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Learning-based Knowledge Representation 

The knowledge representation of the Disciple agents was designed to facilitate the basic operations 

involved in learning, including comparing the generality of concepts, generalizing concepts, and 

specializing concepts. This has led to the learning-based representation presented in the following. 

1. Concept Representation 

Using the (object and feature) concepts from the object ontology (Tecuci and Boicu, 2008), one can 

define more complex concepts as logical expressions involving these primary concepts. For example, the 

concept “PhD student interested in a PhD research area” may be expressed as shown in [1]. 

?O1 instance of PhD student       [1] 

 is interested in ?O2  

?O2 instance of PhD research area 

One may interpret this concept as representing the set of instances of the pair {?O1, ?O2} which satisfy the 

expression [1]. In general, the basic representation unit (BRU) for a more complex concept has the form 

of a sequence (?O1, ?O2 ,…, ?On), where each ?Oi has the structure indicated by [2], called clause. 

?Oi instance of concepti        [2] 

 featurei1  ?Oi1 

 . . .  

 featurein  ?Oim 

Concepti is either an object concept from the object ontology, or a numeric interval, or a set of numbers, 

or a set of strings, or an ordered set of intervals. ?Oi1 … ?Oim are distinct variables from the sequence 

(?O1, ?O2, … , ?On).  

A concept may be a conjunctive expression of form [3], meaning that any instance of the concept 

satisfies BRU and does not satisfy BRU1 and … and does not satisfy BRUp. 

BRU  not BRU1  …  not BRUp        [3] 

However, instead of “not” we write “Except When”. For example, expression *4+ represents the concept 

“PhD student interested in a PhD research area that does not require programming”. 

?O1 instance of PhD student       [4] 

 is interested in ?O2  

?O2 instance of PhD research area 

Except When 

?O2 instance of PhD research area 

 requires  “programming”  
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Exercise 

What does the following concept represents? 

?O1 instance of course 

 has as reading ?O2 

?O2 instance of publication 

 has as author ?O3 

?O3 instance of professor 

The above concept represents the set of triples (?O1, ?O2 ,?O3) which, informally, can be expressed as 

“courses that have as readings publications by professors”. 

In the next sections we will describe in detail the basic learning operations dealing with concepts: 

comparing the generality of concepts, generalizing concepts, and specializing concepts. 

2. Generalization and Specialization Rules 

A generalization rule is a rule that transforms a concept into a more general concept. The generalization 

rules are usually inductive transformations. The inductive transformations are not truth-preserving but 

falsity-preserving. That is, if ‘P’ is true and is inductively generalized to ‘Q’, then the truth of ‘Q’ is not 

guaranteed. However, if P is false then Q is also false. 

There are two other types of transformation rules: specialization rules and reformulation rules. 

A specialization rule transforms a concept into a less general one. The reverse of any generalization rule 

is a specialization rule. Specialization rules are deductive, truth-preserving transformations. 

A reformulation rule transforms a concept into another, logically equivalent concept. Reformulation 

rules are also deductive, truth-preserving transformations. 

In (Tecuci and Boicu, 2008) a concept was defined as representing a set of instances. In order to show 

that a concept P is more general than a concept Q, that definition would require the computation of the 

(possibly infinite) sets of the instances of P and Q.  

The generalization rules allow one to prove that a concept P is more general than another concept Q by 

manipulating the descriptions of P and Q, without computing the sets of instances that they represent: 

If one can transform concept P into concept Q by applying a sequence of generalization rules, then Q is 

more general than P. 

Some of the most used generalization rules, which are described in the following, are:  

Turning constants into variables; 

Turning occurrences of a variable into different variables; 

Climbing the generalization hierarchies; 
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Dropping conditions; 

Extending intervals; 

Extending ordered sets of intervals; 

Extending discrete sets; 

Using feature definitions; 

Using inference rules. 

Turning Constants into Variables  

The turning constants into variables generalization rule consists in generalizing an expression by 

replacing a constant with a variable. For example, expression [5] represents the following concept: “the 

set of professors with 55 publications”.  

E1 = ?O1 instance of  professor     [5] 

             number of publications 55 

By replacing 55 with a variable ?N1 that can take any value, we generalize this concept to the one shown 

in [6]: “the set of professors with any number of publications”. In particular, ?N1 could be 55. Therefore the 

second concept includes the first one. 

E2 = ?O1 instance of  professor     [6] 

             number of publications ?N1 

Conversely, by replacing ?N1 with 55, we specialize the concept [6] to the concept [5]. The important 

thing to notice here is that by a simple syntactic operation (transforming a number into a variable) we 

can generalize a concept. This is one way in which an agent generalizes concepts. 

Turning Occurrences of a Variable into Different Variables 

According to this rule, the expression [7] may be generalized to expression [8] by turning the two 

occurrences of the variable ?O3 in E1 into two variables, ?O31 and ?O32: 

E1 = ?O1 instance of paper       [7] 

  is authored by ?O3 

 ?O2 instance of paper 

  is authored by ?O3 

 ?O3 instance of professor 

 

E2 = ?O1 instance of paper       [8] 

  is authored by ?O31 

 ?O2 instance of paper 

  is authored by ?O32 

 ?O31 instance of professor 

 ?O32 instance of professor 
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E1 may be interpreted as representing the set of sequences (?O1, ?O2 ,?O3, ?O3) expressing: “papers ?O1 

and ?O2 authored by the same professor ?O3”.  

E2 may be interpreted as representing the set of sequences (?O1, ?O2 ,?O31, ?O32) expressing: “papers 

?O1 and ?O2 authored by the professors ?O31 and?O31, respectively”. In particular, ?O31 and?O31, may 

represent the same professor. Therefore, the second set includes the first one, and the second 

expression is more general than the first one.  

Climbing the Generalization Hierarchies 

One can also generalize an expression by replacing a concept from its description with a more general 

concept, according to some generalization hierarchy. For instance, the expression [9] 

E1 = ?O1 instance of assistant professor     [9] 

  has as employer ?O2 

 ?O2 instance of state university 

may be generalized to [10] 

E2 = ?O1 instance of professor      [10] 

  has as employer ?O2 

 ?O2 instance of state university 

by replacing the concept assistant professor with the more general concept professor (see the 

generalization hierarchy in Figure 1). 

The reverse operation, of replacing a concept with a less general one, leads to the specialization of an 

expression. 

Dropping Conditions  

The agent can also generalize a concept by dropping a condition, that is, by dropping a constraint that its 

instances must satisfy. For example, the expression [11] 

E1 =  ?O1 instance of assistant professor     [11] 

  has as employer ?O2 

 ?O2 instance of state university  

may be generalized to [12] 

E2 =  ?O1 instance of assistant professor      [12] 

by removing a constraint on the professor to be employed by a state university. 
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Figure 1.  Sample generalization hierarchy. 

Extending Intervals 

A number may be generalized to an interval containing it. For example, the expression [15] (the set of 

professors with 55 publications) may be generalized to [16] (the set of professors with 50 to 60 

publications) which, in turn, may be generalized to [17] (the set of professors with 25 to 75 

publications). 

E1 = ?O1 instance of  professor     [15] 

  number of publications 55 

 

E2 = ?O1 instance of  professor     [16] 

  number of publications ?N1 

 ?N1 is in   [50 .. 60] 

 

E3 = ?O1 instance of  professor     [17] 

  number of publications ?N1 

 ?N1 is in   [25 .. 75] 

Extending Ordered Sets of Intervals 

An ordered set of intervals may be regarded as an ordered generalization hierarchy, where the nodes 

are ordered from left to right, as illustrated in Figure 2.  

Jane Austin

Ph.D. student

John Doe
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professor

student
university employee
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Bob Sharp

instance of
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direct subconcept of

direct subconcept of
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graduate
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Joan Dean
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PhD
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Figure 2.  Ordered set of intervals as ordered generalization hierarchy. 

Using such an ordered set of intervals, one may generalize the expression [18] (persons from youth to 

teens) to the expression [19] (persons from youth to mature), by replacing the symbolic interval “*youth, 

teen+” with the larger interval “*youth, mature]”. 

E1 = ?O1  instance of person       [18] 

  has as age [youth, teen] 

 

E2 = ?O1  instance of person       [19] 

  has as age [youth, mature] 

Extending Discrete Sets 

An expression may also be generalized by replacing a discrete set with a larger set. For example, the 

expression [20] (the set of flags with white or red colors) may be generalized to the expression [21] (the 

set of flags with white or red or blue colors). 

E1 = ?O1  instance of flag       [20] 

  has as component color {white, red} 

 

E2 = ?O1  instance of flag       [21] 

  has as component color {white, red, blue} 

Using Feature Definitions 

This rule generalizes an expression containing a feature, such as, “A feature1 B”, by replacing A and B 

with the domain and the range of feature1, respectively. This is illustrated by the generalization of 

expression [22] (professors who are experts in Computer Science) to expression [23] (professors who 

are experts in some area of expertise).  

E1 = ?O1 instance of professor      [22] 

  is expert in ?O2 

 ?O2 instance of Computer Science 

 

infant

human age

(0.0, 1.0)

toddler

[1.0, 4.5)

youth

[4.5, 12.5)

teen

[12.5, 19.5)

mature

[19.5, 65.5)

elder

[65.5, 150.0]
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E2 = ?O1 instance of professor      [23] 

  is expert in ?O2 

 ?O2 instance of area of expertise 

In the above example, Computer Science was generalized to area of expertise. In general, a generalization 

rule indicates how one can generalize a concept through a simple syntactic transformation, without 

suggesting the actual generalization to perform, but only a set of possible generalization. The using 

feature definition rule actually suggests a generalization to perform, which will be useful during learning. 

In fact, it indicates the most general generalization that can be performed. Indeed ?O2 in [23] is the 

value of the feature is expert in. Therefore it has to be in the range of this feature which is area of 

expertise. 

Using Inference Rules 

Given an inference rule of the form “A  B”, one may generalize an expression by replacing A with B. For 

example, using the theorem 

X Y ((X  has as PhD advisor  Y) (X  knows  Y)) 

one may generalize the expression [24] (students and their PhD advisors) 

E1 = ?O1 instance of student       [24] 

  has as PhD advisor   ?O2 

 ?O2 instance of professor  

to the expression [25] (students and the professors they know) 

E2 = ?O1 instance of student       [25] 

  knows  ?O2 

 ?O2 instance of professor  

Indeed, by applying the above inference rule one may transform E1 into the equivalent expression: 

E’1 = ?O1 instance of student 

  has as PhD advisor   ?O2 

  knows  ?O2 

 ?O2 instance of professor  

Then, by dropping the relation knows, one generalizes E'1 to E2. 

3. Types of Generalizations and Specializations 

Up to this point we have only defined when a concept is more general than another concept. Learning 

agents, however, would need to determine generalizations of sets of examples and concepts. In the 

following we define some of these generalizations. 
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Generalization of Two Concepts 

The concept Cg is a generalization of the concepts C1 and C2 if and only if Cg is more general than C1 and 

Cg is more general than C2.  

An operational definition of this generalization is the following one: If by applying generalization rules 

each of the concepts C1 and C2 can be transformed into the concept Cg, then the concept Cg is a 

generalization of C1 and C2. 

For example, the concept C [28] is a generalization of the concepts C1 [26] and C2 [27]. Indeed, by 

generalizing assistant professor to professor (through climbing the generalization hierarchy), by 

generalizing 10 to [10 .. 35] (through replacing a number with an interval containing it) and by dropping 

the condition “?O1 is employed by George Mason University”, one generalizes C1 to C. Similarly, by 

generalizing associate professor to professor and 35 to [10 .. 35], one generalizes C2 into C. 

C1 = ?O1 instance of assistant professor     [26] 

  number of publications   10 

  is employed by George Mason University 

 

C2 = ?O1 instance of associate professor     [27] 

  number of publications   35 

 

C = ?O1 instance of professor      [28] 

  number of publications   ?N1 

 ?N1 is in  [10 .. 35] 

In general, to build a generalization of two clauses one first applies the dropping condition rule to 

remove the unmatched features (and possibly even matched features). Then one applies other 

generalization rules to determine the generalizations of the matched feature values. Notice that there 

may be more than one generalization of two expressions. 

In a similar way one can determine a generalization G of two expressions E1 and E2, each consisting of a 

conjunction of clauses corresponding to the same set of variables. G consists of the conjunction of the 

generalizations of some of the corresponding clauses in the two expressions E1 and E2.  

There are usually more than one generalization of two concepts, as illustrated in Figure 3. Further 

distinctions between these generalizations are defined in the following section.  

 



12 

 

Figure 3.  Several generalizations of the concepts E1 and E2 

Minimally General Generalization of Two Concepts 

The concept G is a minimally general generalization (mGG) of A and B if and only if G is a generalization 

of A and B, and G is not more general than any other generalization of A and B. 

To determine a minimally general generalization of two clauses, one has to keep ALL the common 

features of the clauses and to determine a minimally general generalization of each of the matched 

feature values. In a similar way one determines the mGG of two conjunctions of clauses. One keeps ALL 

the matched clauses and determines the mGG of each pair of matched clauses. These procedures are 

correct if we assume that there are no other common features due to theorems. Otherwise, all the 

common features will have to first be made explicit by applying the theorems. 

Notice, however, that there may be more than one mGG of two expressions. For instance, according to 

the generalization hierarchy from the middle of Figure 4, there are two mGG’s of graduate research 

assistant and teaching assistant. They are university employee and graduate student. Consequently, there are 

two mGG’s of E1 and E2 in Figure 1. They are mGG1 and mGG2. The generalization mGG1 in Figure 1 

was obtained by generalizing graduate research assistant and teaching assistant to university employee. mGG2 

was obtained in a similar fashion, except that graduate research assistant and teaching assistant have been 

generalized to graduate student. Neither of mGG1 nor mGG2 is more general than the other. However, G 

is more general than each of them.  

Least General Generalization of Two Concepts 

If there is only one minimally general generalization of two concepts A and B, then this generalization is 

called the least general generalization (LGG) of A and B. 

?O1 instance of teaching assistant

is interested in ?O2

?O2 instance of PhD research area

?O1 instance of person

is interested in ?O2

?O2 instance of research area

?O1 instance of graduate research assistant

is interested in ?O2

?O2 instance of PhD research area

E1 E2

?O1 instance of graduate student

is interested in ?O2

?O2 instance of PhD research area

?O1 instance of university employee

is interested in ?O2

?O2 instance of PhD research area

mGG1 mGG2

G
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Disciple agents employ minimally-general generalizations, also called maximally specific generalizations 

(Plotkin, 1970; Kodratoff & Ganascia, 1986). They also employ over-generalizations (Tecuci and 

Kodratoff, 1990; Tecuci, 1992; Tecuci 1998). 

Specialization of Two Concepts 

As has been mentioned in the previous section, the reverse of each generalization rule is a specialization 

rule. Therefore, for each of the above definitions of generalization there is a corresponding definition of 

a specialization.  

The concept Cs is a specialization of the concepts C1 and C2 if and only if Cs is less general than C1 and Cs is 

less general than C2. For example, research professor is a specialization of researcher and professor. 

An operational definition of this specialization is the following one: If by applying specialization rules 

each of the concepts C1 and C2 can be transformed into the concept Cs, then Cs is a specialization of C1 

and C2.  

Alternatively, if by applying generalization rules Cs can be transformed into C1, and Cs can also be 

transformed into C2, then Cs is a specialization of C1 and C2. 

Figure 4 shows several specializations of two concepts G1 and G2. 

Maximally General Specialization of Two Concepts 

The concept C is a maximally general specialization (MGS) of two concepts A and B if and only if C is a 

specialization of A and B and no other specialization of A and B is more general than C. 

The MGS of two clauses consists of the MGS of the matched feature-value pairs and all the unmatched 

feature-value pairs. This procedure assumes that no new caluse feature can be made explicit by applying 

theorems. Otherwise, one has first to make all the features explicit. 

The MGS of two conjunctions of clauses C1 and C2 consists of the conjunction of the MGS of each of the 

matched clauses of C1 and C2 and all the unmatched clauses from C1 and C2. 

Figure 4 shows several specializations of the concepts G1 and G2. MGS1 and MGS2 are two maximally 

general specializations of G1 and G2 because graduate research assistant and teaching assistant are two 

maximally general specializations of university employee and graduate student. 

Notice also that in all the above definitions and illustrations, we have assumed that the clauses to be 

generalized correspond to the same variables. If this assumption is not satisfied, then one would need 

first to match the variables, and then to compute the generalizations. In general, this process is 

computationally expensive because one may need to try different matchings.  
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Figure 4.  Several specializations of the concepts G1 and G2 

4. Partially Learned Concepts 

Disciple learns general concepts from examples and explanations (Tecuci, 1998; Tecuci et al., 2005; 

Tecuci et al., 2008). During the learning process it maintains a set of possible versions of the concept to 

be learned, called a version space (Mitchell, 1977; Mitchell, 1997; Tecuci, 1998). The concepts in this 

space are partially ordered, based on the generalization relationship. This means that a concept from 

this space can be obtained from another concept from the space by applying generalization or 

specialization rules. For that reason, the version space can be represented by an upper bound and a 

lower bound.  

The upper bound of the version space contains the most general concepts from the version space and 

the lower bound contains the least general concepts from the version space. Any concept which is more 

general than a concept from the lower bound and less general than a concept from the upper bound is 

part of the version space and may be the actual concept to be learned. Therefore a version space may be 

regarded as a partially learned concept.  

The version spaces built by Disciple during the learning process are called plausible version spaces 

because their upper and lower bounds are generalizations based on an incomplete object ontology. 

Therefore a plausible version space is only a plausible approximation of the concept to be learned, as 

illustrated in Figure 5.  
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Figure 5. A plausible version space for a concept to be learned. 

The plausible upper bound of the version space from the right hand side of Figure 5 contains two 

concepts: “faculty member interested in a research area” and “student interested in a research area” (see [29]). 

?O1 instance of faculty member       [29] 

 is interested in ?O2  

?O2 instance of research area 

and 

?O1 instance of student 

 is interested in ?O2  

?O2 instance of research area 

Similarly, the plausible lower bound of this version space contains two concepts, “associate professor 

interested in a PhD research area” and “graduate student interested in a PhD research area”. 

The concept to be learned (see Figure 5) is, as an approximation, less general than one of the concepts 

from the plausible upper bound. This concept is also, again, as an approximation, more general than any 

of the concepts from the plausible lower bound.  

As Disciple encounters additional positive and negative examples of the concept to be learned, and as it 

understands it better, it generalizes and/or specializes the two bounds so that they converge toward 

one another and approximate better and better the concept to be learned. This behavior is different 

from that of the version spaces introduced by Mitchell (1978), where one of the concepts from the 

upper bound is always more general than the concept to be learned (and the upper bound is always 

specialized during learning), and any of the concepts from the lower bound is always less general than 

the concept to be learned (and the lower bound is always generalized during learning). The major 

difference is that the version spaces introduced by Mitchell (1978) are based on a complete 

representation space that includes the concept to be learned. On the contrary, the representation space 

Plausible Lower Bound

?O1 instance of {associate professor,
graduate student}

is interested in ?O2

?O2 instance of PhD research area

Plausible Upper Bound

?O1 instance of {faculty member,
student}
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?O2 instance of research area

Plausible 

Upper Bound

Plausible 

Lower Bound

Concept to 
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for Disciple is based on an incomplete and evolving object ontology. Therefore, Disciple addresses the 

more complex and more realistic problem of learning in the context of an evolving representation space. 

The notion of plausible version space is fundamental to the knowledge representation, problem solving, 

and learning methods of Disciple because all the partially learned concepts are represented using this 

construct. For instance, a partially learned feature has its domain and range represented as plausible 

version space. A partially learned problem or rule is also represented as a plausible version space. 

5. Examples and Exceptions of a Partially Learned Concept 

An entity belonging to the set of instances represented by a concept is called a positive example of the 

concept.  

An entity that does not belong to the set of instances represented by a concept is called a negative 

example of the concept.  

Figure 6 shows the representation of a partially learned concept, consisting of a main plausible version 

space condition (in light and dark green) and an except-when plausible version space condition (in light 

and dark red). 

Figure 6. Examples and exceptions of a concept 

A partially learned concept may have known positive and negative examples. For the other instances of 

the representation space one may estimate their nature based on their actual position with respect to 

the plausible bounds of the concept, as illustrated in Figure 6 and defined in the following. 

An instance covered by the plausible lower bound of the main condition of a concept and not covered by 

any except when plausible version space condition is most likely a positive example of the concept. 

An instance covered by the plausible upper bound of the main condition of a concept, but neither covered 

by the plausible lower bound of the main condition, nor by any except when plausible version space 

condition is likely to be a positive example of the concept. 

Main Plausible Version 

Space Condition

Except-When Plausible 

Version Space Condition

More likely a 
positive example

Most likely a 
positive example

Most likely a 
negative example

More likely a 
negative example

Positive 
exception +
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An instance covered by the plausible lower bound of one of the except-when plausible version space 

conditions of a concept is most likely a negative example of the concept. 

Finally, an instance covered by the plausible upper bound of an except when plausible version space 

condition of a concept is likely to be a negative example of the concept. 

6. Partially Learned Features 

A feature is characterized by a domain and a range (Tecuci and Boicu, 2008). The domain is the concept 

that represents the set of objects that could have that feature. The range is the set of possible values of 

the feature.  

Most often, the domains and the ranges of the features are basic concepts from the object ontology. 

However, they could also be complex concepts of the form shown in [3]. Moreover, in the case of 

partially learned features they are plausible version spaces, as illustrated in Figure 7. 

Figure 7. A feature and its partially learned definition. 

7. Problems and Problem Definitions 

An agent solves problems, represented as natural language patterns, such as [30], which is an example 

of a specific problem. 

 Assess whether John Doe is a potential PhD advisor for Bob Sharp.   [30] 

A problem pattern consists of natural language text (e.g. “Assess whether”), constants (e.g. the instance 

John Doe), and concepts (e.g. PhD advisor). 

The definition of a problem is a pattern with variables and a precondition that the variables must satisfy. 

For example, the definition of the problem [30] is the one from [31]. 

plausible upper bound:

plausible lower bound:

plausible upper bound:

plausible lower bound:

Mark White
has as employer

George Mason University

feature

has as employer
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documentation
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Precondition         [31] 

 ?O1 instance of faculty member 

 ?O2 instance of person 

Name  

 Assess whether ?O1 is a potential PhD advisor for ?O2 

The precondition is a concept which, in general, may have the form [3]. This precondition is a plausible 

version space in the case of partially learned problems. 

The purpose of a problem’s precondition is to ensure that the problem makes sense for each problem 

instantiation that satisfies it. For example, the following problem does not make sense:  

 “Assess whether 45 is a potential PhD advisor for Bob Sharp.” 

8. Rules 

A Disciple-type agent solves problems by using a general “divide and conquer” approach that involves 

problem reduction and solution synthesis. In this paradigm, which is illustrated in Figure 8, a complex 

problem is solved by successively reducing it to simpler and simpler problems, finding the solutions of 

the simplest problems, and then successively combining these solutions, from the bottom up, until the 

solution of the initial problem is obtained.  

In the illustration from Figure 8, the initial problem P1 is reduced to the simpler problems P11, … , P1n. 

This means that the problem P1 may be solved by solving the problems P11, … , P1n. Then P11 is reduced 

to P21, … , P2m. Then P2m is reduced to P31, … , P3p. These problems are simple enough to find their 

solutions S31, … , S3p. These solutions are composed into S2m, the solution of P2m. Then the solutions S21, 

… , S2m of the problems P21, … , P2m are composed into S11, the solution of P11. Finally, the solutions S11, … 

, S1n are composed into S1, the solution of the initial problem P1. 

Figure 8.  The problem reduction paradigm of problem solving 

The reduction and synthesis operations are performed by applying problem reduction rules and solution 

synthesis rules. 

S1

S11 S1n

S21 S2mP2mP21

P1nP11

P1

…

…

S31 S3pP3pP31
…
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A problem reduction rule has the form [32] and expresses how and under what conditions a generic 

problem can be reduced to one or several simpler generic problems. 

IF <Problem>         [32] 

 <Applicability condition> 

THEN <Subproblem 1> 

 <Subproblem 2> 

 … 

 <Subproblem n> 

The applicability condition is the concept representing the set of instances for which the reduction is 

correct. In the case of a partially learned rule, the applicability condition is a plausible version space. An 

example of such a rule is presented in Figure 9. 

Figure 9.  Partially learned problem reduction rule. 

The solutions generated by a partially learned rule will have different degrees of plausibility, as indicated 

in Figure 10. 
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Figure 10.  Plausible reasoning based on a partially learned rule. 

A solution synthesis rule expresses how and under what conditions the solutions of generic subproblems 

can be combined into the solution of a generic problem.  

9. Formal Definition of Generalization 

Formal representation language for concepts 

A knowledge representation language defines a syntax and semantics for expressing knowledge in a 

form that an agent can use. We define a formal representation language for concepts as follows:  

 Let ‘V’’ be a set of variables. For convenience in identifying variables, their names start with ‘?’ 

as, for instance, ?X. Variables are used to denote unspecified instances of concepts. 

 Let ‘C’ be a set of constants. Examples of constants are the numbers (such as 5), strings (such as 

“programming”), symbolic probability values (such as very high) and instances. We define a 

term to be either a variable or a constant. 

 Let ‘F’ be a set of features. The set F includes the domain independent features instance of, 

subconcept of, and direct subconcept of, as well as other domain specific features, such as is 

interested in. 

 Let ‘O’ be an object ontology consisting of a set of concepts and instances defined using the 

clause representation [2] presented in Section 1, where the feature values (vi1 … vim) are 

constants, concepts, or instances. That is, there are no variables in the definition of a concept or 

an instance from O: 

?Oi instance of concepti 
 featurei1  vi1 
 . . .  
 featurein  vim 

PVS Condition
Except-When

PVS Condition

Reduction is 
plausible

Reduction is
most likely correct

Reduction is most 
likely incorrect

Reduction is 
not plausible

IF <Problem>

THEN <Subproblem 1>

<Subproblem 2>
…
<Subproblem m>

PVS Condition

Except-When

PVS Condition
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The concepts and the instances from O are related by the generalization relations instance of and 

subconcept of. O includes the concept object which represents all the instances from the 

application domain and is therefore more general than any other object concept. 

 Let ‘H’ be the set of theorems and properties of the features, variables, and constants. 

Two properties of any feature are its domain and its range. Other features may have special 

properties. For instance, the relations instance of and subconcept of are transitive (Tecuci and 

Boicu, 2008). Also, a concept or an instance inherits the features of the concepts that are more 

general than it (Tecuci and Boicu, 2008). 

 Let ‘N’ be a set of connectors. L includes the logical connectors AND (),OR () and NOT (Except 

When), the connectors ‘,‘ and ‘-’ for defining alternative values of a feature, the connectors ‘*‘, 

‘+’, ‘(‘  and ‘)’ for defining a numeric interval, the delimiter ‘,’, and the symbols ‘Plausible Upper 

Bound’, and ‘Plausible Lower Bound’.  

We call the tuple L = (V, C, F, O, H, N) a representation language for concepts.  

In the representation language L, a concept is defined as indicated in section 1 (see [2] and [3]). 

In the following sections we will provide a formal definition of generalization in the representation 

language L, based on substitutions.  

A substitution is a function  = (x1t1, ... , xntn), where each xi (i=1,...,n) is a variable and each ti 

(i=1,...,n) is a term. If li is an expression in the representation language L, then li is the expression 

obtained by substituting each xi from li with ti.  

Term generalization  

In the representation language L, a term is a constant (e.g. number, string, symbolic interval, or 

instance) or a variable. An unrestricted variable ?X is more general than any constant and is as general 

as any other unrestricted variable (such as ?Y). 

Clause generalization 

Let us consider the concepts described by the following two clauses, C1 and C2, where v1, v2, v11, …, 

v2n are variables, c1 and c2 are concepts, and f11, …, f2n are feature names. 

C1 = v1 instance of c1 

  f11  v11 

   ...   

  f1m  v1m 
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C2 = v2 instance of c2 

  f21  v21 

   ...   

  f2n  v2n 

We say that the clause C1 is more general than the clause C2 if there exists a substitution  such that: 

v1 = v2 

c1 = c2 

i{1,...,m},  j{1,...,n} such that f1i = f2j and v1i = v2j.  

For example, the concept 

C1 =  ?x instance of student 

  has as age adult 

is more general than the concept 

C2 = ?y instance of student 

  has as age adult 

  has as sex female 

Indeed, let  = (?X ?Y). As one can see, C1 is a part of C2, that is, each feature of C1 is also a feature 

of C2. The first concept represents the set of all adult students, while the second one represents the set 

of all adult students that are females. Obviously the first set includes the second one, and therefore the 

first concept is more general than the second one. 

Let us notice, however, that this definition of generalization does not take into account the theorems 

and properties of the representation language L. In general one needs to use these theorems and 

properties to transform the clauses C1 and C2 into equivalent clauses C'1 and C'2 respectively. Then one 

shows that C'1 is more general than C'2. Therefore, the definition of the more general than relation in L 

is the following one: 

A clause C1 is more general than another clause C2 if and only if there exist C'1, C'2, and a substitution 

, such that: 

C'1 =L C1 

C'2 =L C2 

v1 =L v2 

c1 is more general than c2 in L 
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 i{1,...,m},  j{1,...,n} such that f'1i =L f'2j and v'1i =L v'2j. 

In the following we will always assume that the equality is in L and we will no longer indicate this. 

Exercise 

Illustrate clause generalization with an example from the PhD Advisor Assessment domain. 

BRU generalization  

As discussed in section 1, a BRU (basic representation unit) is a conjunction of clauses. An example of 

BRU is the following one: 

?O1 instance of course 

 has as reading ?O2 

?O2 instance of publication 

 has as author ?O3 

?O3 instance of professor 

where, for notation convenience, we have dropped the AND connector between the clauses. Therefore, 

anytime there is a sequence of clauses, they are to be considered as being connected by AND. 

Let us consider two concepts, A and B, defined by the following expressions 

A = A1  A2  ...  An  

B = B1  B2  ...  Bm  

where each Ai (i = 1, ... ,n) and each Bj (j = 1, ... ,m) is a clause.  

A is more general than B if and only if there exist A', B', and  such that:  

A' = A,    A' = A'1  A'2  ...  A'p 

B' = B,    B' = B'1  B'2  ...  B'q 

 i{1,...,p},   j{1,...,q} such that A'i = B'j.  

Otherwise stated, one transforms the concepts A and B, using the theorems and the properties of the 

representation language, so as to make each clause from A' more general than a corresponding clause 

from B'. Notice that some clauses from B' may be “left-over”, that is, they are matched by no clause of 

A', as in the following example.  

Exercise 

Illustrate BRU generalization with an example from the PhD Advisor Assessment domain. 
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Generalization of concepts with negations 

By concept with negations we mean an expression of form [3]: 

BRU  not BRU1  …  not BRUp   

where each BRU is a conjunction of clauses. 

Let us consider two concepts with negations, A and B, defined by the following expressions 

A = BRUa  not BRUa1  …  not BRUap  

B = BRUb  not BRUb1  …  not BRUbq  

A is more general than B if and only if there exist A', B', and  such that:  

A' = A,    A' = BRU’a  not BRU’a1  …  not BRU’ap 

B' = B,    B' = BRU’b  not BRU’b1  …  not BRU’bq 

BRU’a is more general than BRU’b

 i{1,...,p},   j{1,...,q} such that BRU’bj is more general than BRU’ai.  

Exercise 

Illustrate the generalization of concepts with negations by using an example from the PhD Advisor 

Assessment domain. 

10. Substitutions and the Generalization Rules 

One can use the definition of generalization based on substitution to prove that the generalization rules 

transform concepts into more general concepts.  

As an illustration, let us consider the turning constants into variables generalization rule that 

transformed the expression E1 (see [5]) into the expression E2 (see [6]). E2 is indeed a generalization of 

E1 because E1 = E2, where =(?N1 55). 

Exercise 

Use the definition of generalization based on substitution to prove that each of the generalization rules 

discussed in Section x transforms a concept into a more general concept. 

11. Exercises 

1. What is a positive example of a concept? What is a negative example of a concept? 

2. What is a generalization rule? What is a specialization rule? What is a reformulation rule? 

3. Name all the generalization rules you know. 
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4. Briefly describe and illustrate with an example the “turning constants into variables” generalization 

rule. 

5. Define and illustrate the dropping conditions generalization rule. 

6. Define the following: a) a generalization of two concepts; b) a minimally general generalization of 

two concepts; c) the least general generalization of two concepts; d) the maximally general 

specialization of two concepts. 

7. What is a negative exception? What is a positive exception? 

8. Draw a picture representing a plausible version space, as well as a positive example, a negative 

example, a positive exception and a negative exception. Then briefly define each of these elements. 

9. Consider the cells consisting of two bodies, each body having two attributes, color (which may be 

yellow or green) and number of nuclei (1 or 2). The relative position of the bodies is not relevant 

because they can move inside the cell. You should assume that any generalization of a cell is described 

as a single pair ((s t) (u v)).  

a) Indicate all the possible generalizations of the following cell, and the generalization relations between 

them: 

 

b)  Determine the number of the distinct sets of instances and the number of concept descriptions for 

this problem. 

c) Given the following cell descriptions 

 

Determine the following minimal generalizations: g(E1, E2), g(E2, E3), g(E3, E1), g(E1, E2, E3) 
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