
 

 

Abstract 
This paper presents several design principles used in 
the development of the Disciple learning agents. The 
process of developing such an agent relies on 
importing ontologies from existing knowledge 
repositories, and on teaching the agent how to 
perform various tasks, in a way that resembles how 
an expert would teach a human apprentice when 
solving problems in cooperation. Experimental 
results support the usefulness of the presented 
principles which may be useful for the development 
of other agents. 

Introduction 
For almost 20 years we have performed research on 
developing the Disciple theory and the associated 
methodologies and tools for building agents that 
incorporate the knowledge of a subject matter expert 
(Tecuci 1988, 1998; Boicu 2002). The long term goal of 
this research is to create a type of agent that can be taught 
directly by a subject matter expert (SME), in a way that 
resembles how the SME would teach a human apprentice 
when solving problems in cooperation. For instance, the 
SME may teach the agent by providing it examples on how 
to solve specific problems, by helping it to understand the 
solutions, and by supervising and correcting the problem 
solving behavior of the agent. Our claim is that the Disciple 
approach will lead to rapid development and easy 
maintenance of knowledge-based agents, by SMEs and 
typical computer users, who will require only limited 
assistance from knowledge engineers. 

General research on the development of expert and 
knowledge-based systems (Buchanan and Wilkins 1993), 
as well as our own research, has led to the identification of 
several design principles, which we have successfully used 
in the Disciple approach. This paper states these principles 
and illustrates them in Disciple-RKF, the implementation 
of the most recent version of the Disciple approach. Our 
claim is that these principles (some of which are already 
well recognized) are useful for the design of other types of 
agents. 
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The architecture of Disciple-RKF is presented in the next 
section, illustrating three architectural design principles. 
The first is the separation between a domain-independent 
agent shell, and the domain-specific modules, which 
together constitute a knowledge-based agent customized 
for a specific application. The second principle is the 
separation between the modules dedicated to different 
cognitive functions, such as problem solving, learning, and 
memory. The third principle is the implementation of the 
modules as a group of collaborative agents. 

The section Problem Solving presents the problem 
solving component of Disciple-RKF. The corresponding 
design principle is the use of a general problem solving 
paradigm that is applicable to a wide range of expertise 
domains, such as planning or critiquing. 

The follow-on section discusses the organization of the 
knowledge base, and illustrates two additional design 
principles. The first is the separation between the ontology 
that defines the concepts from an application domain, and 
the actual problem solving rules (or methods) that are 
expressed with these concepts. The second principle relates 
to the representation and use of the partially learned 
knowledge. 

The paper continues with the presentation of the 
knowledge acquisition and learning component of 
Disciple, and illustrates three additional design 
principles: 1) Integration of mixed-initiative problem 
solving and learning (where the SME and the agent 
solve problems in cooperation and the agent learns from 
the problem solving contributions of the SME); 2) 
Integration of teaching and learning (where the agent 
helps the SME to teach it, by asking relevant questions, 
and the SME helps the agent to learn, by providing 
examples, hints and explanations); and 3) Multistrategy 
learning (where the agent uses multiple strategies, such 
as learning from examples, from explanations, and by 
analogy, to learn general concepts and rules). 

The subsequent section presents the end-to-end 
methodology of developing a Disciple agent, which is 
based on the above principles. Finally, the last section 
presents some evaluation results that support these 
principles. 
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The Architecture of a Disciple Agent 
The existing agent-building tools trade power (i.e., the 
assistance given to the developer) against generality 
(i.e., their domain of applicability), covering a large 
spectrum. At the power end of the spectrum are the tools 
customized for a problem-solving method and a 
particular domain, such as SALT with its propose-and-
revise method for design (Marcus and McDermott 
1989). At the generality end are the tools applicable to a 
wide range of tasks and domains, such as SOAR (Jones 
et al. 1999) and CLIPS (Giarratano and Riley 1994). In 
between are the tools that are method-specific and 
domain independent (Chandrasekaran and Johnson 
1993).  

The first architectural design principle attempts to 
find the best trade-off between generality and power, 
and is illustrated by the Disciple agent architecture 
presented in Figure 1. 
Design principle 1 (generality-power tradeoff): 
Structure the architecture of the agent building tool into 
a reusable domain-independent learning agent shell 
(which ensures the generality of the tool) and domain-
specific modules (which need to be built for a specific 
agent, to ensure the efficiency and domain-adaptability 
of the tool). 

Disciple-RKF is a learning agent shell (Tecuci, 1998). 
Its main components, presented in the left hand side of 
Figure 1, are: 
• A problem solving component based on task reduction. It 

includes a modeling agent that helps the user to express 
his/her contributions to the problem solving process, a 
mixed-initiative (step-by-step) problem solving agent, 
and an autonomous problem solving agent. 

• A learning component for acquiring and refining the 
knowledge of the agent, allowing a wide range of 

operations, from ontology import and user definition of 
knowledge base elements (through the use of editors and 
browsers), to ontology learning and rule learning. 

• A knowledge base manager which controls the access 
and the updates to the knowledge base. Each module of 
Disciple can access the knowledge base only through the 
functions of the knowledge base manager. 

• A window-based, domain-independent, graphical user 
interface. 

The three components in the right hand side of Figure 1 
are the typical domain dependent components of a 
Disciple agent that was customized for a specific 
application: 
• A customized problem solving component that 

extends the basic task-reduction component in order to 
satisfy the specific problem solving requirements of 
the application domain. 

• Customized graphical user interfaces which are built 
for the specific Disciple agent to allow the SMEs and 
the end users to communicate with the agent as close 
to the way they are used to communicate as possible. 

• The knowledge base of the Disciple agent. 
The next design principle illustrated by the 

architecture of a Disciple agent is well-represented in 
several cognitive architectures: 
Design principle 2 (cognitive functions separation): 
Structure the architecture of the agent into separate 
modules, each dedicated to a different cognitive 
function, such as communication, problem solving, 
learning, and memory. 

Finally, the third architectural principle illustrated by 
Disciple-RKF is: 
Design principle 3 (cognitive module as collaborative 
agent): Implement each cognitive module as a 
collaborative agent, in a mixed-initiative framework. 

A discussion of mixed-initiative reasoning in Disciple 
is provided in (Tecuci et al. 2003; Boicu et al. 2003). 
 The next sections discuss additional design principles 
that are illustrated by the individual modules of 
Disciple-RKF. 
 

Problem Solving 
Design principle 4 (general problem solving 
paradigm): Base the problem solver of the learning 
agent on a general problem solving paradigm (such as 
task reduction, state-space search, or case-based 
reasoning), that can be applied to a wide range of 
application domains, but develop a modeling framework 
specialized for that paradigm, to help the SMEs express 
their reasoning process and teach the agent. 
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Interface
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Figure 1: General architecture of a Disciple agent. 



 

 

Determine a COG candidate for Allied_Forces_1943 which is a multi_member_force

What type of strategic COG candidate should I consider for this multi_member_force?

I consider a candidate corresponding to a member of the multi_member_force

Therefore I need to 

US_1943

Determine a COG candidate for US_1943

Which is a member of Allied_Forces_1943?

Therefore I need to 

Determine a COG candidate for Sicily_1943
I need to 

Which is an opposing_force in the Sicily_1943 scenario?

Allied_Forces_1943 

Determine a COG candidate for Allied_Forces_1943
Therefore I need to 

Is Allied_Forces_1943 a single_member_force or a multi_member_force?

Allied_Forces_1943 is a multi_member_force

Therefore I need to 

Determine a COG candidate corresponding to a member 
of the Allied_Forces_1943

Figure 3: An illustration of task reduction. 

The concept of a learning agent shell (illustrated by 
Disciple-RKF), with its domain-independent problem 
solving and learning components (see Figure 1), is an 
extension of the concept of expert system shell (Clancey 
1984). An expert system shell consists of a general 
inference engine for a given expertise domain (such as 
diagnosis, design, planning, scheduling, monitoring, or 
interpretation), and a representation formalism for encoding 
the knowledge base for a particular application in that 
domain. The idea of the expert system shell emerged from 
the architectural separation between the general inference 
engine and the application-specific knowledge base, with 
the goal of reusing the inference engine for a new system.  

The problem solving component of the Disciple learning 
agent shell is based on the task reduction paradigm, and is 
more general than even the inference engine of an expert 
system shell. The principle of the task reduction paradigm 
is that a complex problem solving task (e.g. T0 in Figure 2) 
is successively reduced to simpler tasks, then the solutions 
of the simplest tasks are found (e.g. S11, … , S1n) and these 
solutions are successively combined into the solution of the 
initial task (e.g. S0), as illustrated in the left hand side of 
Figure 2 (Nilsson 1971; Powell and Schmidt 1988).  

In the Disciple approach we have refined this general 
strategy to serve both as a problem solving method for the 
agent and as a modeling language for the SME (Bowman 
2002). We did this by introducing questions and answers 
that guide the task reduction process, as illustrated in the 
right hand side of Figure 2. Finding a solution of a problem 
solving task (T0) becomes an iterative process where, at 
each step, the expert (and/or the agent) looks for some 
relevant information by asking a question Q. The 
answer A identifies that piece of information and 
leads to the reduction of the current task to 
simpler tasks. Alternative questions correspond to 
alternative problem solving strategies. Several 
answers (e.g. A11a or A11m) correspond to several 
solutions. 

Figures 3 illustrate this process with an 
example from the center of gravity analysis 
domain. In this example, the SME shows the 
agent how to reason to determine the centers of 
gravity of the opposing forces from World War 
II, at the time of the invasion of the island of 
Sicily. 

Our claim is that this formulation of the task 
reduction paradigm is appropriate for naturally 
modeling a wide range of expertise domains. 
This claim is supported by the development of 
the following complex Disciple agents, as part 
of the DARPA’s High Performance Knowledge 
Bases (1997-2000), and Rapid Knowledge 
Formation (2000-2004) programs (Tecuci and 
Boicu 2002a): 

• A planning agent, for determining how a convoy of 
military vehicles can circumvent or overcome 
obstacles in their path, such as damaged bridges 
(Tecuci et al., 1999). 

• A critiquing agent, for identifying strengths and 
weaknesses in a military course of action, based on the 
principles of war and the tenets of Army operation 
(Tecuci et al., 2001). 

• An analysis agent, for identification and testing of 
strategic center of gravity candidates in military 
conflicts (Tecuci et al., 2002b). 
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Figure 2: Question-answering based task reduction. 



 

 

Knowledge Base = Ontology + Rules 
Design principle 5 (knowledge base structuring): 
Structure the knowledge base into its more general and 
reusable component (the object ontology), and its more 
specific component (the reasoning methods or rules). 

The object ontology is a hierarchical representation of 
the objects and types of objects from a particular 
domain, such as military or medicine. That is, it 
represents the different kinds of objects, the properties 
of each object, and the relationships between objects. 
Figure 4, for instance, presents a fragment of the 
Disciple ontology for the center of gravity analysis 
domain (Stanescu et al., 2003). 

The object ontology provides a representation 
vocabulary for the reduction and composition rules. 
Each reduction rule is an IF-THEN structure that 
expresses the conditions under which a task T1 can be 
reduced to the simpler tasks T11, … , T1n. Similarly, a 
composition rule is an IF-THEN structure that expresses 
the conditions under which the solutions S11, … , S1n of 
the tasks T11, … , T1n can be combined into a solution S1 
of T1 (see Figure 2). The bottom part of Figure 6 shows 
the informal and the formal structures of a task reduction 
rule. 

This organization of the knowledge base is very 
important because it clearly separates the most general 
part of it (the object ontology), from its most specific 
part (the rules). Indeed, an object ontology is 
characteristic to an entire domain. In the military 
domain, for instance, the object ontology will include 
descriptions of military forces. These descriptions are 
most likely needed in almost any specific military 
application. Because building the object ontology is a 
very complex process, it makes sense to reuse these 
descriptions when developing a knowledge base for 
another military application, rather than starting from 
scratch. This justifies why the Disciple learning agent 
shell includes modules for ontology import and ontology 

merging (Barbulescu et al. 2003). 
 The rules from the knowledge base are much more 
specific than the object ontology. Consider, for instance, 
two agents in the military domain, one that critiques 
courses of action with respect to the principles of war 
(Tecuci et al., 2001), and another that analyzes the 
center of gravity candidates of a force (Tecuci et al., 
2002). While both agents need to reason with military 
forces, their reasoning rules are very different, being 
specific not only to their particular application (course 
of action critiquing vs. center of gravity analysis), but 
also to the SMEs whose expertise they encode.  

Design principle 6 (partially learned knowledge): 
Design the agent to allow the representation, use, and 
continuous refinement of partially learned knowledge. 

The Disciple agents have the capability of 
incrementally learning reasoning rules from the SMEs, 
as will be discussed in the next section. This capability, 
in turn, requires the capability of representing and 
reasoning with incompletely learned knowledge pieces. 
At the basis of Disciple’s learnable representation of 
knowledge are the notion of plausible version space 
(Tecuci 1998) and the use of the object ontology as an 
incomplete generalization hierarchy for learning. A 
plausible version space is an approximate representation 
for a partially learned concept, as illustrated in Figure 5. 
The partially learned concept is represented by a 
plausible upper bound concept which, as an 
approximation, is more general than the concept Eh to be 
learned, and by a plausible lower bound concept which, 
again as an approximation, is less general than Eh. 
During learning, the two bounds (which are first order 
logical expressions) converge toward one another 
through successive generalizations and specializations, 
approximating Eh better and better. Notice, however, 
that these generalization and specialization operations 
are based on an ontology that is itself evolving during 
knowledge acquisition and learning (for instance, by 
adding new concepts in the hierarchy from Figure 4). 
Therefore Disciple addresses the complex problem of 
learning in the context of an evolving representation 
language. All the knowledge pieces from the agent’s 
knowledge base (objects, tasks, and rules) are 
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Figure 4: Ontology fragment for COG analysis. 
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Figure 5: A representation of a plausible version space. 



 

 

represented using plausible version spaces, and may be 
learned by the agent from specific examples provided by 
the SME. For instance, the rule from the bottom of 
Figure 6 was learned from the example shown at the top 
of Figure 6, and the explanation of this example. Notice 
the plausible version space condition of the formal 
structure of the rule, represented by a plausible upper 
bound condition and a plausible lower bound condition. 
 

Learning 
The main strength of a Disciple agent is its ability to learn 
from an SME. This capability is based on three design 
principles that will be briefly described in the following. 
Design principle 7 (integrated problem solving and 
learning): Design the agent to support integrated  
problem solving and learning, where the SME and the 
agent solve problems in cooperation and the agent 
learns from the problem solving contributions of the 
SME, and from its own problem solving attempts. 

This form of situated learning during problem solving 
facilitates the definition of examples by the SME, and the 
learning and refinement of the rules by the agent. 

Initially, the interaction between the SME and a 
Disciple agent has the flavor of a teacher-student 
interaction, where the SME shows the agent each 
problem solving step required to solve a task, and the 
agent learns a general task reduction rule from each step. 
For instance, the rule from the bottom of Figure 6 was 
learned from the SME-provided example shown at the 
top of Figure 6 (which was actually provided as the 
bottom step from the problem solving tree in Figure 3). 

As Disciple learns new rules from the SME, the 
interaction between the SME and Disciple evolves from a 
teacher-student interaction, toward an interaction where 
both collaborate in solving a problem. During this mixed-
initiative problem solving phase, Disciple learns not only 
from the contributions of the SME, but also from its own 
successful or unsuccessful problem solving attempts, which 
lead to the refinement of the rule’s plausible version space 
condition (Boicu et al., 2000). 
Design principle 8 (integrated teaching and learning): 
Design the agent to support integrated teaching and 
learning, where the agent helps the SME to teach it (e.g. 
by asking relevant questions), and the SME helps the 
agent to learn (e.g. by providing examples, hints and 
explanations). 

Let us consider, for instance, the example from the top 
of Figure 6, which was provided by the SME. The SME 
helps the agent to understand that the meaning of the 
Question–Answer pair from this example is 
“Allied_Forces_1943 has_as_member US_1943”, and 
that this is the reason of performing the reduction 

represented by this example. As a consequence, Disciple 
automatically generates the plausible version space rule 
from the bottom of Figure 6, where the plausible lower 
bound condition is the minimal generalization of the 
above explanation piece and the other objects from the 
example, and the plausible upper bound is the maximal 
generalization. Both these generalizations are based on 
the agent’s ontology, a fragment of which is shown in 
Figure 4. The middle part of Figure 6 shows also the 
informal structure of the learned rule. This informal 
structure preserves the natural language of the SME and 
is used in agent-user communication. The formal 
structure from the bottom part of Figure 6 is used in the 
actual reasoning of the agent. 
Design principle 9 (multistrategy learning): Design the 
learning module of the agent as a multistrategy learner that 
synergistically integrates several learning strategies, 
taking advantage of their complementary strengths to 
compensate for each other’s weaknesses (Michalski and 
Tecuci, 1994). 

For instance, Figure 7 represents the rule refinement 
method of Disciple that integrates learning by analogy and 
experimentation, learning from examples, and learning 

Figure 6: An example and the rule learned from it. 
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from explanations. The plausible upper bound condition of 
a learned rule allows it to apply to situations that are 
analogous with the one from which the rule was learned. If 
the SME judges this application as correct, then this 
represents a new positive example of the rule, and the 
plausible lower bound condition is generalized to cover it. 
Otherwise, the agent will interact with the SME to find an 
explanation of why the application is incorrect, and will 
specialize the rule’s conditions appropriately. Rule 
refinement could lead to a complex task reduction rule, 
with additional except-when conditions which should not 
be satisfied in order for the rule to be applicable (Boicu et 
al. 2000).  
 

Agent Development Methodology 
As indicated in Figure 8, the Disciple approach covers 
all the phases of agent development and use. First, the 
knowledge engineer works with the SME to develop an 
initial model of how the SME solves problems, based on 
the task reduction paradigm (1). The model identifies 
also the object concepts that need to be present in 
Disciple’s ontology so that it can perform this type of 
reasoning. These object concepts represent a 
specification of the needed ontology, specification that 
guides the process of importing ontological knowledge 
from existing knowledge repositories (2). The 
knowledge engineer and the SME extend the imported 
ontology and define the scripts for scenario elicitation 
(3).  

The result of these initial knowledge base 
development steps is a complete enough object ontology 
that will allow a SME to train the Disciple agent how to 
solve problems, with limited assistance from a 
knowledge engineer. First, during scenario elicitation 
(4), Disciple guides the SME to describe a scenario and 
then creates a formal description of it consisting of 
instances in the object ontology. Then, using the initial 
domain model as a guide, the SME expresses in English 
how he or she solves specific problems through task 

reduction (5). During task learning (6) the SME and 
Disciple collaborate in formalizing the tasks from the 
SME’s examples, and Disciple learns general task 
patterns. Then the SME helps Disciple to understand 
each task reduction step and Disciple learns general task 
reduction rules (7). Disciple uses the partially learned 
rules in problem solving and then refines them based on 
SME’s feedback (8). At the same time, Disciple extends 
the object ontology with new objects and features (9). 
During problem solving (10) Disciple automatically 
solves problems, providing solutions and detailed 
justifications.  

While the above is the normal sequence of these steps, 
there is also the need to return to a previous step. For 
instance, while performing the step-by-step problem 
solving and rule refinement, the SME may need to 
define a new reduction which requires him/her to 
perform modeling, task learning and rule learning. 

It is possible for copies of Disciple agents to be 
trained in parallel by different SMEs. In this case the 
individual knowledge bases have to be merged into an 
integrated knowledge base (11). The resulting 
knowledge base can also be exported for use in the 
development of new agents (12). The last phase 
represents the use of the developed Disciple agent by the 
intended end-users (13). 

 
Evaluation 

Over the last four years, several experiments have been 
performed at the US Army War College, with 
increasingly more capable versions of Disciple.  

During three successive sessions of the “589jw 
Military Applications of Artificial Intelligence” course 
(held in Spring 2001, Spring 2002, and Spring 2003, 
respectively), a total of 38 US and international officers 
from all branches of the military have trained personal 
Disciple agents, with limited assistance from knowledge 
engineers. At the end of each experiment, we have asked 
the military experts to express their disagreement or 
agreement with the following statement: “I think that a 
subject matter expert can use Disciple to build an agent, 
with limited assistance from a knowledge engineer.”  

Out of the 38 experts, 10 strongly agreed with the 
above statement, 20 of them agreed, 7 were neutral, and 
1 disagreed, which represents a very encouraging result. 

Successive versions of trained Disciple agents were 
also used in 8 sessions of the “319jw Case Studies in 
COG Analysis” course (the COG course), by a total of 
71 military students. In the COG courses, the students 
have used Disciple as an intelligent assistant that helped 
them to develop a Center of Gravity analysis of a war 
scenario. For instance, all the 8 students from the Spring 
2003 session of the COG course have agreed or strongly 
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Figure 7: The rule refinement method of Disciple. 



 

 

agreed with the following statements: “The use of 
Disciple is an assignment that is well suited to the 
course's learning objectives” and “Disciple should be 
used in future versions of this course”. 

The significance of this result is that it shows that the 
Disciple approach can be used to build practical agents 
for complex real-world problems. 

More evaluation results are presented in (Tecuci et al., 
2001; Tecuci et al., 2002). 

While several of the design principles discussed in 
this paper are not unique to Disciple, what is unique is 
the integrated application of all of them within a single 
agent architecture, which proved to be very successful, 
as suggested by the above evaluation results. 
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