprentice System for VLSI Design, Proc. IJCAI-85,
Los Angeles 1985, 573-580.

191

[Mitchell & al. 1986] Mitchell T.M., Keller R.M., Kedar-Cabelli S.T.,
Explanation-Based Generalization: A Unifying View, Machine
Learning 1, pp. 47-80, 1986.

[Mooney & DeJong, 1985] Mooney R., DeJong J.,
Learning Schemata for Natural Language Processing, in Proceedings
IJCAI-85, Los Angeles, 1985, pp.681-687.

[Mooney & Bennet, 1986] Mooney R., Bennet S.,
A Domain Independent Explanation Based Generalizer, in Proceedings
AAAI-86, Philadelphia, 1986, pp.551-555.

[Nilsson 1971] Nilsson N.,
Problem Solving Methods in Artificial Intelligence, McGraw-Hill,
1971.

[Nilsson, 1978] Nilsson N.J.,
Some Examples of AI Mechanisms for Goal Seeking, Planning, and
Reasoning, in F. Klix (ed), Human and Artificial Intelligence, Berlin,
1978.

[Nilsson, 1980] Nilsson N.J.,
Principles of Artificial Intelligence, Tioga, Palo Alto, California, 1980.

[Pazzani & al. 1986] Pazzani M., Dyer M., Flowers M.,
The Role of Prior Causal Theories in Generalization,in Proceedings
AAAI-86, Philadelphia, 1986, pp.545-550.

[Petrescu, 1983] Petrescu M.,
Relatii Vagi si Baze de Date, The 5-th International Conference on
Control Systems and Computer Science, Bucharest, 1983, pp.149-155.

[Petrescu & Tecuci, 1986] Petrescu M. & Tecuci G.,
Sisteme expert instruibile in proiectarea asistata de calculator, A 4-a
sesiune nationala de teoria sistemelor, Craiova 1986.

[Petrescu & Tecuci, 1987] Petrescu M. & Tecuci G.,
Integrating Learning with Expert Systems, The 7-th International
Conference on Control Systems and Computer Science, Bucharest, May
1987.

[Quillian, 1968] Quillian M.R.,
Semantic Memory, in Semantic Information Processing, Minsky M.,
editor, Cambridge, Mass: MIT Press, 1968, pp. 227-270.

192

[Rajamoney & DeJong, 1987] Rajamoney S. & DeJong G,
The Classification, Detection and Handling of Imperfect Theory
Problems, Proc. IJCAI-87, Milan, pp. 205-207.

[Rajamoney, 1986] Rajamoney S.A.,
Automated Design of Experiments for Refining Theories, Master of
Science Thesis, University of Illinois at Urbana-Champaign, 1986.

[Robinson & Wilkins, 1981] Robinson A., Wilkins D.,
An Interactive Planning System, Technical Note 245, SRI International,
July, 1981, 23 pg.

[Russel, 1987] Russel S.J.,
Analogy and Single-Instance Generalization, in Langley P.(ed) Proc.
4th Int. Workshop on Machine Learning, Irvine, 1987.

[Rychener, 1984] Rychener M.D,
The Instructible Production System: a Retrospective Analysis, in
Machine Learning: An Artificial Intelligence Approach, Michalski R.S.,
Carbonell J.G., Mitchell T.M., (eds), Tioga Publishing Company 1983,
pp. 163-190.

[Sacerdoti 1975] Sacerdoti E.,
A Structure for Plans and Behavior, Technical Note 109, SRI
International, August 1975.

[Sammut & Banerji, 1986] Sammut C., Banerji R.B.,
Learning concepts by asking questions, in Machine Learning: An
Artificial Intelligence Approach, Volume 2, Michalski R.S., Carbonell
J.G., Mitchell T.M. (eds), Morgan-Kaufmann 1986, pp. 167-191.

[Sammut & Hume, 1987] Sammut C., Hume D.,
Observation and Generalization in a Simulated Robot World, in
Langley P.(ed) Proc. 4th Int. Workshop on Machine Learning, Irvine,
1987.

[Samuel, 1959] Samuel A. L.,
Some Studies in Machine Learning Using the Game of Checkers, IBM
Journal of Research and Development, No. 3, pp. 210-220, 1959.

[Silver, 1986] Silver B.,
Precondition Analysis: Learning Control Information, in Machine
Learning: An Artificial Intelligence Approach, Volume 2, Michalski
R.S., Carbonell J.G., Mitchell T.M. (eds), Morgan-Kaufmann 1986.

193

[Simon & Lee, 1974] Simon H., A. and Lee G.,
Problem Solving and Rule Induction: A Unified View, in Gregg L. (ed),
Knowledge and Cognition, Hillsdale, N.J.: Lawrence Erlbaum, 105-
127.

[Simon, 1983] Simon H.,
Why Should Machines Learn ?, in Michalski R.S., Carbonell J.G.,
Mitchell T.M., (eds), Tioga Publishing Company 1983, pp.25-38.

[Siqueira & Puget, 1988] Siqueira J.L.N., Puget J.-F.,
Explanation-Based Generalization of Failures, To appear in Proc.
ECAI, 1988.

[Sleeman, 1987] Sleeman D.,
Some Challenges for Intelligent Tutoring Systems, Proceedings IJACI-
87, Milan, 1987, pp.1166-1168.

[Sleeman & Hirsh, 1987] Sleeman D., Hirsh H.,
Research Report, Edinburgh University, 1987.

[Smith & al. 1977] Smith R.G., Mitchell T.M., Chestek R.A.,
Buchanan B.G.,
A Model for Learning Systems, Proceedings IJCAI-77, Massachussets,
1977, pp.338-343.

[Smith & al. 85] Smith R., Winston H., Mitchell T. and Buchanan B.,
Representation and Use of Explicit Justifications for Knowledge Base
Refinement, Proc. IJCAI-85, Los Angeles.

[Soloway & Riseman, 1977] Soloway E.M., Riseman E.M.,
Levels of Pattern Description in Learning, Proceedings IJCAI-77,
Massachussets, 1977, pp.801-811.

[Sridharan & Bresina, 1982] Sridharan N. and Bresina J.,
Plan Formation in Large Realistic Domains, Proc. CSCSI Conference,
Saskatoon, Saskatchewan 1982, 12-18.

[Sridharan & Bresina, 1983] Sridharan N. and Bresina J.,
A Mechanism for the Management of Partial and Indefinite
Descriptions, Technical Report CBM-TR-134, Rutgers Univ., 1983.

[Stefik, 1980] Stefik M.,
Planning with Constraints (MOLGEN: Part 1), in Artificial Intelligence
14, no.2, September 1980, pp.111-139.

194

[Stefik, 1980] Stefik M.,
Planning and Meta-Planning (MOLGEN: Part 2), in Artificial
Intelligence 14, no.2, September 1980, pp.141-170.

[Stefik & al. 1982] Stefik M., Aikins J., Balzer R., Benoit J., Birnbaum
L., Hayes-Roth F., Sacerdoti E.,
The Organization of Expert Systems, A Tutorial, Artificial Intelligence,
18 (1982), pp.135-173.

[Steels & Van de Welde, 1985] Steels L., Van de Welde W,
Learning in Second Generation Expert Systems, in J.S. Kowalik (ed),
Knowledge-based Problem Solving, New Jersey: Prentice-Hall, 1985.

[Tangwongsan & Fu, 1979] Tangwongsan S., Fu K.S.,
An Application of Learning to Robotic Planning, International Journal
of Computer and Information Sciences, Vol. 8, No. 4, 1979.

[Tate, 77] Tate A.,
Generating Project Networks, Proc. IJCAI-77, Massachusetts, pp. 888-
893.

[Tecuci, 1981] Tecuci G.,
H-Graphs and their Applications to Pattern Recognition, Buletinul
I.P.Bucuresti, Seria Electrotehnica, no.3, 1981, pp.23-34.

[Tecuci & al. 1983] Tecuci G., Mândutianu D., Voinea S.,
A Hierarchical System for Robot Programming, Computers and
Artificial Intelligence, 2, 1983.

[Tecuci, 1983] Tecuci G.,
Sistem de Planificare a Robotilor Industriali pentru Operatii Complexe,
Buletinul Roman de Informatica, no.1, 1983.

[Tecuci, 1984a] Tecuci G.,
Learning Hierarchical Descriptions from Examples, Computers and
Artificial Intelligence 3, 211-222, 1984.

[Tecuci, 1984b] Tecuci G.,
A Framework for Constructing Knowledge-based Planning Systems, in
Plander I. (ed), Artificial Intelligence and Information-control Systems
for Robots, North-Holland, 1984.

[Tecuci, 1985] Tecuci G.,
SIPLAN: Un Sistem de Planificare a Actiunilor cu Posibilitati de
Invatare, Buletinul Roman de Informatica, 1, 1985.

195

[Tecuci & al. 1986] Tecuci G., Gutu S., Burducea N., Bodnaru Z.,
Proiectarea Tehnologiilor cu Sistemul Siplan, Buletinul Roman de
Informatica si Tehnica de Calcul, 1, 1986.

[Tecuci & al. 1987] G. Tecuci, Y. Kodratoff, Z. Bodnaru, T. Brunet,
DISCIPLE: An expert and learning system, Expert Systems 87,
Brighton, December, 14-17, in D. S. Moralee (ed): Research and
Development in Expert Systems IV, Cambridge University Press, 1987.

[Tecuci, 1987] Tecuci G.,
Steps Towards Second Generation Expert Systems, Proceedings of the
Forth International Conference on Artificial Intelligence and
Information-control Systems for Robots, Smolenice, October 1987.

[Tecuci, 1988] Tecuci G.,
Mediu de dezvoltare a sistemelor expert instruibile pentru proiectarea
asistata de calculator, PhD Thesis, Polytechnical Institute of Bucharest,
1988.

[Tenenberg, 1986] Tenenberg J.,
Planning with Abstraction, in Proceedings AAAI-86, Philadelphia,
1986, pp.76-80.

[Tufis & Cristea, 1985] Tufis D., Cristea D.,
IURES - A Human Engineering Approach to Natural Language
Question Answering Systems, in W. Bibel, B. Petkoff (eds): Artificial
Intelligence Methodology, Systems, Applications, North-Holland, 1985.

[Tufis, 1986] Tufis D.,
IURES-V2: A System to Aid in Building Natural Language Interfaces,
in Proceedings on the International Conference on Advanced Dialog
Systems and Natural Language Understanding, Suwalki, Poland, 1986.

[Utgoff, 1986] Utgoff P. E.,
Shift of Bias for Inductive Concept Learning, in Machine Learning: An
Artificial Intelligence Approach, Volume 2, Michalski R.S., Carbonell
J.G., Mitchell T.M. (eds), Morgan-Kaufmann 1986, pp. 107-148.

[Van Ryzin, 1977] Van Ryzin J.(ed),
Classification and Clustering, Academic Press, New York, 1977.

196

[Van Someren, 1986] Van Someren M.W.,
Constructive Induction Rules: Reducing the Description Space for Rule
Learning, in Proceedings of the First European Working Session on
Learning, Orsay, February, 1986.

[Vere, 1978] Vere S.A.,
Inductive Learning of Relational Productions, in D.A. Waterman, F.
Hayes-Roth (eds), Pattern-Directed Inference Systems, Academic Press,
New York, 1978.

[Vrain, 1987] Vrain, C.,
Un Outil de Généralisation Utilisant Systématiquement les Théorèmes:
Le Système OGUST, Thèse, Université de Paris-Sud, 1987.

[Waldinger, 1977] Waldinger R.,
Achieving Several Goals Simultaneously, in E.W. Elcock, D. Michie
(eds), Machine Intelligence 8, New York: Halstead/Wiley.

[Waterman & Hayes-Roth, 1978] Waterman D, Hayes-Roth F., (eds)
Pattern-Directed Inference Systems, Academic Press, New York, 1978.

[Weber & Nilsson, 1981] Weber B.L., Nilsson N.J. (eds),
Readings in Artificial Intelligence,Tioga, Palo Alto, California, 1981.

[Wilenski, 1980] Wilenski R.,
Meta-Planning, Proceedings of AAAI-80, Stanford, 1980, pp.334-336.

[Wilkins, 1984] Wilkins D.,
Domain Independent Planning: Representation and Plan Generation,
Artificial Intelligence 22, pp 269-301.

[Winston, 1970] Winston P.H.,
Learning Structural Descriptions from Examples, Rep. TR-231, MIT.
Also available in P.H. Winston (ed), The Psychology of Computer
Vision, New-York: McGraw-Hill, 1975.

[Winston, 1977] Winston P.H.,
Artificial Intelligence, New York: Addison Wesley, 1977.

[Winston, 1980] Winston P.H.,
Learning and Reasoning by Analogy, CACM 23, no. 12, pp. 689-703.

197

[Winston & Horn, 1981] Winston P.H., Horn B.,
LISP, Addison-Wesley, Massachussets, 1981.

[Winston & al. 1983] Winston P.H., Katz B., Binford T., Lowry M.,
Learning Physical Descriptions from Functional Definitions, Examples
and Precedents, in Proceedings AAAI-83, Washington, 1983, pp.433-
439.

[Winston, 1986] Winston P.H.,
Learning by Augmenting Rules and Accumulating Censors, in
Michalski R.S., Carbonell J.G., Mitchell T.M. (eds), Machine Learning:
An Artificial Intelligence Approach, Volume 2, Morgan-Kaufmann
1986, pp. 45-61.

Nom:
Gheorghe TECUCI

Titre:
DISCIPLE: une Théorie, une Méthodologie et un Système pour Apprendre
des Connaissances Expertes.

Résumé:
DISCIPLE est un système qui illustre une théorie et une méthodologie
d'apprentissage des connaissances expertes. Il est composé d'un système
expert et d'un système d'apprentissage qui utilisent une même base de
connaissances. DISCIPLE part de connaissances élémentaires sur un domaine
d'application (une théorie du domaine) et, au cours de sessions interactives de
résolution de problèmes, apprend des règles générales à partir des solutions
spécifiques fournies par l'expert humain. La méthode de résolution de
problèmes combine la réduction de problèmes, l'utilisation de contraintes et
l'analogie. Quant à l'apprentissage, DISCIPLE utilise différentes méthodes, en
fonction de ses connaissances sur la solution de l'utilisateur. Cette solution est
considérée comme un exemple pour apprendre une règle générale. Dans le cas
d'une théorie complète sur l'exemple, DISCIPLE apprend à partir
d'explications, ce qui augmente son efficacité. Dans le cas d'une théorie
faible, il intègre l'apprentissage à partir d'explications, l'apprentissage par
analogie et l'apprentissage empirique, développant ainsi sa compétence.
Enfin, dans le cas d'une théorie incomplète, il apprend en combinant les deux
méthodes précédentes, ce qui améliore tant sa compétence que son efficacité.

Mots clés:
Apprentissage, Systèmes Experts, Intelligence Artificielle, Acquisition de
Connaissances, Apprentissage à Partir d'Explications, Apprentissage par
Analogie, Apprentissage Empirique, Regroupement Logique

