

LEARNING-BASED KNOWLEDGE REPRESENTATION

Gheorghe Tecuci and Mihai Boicu

This paper presents a learning-based representation of
knowledge which is at the basis of the family of Disciple
learning agents. It introduces a representation for concepts,
generalization and specialization rules, different types of
generalizations and specializations, and the representation of
the main elements of a knowledge base, including partially
learned concepts, problems, and rules. Finally, it provides a
formal definition of generalization based on substitutions.

RESEARCH REPORT 4

VOLUME 2008

2

LEARNING-BASED KNOWLEDGE REPRESENTATION

Gheorghe Tecuci and Mihai Boicu

Learning Agents Center, George Mason University, Fairfax, VA, 22030, USA

http://lac.gmu.edu

Keywords: concepts, rules, generalization rules, plausible bound, plausible version space,

formal definition of generalization.

8 September 2008

Disclaimer: The views and opinions expressed in this article are those
of the authors and do not necessarily reflect the official policy or

position of the National Science Foundation, the Air Force Office of
Scientific Research, or any other agency of the U.S. government.

http://lac.gmu.edu/

3

LEARNING-BASED KNOWLEDGE REPRESENTATION 4

1. CONCEPT REPRESENTATION 4

2. GENERALIZATION AND SPECIALIZATION RULES 5

Turning Constants into Variables 6

Turning Occurrences of a Variable into Different Variables 6

Climbing the Generalization Hierarchies 7

Dropping Conditions 7

Extending Intervals 8

Extending Ordered Sets of Intervals 8

Extending Discrete Sets 9

Using Feature Definitions 9

Using Inference Rules 10

3. TYPES OF GENERALIZATIONS AND SPECIALIZATIONS 10

Generalization of Two Concepts 11

Minimally General Generalization of Two Concepts 12

Least General Generalization of Two Concepts 12

Specialization of Two Concepts 13

Maximally General Specialization of Two Concepts 13

4. PARTIALLY LEARNED CONCEPTS 14

5. EXAMPLES AND EXCEPTIONS OF A PARTIALLY LEARNED CONCEPT 16

6. PARTIALLY LEARNED FEATURES 17

7. PROBLEMS AND PROBLEM DEFINITIONS 17

8. RULES 18

9. FORMAL DEFINITION OF GENERALIZATION 20

Formal representation language for concepts 20

Term generalization 21

Clause generalization 21

BRU generalization 23

Generalization of concepts with negations 24

10. SUBSTITUTIONS AND THE GENERALIZATION RULES 24

11. EXERCISES 24

12. REFERENCES 25

13. ACKNOWLEDGEMENTS 26

4

Learning-based Knowledge Representation

The knowledge representation of the Disciple agents was designed to facilitate the basic operations

involved in learning, including comparing the generality of concepts, generalizing concepts, and

specializing concepts. This has led to the learning-based representation presented in the following.

1. Concept Representation

Using the (object and feature) concepts from the object ontology (Tecuci and Boicu, 2008), one can

define more complex concepts as logical expressions involving these primary concepts. For example, the

concept “PhD student interested in a PhD research area” may be expressed as shown in [1].

?O1 instance of PhD student [1]

 is interested in ?O2

?O2 instance of PhD research area

One may interpret this concept as representing the set of instances of the pair {?O1, ?O2} which satisfy the

expression [1]. In general, the basic representation unit (BRU) for a more complex concept has the form

of a sequence (?O1, ?O2 ,…, ?On), where each ?Oi has the structure indicated by [2], called clause.

?Oi instance of concepti [2]

 featurei1 ?Oi1

 . . .

 featurein ?Oim

Concepti is either an object concept from the object ontology, or a numeric interval, or a set of numbers,

or a set of strings, or an ordered set of intervals. ?Oi1 … ?Oim are distinct variables from the sequence

(?O1, ?O2, … , ?On).

A concept may be a conjunctive expression of form [3], meaning that any instance of the concept

satisfies BRU and does not satisfy BRU1 and … and does not satisfy BRUp.

BRU  not BRU1  …  not BRUp [3]

However, instead of “not” we write “Except When”. For example, expression *4+ represents the concept

“PhD student interested in a PhD research area that does not require programming”.

?O1 instance of PhD student [4]

 is interested in ?O2

?O2 instance of PhD research area

Except When

?O2 instance of PhD research area

 requires “programming”

5

Exercise

What does the following concept represents?

?O1 instance of course

 has as reading ?O2

?O2 instance of publication

 has as author ?O3

?O3 instance of professor

The above concept represents the set of triples (?O1, ?O2 ,?O3) which, informally, can be expressed as

“courses that have as readings publications by professors”.

In the next sections we will describe in detail the basic learning operations dealing with concepts:

comparing the generality of concepts, generalizing concepts, and specializing concepts.

2. Generalization and Specialization Rules

A generalization rule is a rule that transforms a concept into a more general concept. The generalization

rules are usually inductive transformations. The inductive transformations are not truth-preserving but

falsity-preserving. That is, if ‘P’ is true and is inductively generalized to ‘Q’, then the truth of ‘Q’ is not

guaranteed. However, if P is false then Q is also false.

There are two other types of transformation rules: specialization rules and reformulation rules.

A specialization rule transforms a concept into a less general one. The reverse of any generalization rule

is a specialization rule. Specialization rules are deductive, truth-preserving transformations.

A reformulation rule transforms a concept into another, logically equivalent concept. Reformulation

rules are also deductive, truth-preserving transformations.

In (Tecuci and Boicu, 2008) a concept was defined as representing a set of instances. In order to show

that a concept P is more general than a concept Q, that definition would require the computation of the

(possibly infinite) sets of the instances of P and Q.

The generalization rules allow one to prove that a concept P is more general than another concept Q by

manipulating the descriptions of P and Q, without computing the sets of instances that they represent:

If one can transform concept P into concept Q by applying a sequence of generalization rules, then Q is

more general than P.

Some of the most used generalization rules, which are described in the following, are:

Turning constants into variables;

Turning occurrences of a variable into different variables;

Climbing the generalization hierarchies;

6

Dropping conditions;

Extending intervals;

Extending ordered sets of intervals;

Extending discrete sets;

Using feature definitions;

Using inference rules.

Turning Constants into Variables

The turning constants into variables generalization rule consists in generalizing an expression by

replacing a constant with a variable. For example, expression [5] represents the following concept: “the

set of professors with 55 publications”.

E1 = ?O1 instance of professor [5]

 number of publications 55

By replacing 55 with a variable ?N1 that can take any value, we generalize this concept to the one shown

in [6]: “the set of professors with any number of publications”. In particular, ?N1 could be 55. Therefore the

second concept includes the first one.

E2 = ?O1 instance of professor [6]

 number of publications ?N1

Conversely, by replacing ?N1 with 55, we specialize the concept [6] to the concept [5]. The important

thing to notice here is that by a simple syntactic operation (transforming a number into a variable) we

can generalize a concept. This is one way in which an agent generalizes concepts.

Turning Occurrences of a Variable into Different Variables

According to this rule, the expression [7] may be generalized to expression [8] by turning the two

occurrences of the variable ?O3 in E1 into two variables, ?O31 and ?O32:

E1 = ?O1 instance of paper [7]

 is authored by ?O3

 ?O2 instance of paper

 is authored by ?O3

 ?O3 instance of professor

E2 = ?O1 instance of paper [8]

 is authored by ?O31

 ?O2 instance of paper

 is authored by ?O32

 ?O31 instance of professor

 ?O32 instance of professor

7

E1 may be interpreted as representing the set of sequences (?O1, ?O2 ,?O3, ?O3) expressing: “papers ?O1

and ?O2 authored by the same professor ?O3”.

E2 may be interpreted as representing the set of sequences (?O1, ?O2 ,?O31, ?O32) expressing: “papers

?O1 and ?O2 authored by the professors ?O31 and?O31, respectively”. In particular, ?O31 and?O31, may

represent the same professor. Therefore, the second set includes the first one, and the second

expression is more general than the first one.

Climbing the Generalization Hierarchies

One can also generalize an expression by replacing a concept from its description with a more general

concept, according to some generalization hierarchy. For instance, the expression [9]

E1 = ?O1 instance of assistant professor [9]

 has as employer ?O2

 ?O2 instance of state university

may be generalized to [10]

E2 = ?O1 instance of professor [10]

 has as employer ?O2

 ?O2 instance of state university

by replacing the concept assistant professor with the more general concept professor (see the

generalization hierarchy in Figure 1).

The reverse operation, of replacing a concept with a less general one, leads to the specialization of an

expression.

Dropping Conditions

The agent can also generalize a concept by dropping a condition, that is, by dropping a constraint that its

instances must satisfy. For example, the expression [11]

E1 = ?O1 instance of assistant professor [11]

 has as employer ?O2

 ?O2 instance of state university

may be generalized to [12]

E2 = ?O1 instance of assistant professor [12]

by removing a constraint on the professor to be employed by a state university.

8

Figure 1. Sample generalization hierarchy.

Extending Intervals

A number may be generalized to an interval containing it. For example, the expression [15] (the set of

professors with 55 publications) may be generalized to [16] (the set of professors with 50 to 60

publications) which, in turn, may be generalized to [17] (the set of professors with 25 to 75

publications).

E1 = ?O1 instance of professor [15]

 number of publications 55

E2 = ?O1 instance of professor [16]

 number of publications ?N1

 ?N1 is in [50 .. 60]

E3 = ?O1 instance of professor [17]

 number of publications ?N1

 ?N1 is in [25 .. 75]

Extending Ordered Sets of Intervals

An ordered set of intervals may be regarded as an ordered generalization hierarchy, where the nodes

are ordered from left to right, as illustrated in Figure 2.

Jane Austin

Ph.D. student

John Doe

faculty memberstaff member

professor

student
university employee

person

Bob Sharp

instance of

direct subconcept of

instance of instance of

direct subconcept of

direct subconcept of
direct subconcept of

direct subconcept of

M.S. student

B.S. studentinstructor

graduate
student

undergraduate
student

full
professor

associate
professor

assistant
professor

direct subconcept of

instance of

direct subconcept of

Joan Dean

instance of

PhD
advisor

John Smith

graduate
research
assistant

teaching
assistant

9

Figure 2. Ordered set of intervals as ordered generalization hierarchy.

Using such an ordered set of intervals, one may generalize the expression [18] (persons from youth to

teens) to the expression [19] (persons from youth to mature), by replacing the symbolic interval “*youth,

teen+” with the larger interval “*youth, mature]”.

E1 = ?O1 instance of person [18]

 has as age [youth, teen]

E2 = ?O1 instance of person [19]

 has as age [youth, mature]

Extending Discrete Sets

An expression may also be generalized by replacing a discrete set with a larger set. For example, the

expression [20] (the set of flags with white or red colors) may be generalized to the expression [21] (the

set of flags with white or red or blue colors).

E1 = ?O1 instance of flag [20]

 has as component color {white, red}

E2 = ?O1 instance of flag [21]

 has as component color {white, red, blue}

Using Feature Definitions

This rule generalizes an expression containing a feature, such as, “A feature1 B”, by replacing A and B

with the domain and the range of feature1, respectively. This is illustrated by the generalization of

expression [22] (professors who are experts in Computer Science) to expression [23] (professors who

are experts in some area of expertise).

E1 = ?O1 instance of professor [22]

 is expert in ?O2

 ?O2 instance of Computer Science

infant

human age

(0.0, 1.0)

toddler

[1.0, 4.5)

youth

[4.5, 12.5)

teen

[12.5, 19.5)

mature

[19.5, 65.5)

elder

[65.5, 150.0]

10

E2 = ?O1 instance of professor [23]

 is expert in ?O2

 ?O2 instance of area of expertise

In the above example, Computer Science was generalized to area of expertise. In general, a generalization

rule indicates how one can generalize a concept through a simple syntactic transformation, without

suggesting the actual generalization to perform, but only a set of possible generalization. The using

feature definition rule actually suggests a generalization to perform, which will be useful during learning.

In fact, it indicates the most general generalization that can be performed. Indeed ?O2 in [23] is the

value of the feature is expert in. Therefore it has to be in the range of this feature which is area of

expertise.

Using Inference Rules

Given an inference rule of the form “A  B”, one may generalize an expression by replacing A with B. For

example, using the theorem

X Y ((X has as PhD advisor Y) (X knows Y))

one may generalize the expression [24] (students and their PhD advisors)

E1 = ?O1 instance of student [24]

 has as PhD advisor ?O2

 ?O2 instance of professor

to the expression [25] (students and the professors they know)

E2 = ?O1 instance of student [25]

 knows ?O2

 ?O2 instance of professor

Indeed, by applying the above inference rule one may transform E1 into the equivalent expression:

E’1 = ?O1 instance of student

 has as PhD advisor ?O2

 knows ?O2

 ?O2 instance of professor

Then, by dropping the relation knows, one generalizes E'1 to E2.

3. Types of Generalizations and Specializations

Up to this point we have only defined when a concept is more general than another concept. Learning

agents, however, would need to determine generalizations of sets of examples and concepts. In the

following we define some of these generalizations.

11

Generalization of Two Concepts

The concept Cg is a generalization of the concepts C1 and C2 if and only if Cg is more general than C1 and

Cg is more general than C2.

An operational definition of this generalization is the following one: If by applying generalization rules

each of the concepts C1 and C2 can be transformed into the concept Cg, then the concept Cg is a

generalization of C1 and C2.

For example, the concept C [28] is a generalization of the concepts C1 [26] and C2 [27]. Indeed, by

generalizing assistant professor to professor (through climbing the generalization hierarchy), by

generalizing 10 to [10 .. 35] (through replacing a number with an interval containing it) and by dropping

the condition “?O1 is employed by George Mason University”, one generalizes C1 to C. Similarly, by

generalizing associate professor to professor and 35 to [10 .. 35], one generalizes C2 into C.

C1 = ?O1 instance of assistant professor [26]

 number of publications 10

 is employed by George Mason University

C2 = ?O1 instance of associate professor [27]

 number of publications 35

C = ?O1 instance of professor [28]

 number of publications ?N1

 ?N1 is in [10 .. 35]

In general, to build a generalization of two clauses one first applies the dropping condition rule to

remove the unmatched features (and possibly even matched features). Then one applies other

generalization rules to determine the generalizations of the matched feature values. Notice that there

may be more than one generalization of two expressions.

In a similar way one can determine a generalization G of two expressions E1 and E2, each consisting of a

conjunction of clauses corresponding to the same set of variables. G consists of the conjunction of the

generalizations of some of the corresponding clauses in the two expressions E1 and E2.

There are usually more than one generalization of two concepts, as illustrated in Figure 3. Further

distinctions between these generalizations are defined in the following section.

12

Figure 3. Several generalizations of the concepts E1 and E2

Minimally General Generalization of Two Concepts

The concept G is a minimally general generalization (mGG) of A and B if and only if G is a generalization

of A and B, and G is not more general than any other generalization of A and B.

To determine a minimally general generalization of two clauses, one has to keep ALL the common

features of the clauses and to determine a minimally general generalization of each of the matched

feature values. In a similar way one determines the mGG of two conjunctions of clauses. One keeps ALL

the matched clauses and determines the mGG of each pair of matched clauses. These procedures are

correct if we assume that there are no other common features due to theorems. Otherwise, all the

common features will have to first be made explicit by applying the theorems.

Notice, however, that there may be more than one mGG of two expressions. For instance, according to

the generalization hierarchy from the middle of Figure 4, there are two mGG’s of graduate research

assistant and teaching assistant. They are university employee and graduate student. Consequently, there are

two mGG’s of E1 and E2 in Figure 1. They are mGG1 and mGG2. The generalization mGG1 in Figure 1

was obtained by generalizing graduate research assistant and teaching assistant to university employee. mGG2

was obtained in a similar fashion, except that graduate research assistant and teaching assistant have been

generalized to graduate student. Neither of mGG1 nor mGG2 is more general than the other. However, G

is more general than each of them.

Least General Generalization of Two Concepts

If there is only one minimally general generalization of two concepts A and B, then this generalization is

called the least general generalization (LGG) of A and B.

?O1 instance of teaching assistant

is interested in ?O2

?O2 instance of PhD research area

?O1 instance of person

is interested in ?O2

?O2 instance of research area

?O1 instance of graduate research assistant

is interested in ?O2

?O2 instance of PhD research area

E1 E2

?O1 instance of graduate student

is interested in ?O2

?O2 instance of PhD research area

?O1 instance of university employee

is interested in ?O2

?O2 instance of PhD research area

mGG1 mGG2

G

13

Disciple agents employ minimally-general generalizations, also called maximally specific generalizations

(Plotkin, 1970; Kodratoff & Ganascia, 1986). They also employ over-generalizations (Tecuci and

Kodratoff, 1990; Tecuci, 1992; Tecuci 1998).

Specialization of Two Concepts

As has been mentioned in the previous section, the reverse of each generalization rule is a specialization

rule. Therefore, for each of the above definitions of generalization there is a corresponding definition of

a specialization.

The concept Cs is a specialization of the concepts C1 and C2 if and only if Cs is less general than C1 and Cs is

less general than C2. For example, research professor is a specialization of researcher and professor.

An operational definition of this specialization is the following one: If by applying specialization rules

each of the concepts C1 and C2 can be transformed into the concept Cs, then Cs is a specialization of C1

and C2.

Alternatively, if by applying generalization rules Cs can be transformed into C1, and Cs can also be

transformed into C2, then Cs is a specialization of C1 and C2.

Figure 4 shows several specializations of two concepts G1 and G2.

Maximally General Specialization of Two Concepts

The concept C is a maximally general specialization (MGS) of two concepts A and B if and only if C is a

specialization of A and B and no other specialization of A and B is more general than C.

The MGS of two clauses consists of the MGS of the matched feature-value pairs and all the unmatched

feature-value pairs. This procedure assumes that no new caluse feature can be made explicit by applying

theorems. Otherwise, one has first to make all the features explicit.

The MGS of two conjunctions of clauses C1 and C2 consists of the conjunction of the MGS of each of the

matched clauses of C1 and C2 and all the unmatched clauses from C1 and C2.

Figure 4 shows several specializations of the concepts G1 and G2. MGS1 and MGS2 are two maximally

general specializations of G1 and G2 because graduate research assistant and teaching assistant are two

maximally general specializations of university employee and graduate student.

Notice also that in all the above definitions and illustrations, we have assumed that the clauses to be

generalized correspond to the same variables. If this assumption is not satisfied, then one would need

first to match the variables, and then to compute the generalizations. In general, this process is

computationally expensive because one may need to try different matchings.

14

Figure 4. Several specializations of the concepts G1 and G2

4. Partially Learned Concepts

Disciple learns general concepts from examples and explanations (Tecuci, 1998; Tecuci et al., 2005;

Tecuci et al., 2008). During the learning process it maintains a set of possible versions of the concept to

be learned, called a version space (Mitchell, 1977; Mitchell, 1997; Tecuci, 1998). The concepts in this

space are partially ordered, based on the generalization relationship. This means that a concept from

this space can be obtained from another concept from the space by applying generalization or

specialization rules. For that reason, the version space can be represented by an upper bound and a

lower bound.

The upper bound of the version space contains the most general concepts from the version space and

the lower bound contains the least general concepts from the version space. Any concept which is more

general than a concept from the lower bound and less general than a concept from the upper bound is

part of the version space and may be the actual concept to be learned. Therefore a version space may be

regarded as a partially learned concept.

The version spaces built by Disciple during the learning process are called plausible version spaces

because their upper and lower bounds are generalizations based on an incomplete object ontology.

Therefore a plausible version space is only a plausible approximation of the concept to be learned, as

illustrated in Figure 5.

?O1 instance of teaching assistant

is interested in ?O2

?O2 instance of research area

?O1 instance of graduate research assistant

is interested in ?O2

?O2 instance of research area

MGS1 MGS2

?O1 instance of graduate student

is interested in ?O2

?O2 instance of research area

?O1 instance of university employee

is interested in ?O2

?O2 instance of research area

G1 G2

?O1 instance of teaching assistant

is interested in ?O2

?O2 instance of PhD research area

?O1 instance of graduate research assistant

is interested in ?O2

?O2 instance of PhD research area
requires “programming”

E1 E2

15

Figure 5. A plausible version space for a concept to be learned.

The plausible upper bound of the version space from the right hand side of Figure 5 contains two

concepts: “faculty member interested in a research area” and “student interested in a research area” (see [29]).

?O1 instance of faculty member [29]

 is interested in ?O2

?O2 instance of research area

and

?O1 instance of student

 is interested in ?O2

?O2 instance of research area

Similarly, the plausible lower bound of this version space contains two concepts, “associate professor

interested in a PhD research area” and “graduate student interested in a PhD research area”.

The concept to be learned (see Figure 5) is, as an approximation, less general than one of the concepts

from the plausible upper bound. This concept is also, again, as an approximation, more general than any

of the concepts from the plausible lower bound.

As Disciple encounters additional positive and negative examples of the concept to be learned, and as it

understands it better, it generalizes and/or specializes the two bounds so that they converge toward

one another and approximate better and better the concept to be learned. This behavior is different

from that of the version spaces introduced by Mitchell (1978), where one of the concepts from the

upper bound is always more general than the concept to be learned (and the upper bound is always

specialized during learning), and any of the concepts from the lower bound is always less general than

the concept to be learned (and the lower bound is always generalized during learning). The major

difference is that the version spaces introduced by Mitchell (1978) are based on a complete

representation space that includes the concept to be learned. On the contrary, the representation space

Plausible Lower Bound

?O1 instance of {associate professor,
graduate student}

is interested in ?O2

?O2 instance of PhD research area

Plausible Upper Bound

?O1 instance of {faculty member,
student}

is interested in ?O2

?O2 instance of research area

Plausible

Upper Bound

Plausible

Lower Bound

Concept to

be learned

Universe of instances

16

for Disciple is based on an incomplete and evolving object ontology. Therefore, Disciple addresses the

more complex and more realistic problem of learning in the context of an evolving representation space.

The notion of plausible version space is fundamental to the knowledge representation, problem solving,

and learning methods of Disciple because all the partially learned concepts are represented using this

construct. For instance, a partially learned feature has its domain and range represented as plausible

version space. A partially learned problem or rule is also represented as a plausible version space.

5. Examples and Exceptions of a Partially Learned Concept

An entity belonging to the set of instances represented by a concept is called a positive example of the

concept.

An entity that does not belong to the set of instances represented by a concept is called a negative

example of the concept.

Figure 6 shows the representation of a partially learned concept, consisting of a main plausible version

space condition (in light and dark green) and an except-when plausible version space condition (in light

and dark red).

Figure 6. Examples and exceptions of a concept

A partially learned concept may have known positive and negative examples. For the other instances of

the representation space one may estimate their nature based on their actual position with respect to

the plausible bounds of the concept, as illustrated in Figure 6 and defined in the following.

An instance covered by the plausible lower bound of the main condition of a concept and not covered by

any except when plausible version space condition is most likely a positive example of the concept.

An instance covered by the plausible upper bound of the main condition of a concept, but neither covered

by the plausible lower bound of the main condition, nor by any except when plausible version space

condition is likely to be a positive example of the concept.

Main Plausible Version

Space Condition

Except-When Plausible

Version Space Condition

More likely a
positive example

Most likely a
positive example

Most likely a
negative example

More likely a
negative example

Positive
exception +

Negative
exception -

Positive
example

Negative
example

-

+

17

An instance covered by the plausible lower bound of one of the except-when plausible version space

conditions of a concept is most likely a negative example of the concept.

Finally, an instance covered by the plausible upper bound of an except when plausible version space

condition of a concept is likely to be a negative example of the concept.

6. Partially Learned Features

A feature is characterized by a domain and a range (Tecuci and Boicu, 2008). The domain is the concept

that represents the set of objects that could have that feature. The range is the set of possible values of

the feature.

Most often, the domains and the ranges of the features are basic concepts from the object ontology.

However, they could also be complex concepts of the form shown in [3]. Moreover, in the case of

partially learned features they are plausible version spaces, as illustrated in Figure 7.

Figure 7. A feature and its partially learned definition.

7. Problems and Problem Definitions

An agent solves problems, represented as natural language patterns, such as [30], which is an example

of a specific problem.

 Assess whether John Doe is a potential PhD advisor for Bob Sharp. [30]

A problem pattern consists of natural language text (e.g. “Assess whether”), constants (e.g. the instance

John Doe), and concepts (e.g. PhD advisor).

The definition of a problem is a pattern with variables and a precondition that the variables must satisfy.

For example, the definition of the problem [30] is the one from [31].

plausible upper bound:

plausible lower bound:

plausible upper bound:

plausible lower bound:

Mark White
has as employer

George Mason University

feature

has as employer
domain

range

documentation

employer

person

"indicates the employer of an individual"

subconcept-of

professor

university

18

Precondition [31]

 ?O1 instance of faculty member

 ?O2 instance of person

Name

 Assess whether ?O1 is a potential PhD advisor for ?O2

The precondition is a concept which, in general, may have the form [3]. This precondition is a plausible

version space in the case of partially learned problems.

The purpose of a problem’s precondition is to ensure that the problem makes sense for each problem

instantiation that satisfies it. For example, the following problem does not make sense:

 “Assess whether 45 is a potential PhD advisor for Bob Sharp.”

8. Rules

A Disciple-type agent solves problems by using a general “divide and conquer” approach that involves

problem reduction and solution synthesis. In this paradigm, which is illustrated in Figure 8, a complex

problem is solved by successively reducing it to simpler and simpler problems, finding the solutions of

the simplest problems, and then successively combining these solutions, from the bottom up, until the

solution of the initial problem is obtained.

In the illustration from Figure 8, the initial problem P1 is reduced to the simpler problems P11, … , P1n.

This means that the problem P1 may be solved by solving the problems P11, … , P1n. Then P11 is reduced

to P21, … , P2m. Then P2m is reduced to P31, … , P3p. These problems are simple enough to find their

solutions S31, … , S3p. These solutions are composed into S2m, the solution of P2m. Then the solutions S21,

… , S2m of the problems P21, … , P2m are composed into S11, the solution of P11. Finally, the solutions S11, …

, S1n are composed into S1, the solution of the initial problem P1.

Figure 8. The problem reduction paradigm of problem solving

The reduction and synthesis operations are performed by applying problem reduction rules and solution

synthesis rules.

S1

S11 S1n

S21 S2mP2mP21

P1nP11

P1

…

…

S31 S3pP3pP31
…

19

A problem reduction rule has the form [32] and expresses how and under what conditions a generic

problem can be reduced to one or several simpler generic problems.

IF <Problem> [32]

 <Applicability condition>

THEN <Subproblem 1>

 <Subproblem 2>

 …

 <Subproblem n>

The applicability condition is the concept representing the set of instances for which the reduction is

correct. In the case of a partially learned rule, the applicability condition is a plausible version space. An

example of such a rule is presented in Figure 9.

Figure 9. Partially learned problem reduction rule.

The solutions generated by a partially learned rule will have different degrees of plausibility, as indicated

in Figure 10.

20

Figure 10. Plausible reasoning based on a partially learned rule.

A solution synthesis rule expresses how and under what conditions the solutions of generic subproblems

can be combined into the solution of a generic problem.

9. Formal Definition of Generalization

Formal representation language for concepts

A knowledge representation language defines a syntax and semantics for expressing knowledge in a

form that an agent can use. We define a formal representation language for concepts as follows:

 Let ‘V’’ be a set of variables. For convenience in identifying variables, their names start with ‘?’

as, for instance, ?X. Variables are used to denote unspecified instances of concepts.

 Let ‘C’ be a set of constants. Examples of constants are the numbers (such as 5), strings (such as

“programming”), symbolic probability values (such as very high) and instances. We define a

term to be either a variable or a constant.

 Let ‘F’ be a set of features. The set F includes the domain independent features instance of,

subconcept of, and direct subconcept of, as well as other domain specific features, such as is

interested in.

 Let ‘O’ be an object ontology consisting of a set of concepts and instances defined using the

clause representation [2] presented in Section 1, where the feature values (vi1 … vim) are

constants, concepts, or instances. That is, there are no variables in the definition of a concept or

an instance from O:

?Oi instance of concepti
 featurei1 vi1
 . . .
 featurein vim

PVS Condition
Except-When

PVS Condition

Reduction is
plausible

Reduction is
most likely correct

Reduction is most
likely incorrect

Reduction is
not plausible

IF <Problem>

THEN <Subproblem 1>

<Subproblem 2>
…
<Subproblem m>

PVS Condition

Except-When

PVS Condition

21

The concepts and the instances from O are related by the generalization relations instance of and

subconcept of. O includes the concept object which represents all the instances from the

application domain and is therefore more general than any other object concept.

 Let ‘H’ be the set of theorems and properties of the features, variables, and constants.

Two properties of any feature are its domain and its range. Other features may have special

properties. For instance, the relations instance of and subconcept of are transitive (Tecuci and

Boicu, 2008). Also, a concept or an instance inherits the features of the concepts that are more

general than it (Tecuci and Boicu, 2008).

 Let ‘N’ be a set of connectors. L includes the logical connectors AND (),OR () and NOT (Except

When), the connectors ‘,‘ and ‘-’ for defining alternative values of a feature, the connectors ‘*‘,

‘+’, ‘(‘ and ‘)’ for defining a numeric interval, the delimiter ‘,’, and the symbols ‘Plausible Upper

Bound’, and ‘Plausible Lower Bound’.

We call the tuple L = (V, C, F, O, H, N) a representation language for concepts.

In the representation language L, a concept is defined as indicated in section 1 (see [2] and [3]).

In the following sections we will provide a formal definition of generalization in the representation

language L, based on substitutions.

A substitution is a function  = (x1t1, ... , xntn), where each xi (i=1,...,n) is a variable and each ti

(i=1,...,n) is a term. If li is an expression in the representation language L, then li is the expression

obtained by substituting each xi from li with ti.

Term generalization

In the representation language L, a term is a constant (e.g. number, string, symbolic interval, or

instance) or a variable. An unrestricted variable ?X is more general than any constant and is as general

as any other unrestricted variable (such as ?Y).

Clause generalization

Let us consider the concepts described by the following two clauses, C1 and C2, where v1, v2, v11, …,

v2n are variables, c1 and c2 are concepts, and f11, …, f2n are feature names.

C1 = v1 instance of c1

 f11 v11

 ...

 f1m v1m

22

C2 = v2 instance of c2

 f21 v21

 ...

 f2n v2n

We say that the clause C1 is more general than the clause C2 if there exists a substitution  such that:

v1 = v2

c1 = c2

i{1,...,m},  j{1,...,n} such that f1i = f2j and v1i = v2j.

For example, the concept

C1 = ?x instance of student

 has as age adult

is more general than the concept

C2 = ?y instance of student

 has as age adult

 has as sex female

Indeed, let  = (?X ?Y). As one can see, C1 is a part of C2, that is, each feature of C1 is also a feature

of C2. The first concept represents the set of all adult students, while the second one represents the set

of all adult students that are females. Obviously the first set includes the second one, and therefore the

first concept is more general than the second one.

Let us notice, however, that this definition of generalization does not take into account the theorems

and properties of the representation language L. In general one needs to use these theorems and

properties to transform the clauses C1 and C2 into equivalent clauses C'1 and C'2 respectively. Then one

shows that C'1 is more general than C'2. Therefore, the definition of the more general than relation in L

is the following one:

A clause C1 is more general than another clause C2 if and only if there exist C'1, C'2, and a substitution

, such that:

C'1 =L C1

C'2 =L C2

v1 =L v2

c1 is more general than c2 in L

23

 i{1,...,m},  j{1,...,n} such that f'1i =L f'2j and v'1i =L v'2j.

In the following we will always assume that the equality is in L and we will no longer indicate this.

Exercise

Illustrate clause generalization with an example from the PhD Advisor Assessment domain.

BRU generalization

As discussed in section 1, a BRU (basic representation unit) is a conjunction of clauses. An example of

BRU is the following one:

?O1 instance of course

 has as reading ?O2

?O2 instance of publication

 has as author ?O3

?O3 instance of professor

where, for notation convenience, we have dropped the AND connector between the clauses. Therefore,

anytime there is a sequence of clauses, they are to be considered as being connected by AND.

Let us consider two concepts, A and B, defined by the following expressions

A = A1  A2  ...  An

B = B1  B2  ...  Bm

where each Ai (i = 1, ... ,n) and each Bj (j = 1, ... ,m) is a clause.

A is more general than B if and only if there exist A', B', and  such that:

A' = A, A' = A'1  A'2  ...  A'p

B' = B, B' = B'1  B'2  ...  B'q

 i{1,...,p},  j{1,...,q} such that A'i = B'j.

Otherwise stated, one transforms the concepts A and B, using the theorems and the properties of the

representation language, so as to make each clause from A' more general than a corresponding clause

from B'. Notice that some clauses from B' may be “left-over”, that is, they are matched by no clause of

A', as in the following example.

Exercise

Illustrate BRU generalization with an example from the PhD Advisor Assessment domain.

24

Generalization of concepts with negations

By concept with negations we mean an expression of form [3]:

BRU  not BRU1  …  not BRUp

where each BRU is a conjunction of clauses.

Let us consider two concepts with negations, A and B, defined by the following expressions

A = BRUa  not BRUa1  …  not BRUap

B = BRUb  not BRUb1  …  not BRUbq

A is more general than B if and only if there exist A', B', and  such that:

A' = A, A' = BRU’a  not BRU’a1  …  not BRU’ap

B' = B, B' = BRU’b  not BRU’b1  …  not BRU’bq

BRU’a is more general than BRU’b

 i{1,...,p},  j{1,...,q} such that BRU’bj is more general than BRU’ai.

Exercise

Illustrate the generalization of concepts with negations by using an example from the PhD Advisor

Assessment domain.

10. Substitutions and the Generalization Rules

One can use the definition of generalization based on substitution to prove that the generalization rules

transform concepts into more general concepts.

As an illustration, let us consider the turning constants into variables generalization rule that

transformed the expression E1 (see [5]) into the expression E2 (see [6]). E2 is indeed a generalization of

E1 because E1 = E2, where =(?N1 55).

Exercise

Use the definition of generalization based on substitution to prove that each of the generalization rules

discussed in Section x transforms a concept into a more general concept.

11. Exercises

1. What is a positive example of a concept? What is a negative example of a concept?

2. What is a generalization rule? What is a specialization rule? What is a reformulation rule?

3. Name all the generalization rules you know.

25

4. Briefly describe and illustrate with an example the “turning constants into variables” generalization

rule.

5. Define and illustrate the dropping conditions generalization rule.

6. Define the following: a) a generalization of two concepts; b) a minimally general generalization of

two concepts; c) the least general generalization of two concepts; d) the maximally general

specialization of two concepts.

7. What is a negative exception? What is a positive exception?

8. Draw a picture representing a plausible version space, as well as a positive example, a negative

example, a positive exception and a negative exception. Then briefly define each of these elements.

9. Consider the cells consisting of two bodies, each body having two attributes, color (which may be

yellow or green) and number of nuclei (1 or 2). The relative position of the bodies is not relevant

because they can move inside the cell. You should assume that any generalization of a cell is described

as a single pair ((s t) (u v)).

a) Indicate all the possible generalizations of the following cell, and the generalization relations between

them:

b) Determine the number of the distinct sets of instances and the number of concept descriptions for

this problem.

c) Given the following cell descriptions

Determine the following minimal generalizations: g(E1, E2), g(E2, E3), g(E3, E1), g(E1, E2, E3)

12. References

Kodratoff, Y. and Ganascia, J-G. (1986). Improving the Generalization Step in Learning, In Michalski, R.,

Carbonell, J. and Mitchell, T. (editors), Machine Learning: An Artificial Intelligence Approach, Vol. 2, pp.

215-244. Morgan Kaufmann.

((1 green) (2 yellow))+

((1 green) (1 green)) ((1 green) (2 green))((1 yellow) (2 green))

26

Mitchell, T. M. (1978). Version Spaces: An Approach to Concept Learning. Doctoral Dissertation, Stanford

University.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

Plotkin, G. D. (1970). A Note on Inductive Generalization. In Meltzer, B. and Michie, D. (editors), Machine

Intelligence 5, pp. 165-179. Edinburgh: Edinburgh University Press.

Tecuci, G. (1992). Automating Knowledge Acquisition as Extending, Updating, and Improving a

Knowledge Base, IEEE Trans. on Systems, Man and Cybernetics, 22, pp. 1444-1460.

Tecuci G. (1998). Building Intelligent Agents, Academic Press.

Tecuci G., Boicu M. (2008). A Guide for Ontology Development with Disciple. Research Report 3,

Learning Agents Center, George Mason University.

Tecuci G., Boicu M., Boicu C., Marcu D., Stanescu B., Barbulescu M., The Disciple-RKF Learning and

Reasoning Agent, Computational Intelligence, Vol.21, No.4, 2005, pp 462-479.

Tecuci G., Boicu M., Marcu D., Barbulescu M., Boicu C., Le V., Hajduk T., Teaching Virtual Experts for

Multi-Domain Collaborative Planning, Journal of Software, Volume 3, Number 3, pp. 38-59, March 2008.

Tecuci, G. and Kodratoff, Y. (1990). Apprenticeship Learning in Imperfect Theory Domains, In Kodratoff,

Y. and Michalski, R. S. (editors), Machine Learning: An Artificial Intelligence Approach, vol. 3, pp. 514-

551. Morgan Kaufmann.

13. Acknowledgements
This material is based on research partially sponsored by the Air Force Office of Scientific Research

(FA9550-07-1-0268), the Air Force Research Laboratory (FA8750-04-1-0257), and the National Science

Foundation (0750461).

Dorin Marcu, Cristina Boicu, Marcel Barbulescu, and Vu Le have contributed significantly to the recent

versions of Disciple.

The US Government is authorized to reproduce and distribute reprints for Governmental purposes

notwithstanding any copyright notation thereon. The views and conclusions contained herein are those

of the authors and should not be interpreted as necessarily representing the official polices or

endorsements, either expressed or implied, of the Air Force Office of Scientific Research, the Air Force

Research Laboratory or the U.S. Government.

