
Teaching Virtual Experts

for Multi-Domain Collaborative Planning

Gheorghe Tecuci, Mihai Boicu, Dorin Marcu, Marcel Barbulescu, Cristina Boicu, Vu Le, Thomas Hajduk
Learning Agents Center, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.

{tecuci, mboicu, dmarcu, mbarbule, ccascava, vle3}@gmu.edu, THajduk@aol.com, http://lac.gmu.edu

Abstract— This paper presents an approach to rapid devel-

opment of virtual planning experts that can collaborate to

develop plans of action requiring expertise from multiple

domains. The approach is implemented into a new type of

software tool, called Disciple-VPT, which includes an exten-

sible library of virtual planning experts from different do-

mains. Teams of such virtual experts can be rapidly assem-

bled from the library to generate complex plans of actions

that require their joint expertise. The basic component of

the Disciple-VPT tool is the Disciple-VE learning agent shell

that can be taught directly by a subject matter expert how

to plan, trough planning examples and explanations, in a

way that is similar to how the expert would teach an ap-

prentice. Copies of the Disciple-VE shells are used by ex-

perts in different domains to rapidly populate the library of

virtual experts of Disciple-VPT.

Index Terms—knowledge engineering, HTN planning, learn-

ing, collaboration, expert systems, emergency response

planning, knowledge bases, ontology, rules, software tool

I. INTRODUCTION

This paper presents an approach to rapid development

of virtual experts for application areas requiring multi-

domain collaborative planning. A virtual expert is a

knowledge-based agent that can rapidly acquire planning
expertise from a subject matter expert and can collabo-

rate with other virtual experts to develop plans that are

beyond the capabilities of individual virtual experts.

In this paper, planning means finding a partially or-

dered set of elementary actions that perform a complex

task [1].

The multi-domain collaborative planning approach is

being implemented into a new type of software tool,

called Disciple-VPT (Virtual Planning Team), which

consists of a library of virtual experts and a generic soft-

ware shell for creating multi-agent planning systems for a

variety of application domains. A representative applica-

tion of Disciple-VPT is planning the response to emer-

gency situations, such as, a tanker truck leaking toxic

substance near a residential area, a propane truck explo-

sion, a bio hazard, an aircraft crash, a natural disaster or a

terrorist attack [2]. The US National Response Plan [3]

identifies 15 primary emergency support functions per-

formed by federal agencies in emergency situations.

Similarly local and state agencies undertake these func-

tions responding to such emergencies without or before

any federal assistance is provided. Each such function de-

fines an expertise domain, such as emergency manage-

ment; police operations; fire department operations; haz-

ardous materials handling; health and emergency medical

services; sheltering, public works and facilities; and fed-

eral law enforcement. In this case, the library of Disciple-

VPT will include virtual experts corresponding to these

domains.

Critical to the generality and usefulness of Disciple-

VPT is its ability to rapidly develop virtual experts that

have the expertise of specific human experts from a wide

variety of domains. Disciple-VPT incorporates the Disci-

ple-VE system, a learning agent shell that can be taught

directly by a subject matter expert how to plan, for in-

stance, by showing it how to plan the performance of a

specific task and helping it understand the reasoning

process. As a result, the agent learns general planning

rules from such planning examples and builds its knowl-

edge base. In time, the expert-agent interaction evolves

from a teacher-student interaction toward an interaction

where both collaborate in planning. During this joint

planning process, the agent learns not only from the con-

tributions of the expert, but also from its own successful

or unsuccessful planning attempts.

Disciple-VE builds on the previous versions of the

Disciple learning agent shell that were used to develop

agents for course of action critiquing and center of grav-

ity analysis, and were successfully evaluated as part of

DARPA’s High Performance Knowledge Bases and

Rapid Knowledge Formation programs [4]. The Disciple

agents for center of gravity analysis have been used in

several courses at the US Army War College [5] and the

Air War College. The Disciple approach has been signifi-

cantly extended to develop the Disciple-VPT software

tool, as presented in the rest of this paper.

The next section presents the general architecture of

Disciple-VPT and discusses the different possible uses of

this general and flexible tool. Sec. III describes a sample

scenario from the emergency response planning area,

which is used to present the features of Disciple-VPT.

Sec. IV presents the architecture of the Disciple-VE

learning agent shell which is at the basis of the capabili-

ties of Disciple-VPT. Sec. V presents the learning-

oriented knowledge representation of Disciple-VE. Sec.

VI presents the hierarchical task-network (HTN) planning

performed by the Disciple virtual experts. After that, Sec.

VII presents a modeling language and methodology de-

veloped to help a subject matter expert explain to a Dis-

ciple agent how to plan, by using the task reduction para-

digm. Sec. VIII discusses how a Disciple-VE agent can

perform complex inferences as part of a planning process.

38 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER

Disciple-VEDisciple-VEDisciple-VE

Disciple-VEDisciple-VEDisciple-VE

VE Assistant

VE Library

Disciple-VEDisciple-VEDisciple-VE

VE Team

User

KB

KB

KB

KB

KB

DISTRIBUTED

KNOWLEDGE BASE

KB

Disciple-VE

Disciple-VE Disciple-VE

Disciple-VE Disciple-VE

Disciple-VE

Disciple-VEDisciple-VEDisciple-VE

Disciple-VEDisciple-VEDisciple-VE

VE Assistant

VE Library

Disciple-VEDisciple-VEDisciple-VE

VE Team

User

KB

KB

KB

KB

KB

DISTRIBUTED

KNOWLEDGE BASE

KB

Disciple-VE

Disciple-VE Disciple-VE

Disciple-VE Disciple-VE

Disciple-VE

Figure 1. Overall architecture of Disciple-VPT.

The next two sections, IX and X, present the teaching and

learning methods of Disciple-VE, first for inference tasks

and then for planning tasks. Sec. XI presents the organi-

zation of the library of virtual experts of Disciple-VPT.

After that, Sec. XII presents Disciple-VPT’s approach to

multi-agent collaboration. Sec. XIII discusses the devel-

opment of two virtual experts, one for fire operations and

the other for emergency management. Sec. XIV presents

the evaluation results, and Sec. XV summarizes our re-

search contributions and the future research directions.

II. THE ARCHITECTURE OF DISCIPLE-VPT

Fig. 1 presents the end-user’s view of the three major

components of Disciple-VPT:

VE Assistant, an agent that supports the user in us-

ing Disciple-VPT;

VE Library, an extensible library of virtual plan-

ning experts;

VE Team, a dynamically assembled team of virtual

experts selected from the VE Library.

The user interacts with the VE Assistant to specify a

situation and the profiles of several human experts that

may collaborate to plan the achievement of various goals

in that situation. Next, a team of virtual planning experts

with similar profiles is automatically assembled from the

VE Library. This VE Team then simulates the planning

performed by the human experts, generating plans for

achieving various goals in the given situation.

Disciple-VPT allows the development of collaborative

planners for a variety of applications by populating its li-

brary with corresponding virtual experts. For instance,

planning the response to emergency situations requires

virtual experts for emergency management, hazardous

materials handling, federal law enforcement, etc. Other

application areas, such as planning of military operations,

require a different set of virtual experts in the VE Library.

Moreover, for a given type of task and application area,

different multi-domain planning systems can be created

by assembling different teams of virtual experts.

There are many ways in which a fully-functional Dis-

ciple-VPT system can be used for training or actual plan-

ning assistance. For instance, in the context of emergency

response planning, it can be used to develop a wide range

of training scenarios by guiding the user to select between

different scenario characteristics. Disciple-VPT can also

be used to assemble teams of virtual planning experts that

can demonstrate and teach how people should plan the re-

sponse to various emergency situations. Another ap-

proach is to assemble combined teams which include

both people and virtual experts. The team members will

then collaborate in planning the response to the generated

emergency scenario. In a combined team, human re-

sponders can play certain emergency support functions by

themselves, or can play these functions with the assis-

tance of corresponding virtual experts. During the train-

ing exercise a responder who has a certain emergency

support function will learn how to perform that function

from a corresponding virtual expert with higher compe-

tence. The responder will also learn how to collaborate

with the other responders or virtual experts that perform

complementary support functions.

The Disciple-VPT approach to expert problem solving

extends significantly the applicability of the traditional

expert systems [6-10]. Such an expert system is limited to

a narrow expertise domain and its performance decreases

dramatically when attempting to solve problems that have

elements outside its domain of expertise. On the contrary,

a Disciple-VPT type system can efficiently solve such

problems by incorporating additional virtual experts. Be-

cause many expert tasks actually require collaboration

with other experts, a Disciple-VPT type system is more

suitable for solving real-world problems.

The next section introduces in more detail the scenario

from the emergency response planning area that guided

the development of Disciple-VPT.

III. EMERGENCY RESPONSE PLANNING

Emergency Response Planning was introduced in the

previous sections. A sample emergency situation which

will be used in the rest of this paper is the following one:

“Workers at the Propane bulk storage facility in

Gainsville, Virginia, have been transferring propane from

a train car to fill one of two 30,000 gallon bulk storage

tanks. A fire is discovered in the fill pipe at the bulk tank

and a large fire is developing. The time is 15:12 on a

Wednesday in the month of May. The temperature is 72

degrees and there is a light breeze out of the west. The

roads are dry and traffic volume is moderate. The fire de-

partment is summoned to the scene 5 minutes after the

fire started. The facility is located in a rapidly growing

area 2,000 ft from an interstate highway and 200 ft from

two heavily traveled US highways. New shopping centers

have popped up in the area including food stores, large

box building supply facilities, and large box retail facili-

ties. As always, these facilities are accompanied by fast

food restaurants and smaller retail stores. Residential

concentrations include approximately 2400 residents. The

JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008 39

© 2008 ACADEMY PUBLISHER

Local Emergency Operations Plan has all the required

components including Public Information, Communica-

tions, and Sheltering. Shelters utilize schools managed by

the Red Cross. The Virginia Department of Transporta-

tion provides highway services.”

Planning the appropriate response to this emergency

situation requires the collaboration of experts in fire de-

partment operations, in emergency management, and in

police operations. The generated plan will consist of hun-

dreds of partially order actions.

One group of actions deal with the arrival of resources,

such as fire units, emergency management services units,

police units, as well as individuals with different areas of

expertise (e.g. emergency manager, safety officer, high-

way supervisor, planning officer, training logistics offi-

cer, public information officer).

Another group of actions deal with the establishment

of the structure of the Incident Command System (ICS)

and the allocation of resources based on the evaluation of

the situation. The structure of the ICS follows the stan-

dard U.S. National Incident Management System [11].

The National Incident Management System establishes

standard incident management processes, protocols and

procedures so that all local, state, federal and private-

sector emergency responders can coordinate their re-

sponses, share a common focus and more effectively re-

solve events. Its main components are the unified com-

mand, the command staff, and the general staff. The

structure and organization of these components depend

on the current situation. For example, in the case of the

above scenario, the unified command includes representa-

tives from the fire department, police department, high-

way department, and propane company. The command

staff includes a safety officer, a public information officer

and a liaison officer. The general staff includes an opera-

tion section, a planning section, a logistics section, and a

finance and administration section. Each of these sections

is further structured and staffed.

Yet other groups of actions deal with the various ac-

tivities performed by the components of the Incident

Command System. For instance, in the case of the above

scenario, the fire management group may perform the

cooling of the propane tank with water. The evacuation

branch may evacuate the Gainsville hot zone. The emer-

gency manager may arrange for transportation, sheltering,

and emergency announcements to support the evacuation.

The Gainsville perimeter control branch implements the

perimeter control for the Gainsville hot zone. The Gains-

ville traffic control branch implements the traffic control

to facilitate the evacuation of the Gainsville hot zone. The

Gainsville command establishes rapid intervention task

forces to respond if the propane tank explodes.

One difficulty in generating such a plan, apart from the

fact that it involves many actions, is that the actions from

the above groups are actually performed in parallel. The

goal of the research presented in this paper is to create a

capability for rapid and low cost development of virtual

planning experts to be used in this type of multi-domain

collaborative planning. Moreover, the plans generated by

the system should be more comprehensive than those

produced by a collaborative team of humans, and should

be generated much faster and cheaper than currently pos-

sible. The next section introduces the Disciple-VE learn-

ing agent shell which is at the basis of Disciple-VPT.

IV. THE DISCIPLE-VE LEARNING AGENT SHELL

Disciple denotes an evolving theory, methodology and
family of tools for the development of knowledge-based

agents by subject matter experts, with limited assistance

from knowledge engineers [12-14]. The main goal of the

Disciple approach is to overcome the knowledge acquisi-

tion bottleneck in the development of knowledge-based

systems [6]. Its basic idea is to develop a general problem

solving and learning agent that has no specific knowledge

in its knowledge base, but can be taught directly by a sub-

ject matter expert, and can develop its knowledge base to

become an expert system. We call such an agent, a learn-

ing agent shell. The Disciple-VE learning agent shell ex-

tends significantly the previous versions by incorporating

capabilities of learning for planning and by allowing

rapid development of knowledge-based planners, as will

be discussed in more details in the rest of this paper.

The general problem solving paradigm of a Disciple

agent is task reduction [12, 15-17]. In the task reduction

paradigm, a complex problem solving task is successively

reduced to simpler tasks, solutions of the simplest tasks

are found, and these solutions are successively combined

into the solutions of the initial task, as illustrated in Fig.

7. In the context of planning, this approach reduces to Hi-

erarchical Task Network (HTN) planning where the ini-

tial complex task is reduced to a partially ordered set of

elementary actions [1, 18-20]. This process is illustrated

in Fig. 5. In the case of Disciple-VE, planning tasks are

integrated with inference tasks, which significantly in-

creases the power of HTN planning.

In order to perform HTN planning and inference, the

knowledge base of Disciple-VE contains two main types

of knowledge: an object ontology and a set of reasoning

rules. The object ontology, which is described in more

details in the next section, represents the types of objects

from an application domain, together with their properties

and relationships [21, 22]. A fragment of the object on-

tology for emergency planning is shown in Fig. 2.

The reasoning rules are expressed with the elements of

the object ontology. Reduction rules indicate how gen-

eral planning or inference tasks can be reduced to sim-

pler tasks, actions, or solutions. Synthesis rules indicate

how solutions of simpler tasks can be combined into solu-

tions of complex tasks, or how actions can be combined

into partially ordered plans for more complex tasks. The

main strength of the Disciple agents comes from the fact

that they can easily and rapidly learn rules (such as those

in Fig. 15) from subject matter experts.

The Disciple-VE shell is used to rapidly develop a

Disciple-VE agent for a specific planning domain by fol-

lowing a two phase process:

The development of an initial object ontology for

that domain, which is performed jointly by a knowl-

edge engineer and a subject matter expert.

40 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER

Gainsville incident

instance of

subconcept of

emergency

major emergency

major fire emergency

subconcept of

fill pipe

fill pipe1

instance of

is caused by

gas propane f1

has as content

has as part

propane tank1

propane tank

instance of

is connected to

gas propane

instance of

fire1

is situated in

fire

is fuelled by

is impinging on

shut off valve1

has as operating status

damaged

has as gate status

opened

event

subconcept of

discharge pipe

pipe

propane

hazardous substance

liquid propane

tank

container

fire engine water tank

shut off valve

valve

has as size
large

instance of

subconcept of

subconcept of

subconcept of

instance of

subconcept of

subconcept of

subconcept of

equipment component

subconcept of

fire hydrant

substance

subconcept of

explosive

corrosive liquid
toxic substance

water

BLEVE

is located in

emergency relief valve

chemical substance

object

... ...

......

...

...

...

...
...

...

subconcept of

Gainsville incident

instance of

subconcept of

emergency

major emergency

major fire emergency

subconcept of

fill pipe

fill pipe1

instance of

is caused by

gas propane f1

has as content

has as part

propane tank1

propane tank

instance of

is connected to

gas propane

instance of

fire1

is situated in

fire

is fuelled by

is impinging on

shut off valve1

has as operating status

damaged

has as gate status

opened

event

subconcept of

discharge pipe

pipe

propane

hazardous substance

liquid propane

tank

container

fire engine water tank

shut off valve

valve

has as size
large

instance of

subconcept of

subconcept of

subconcept of

instance of

subconcept of

subconcept of

subconcept of

equipment component

subconcept of

fire hydrant

substance

subconcept of

explosive

corrosive liquid
toxic substance

water

BLEVE

is located in

emergency relief valve

chemical substance

object

... ...

......

...

...

...

...
...

...

subconcept of

Figure 2. Fragment of the object ontology from the emergency planning area.

The teaching of Disciple-VE, which is performed by

the subject matter expert, with limited assistance

from the knowledge engineer.

The subject matter expert teaches Disciple-VE how to

plan the performance of a complex task in a way that is

similar to how the expert would teach a person. For in-

stance, the expert will show and explain the agent how to

plan the performance of “Respond to Gainsville incident” and

the agent will learns general planning and inference rules

for this type of task. This process is based on:

Mixed-initiative planning [23, 24], where the expert

develops the more creative parts of the plan and the

agent develops the more routine ones.

Integrated learning and teaching [13], where the ex-

pert helps the agent to learn (e.g. by providing exam-

ples, hints and explanations), and the agent helps the

expert to teach it (e.g. by asking relevant questions).

Multistrategy learning [25], where the agent integrates

complementary strategies, such as learning from exam-

ples, learning from explanations, and learning by anal-

ogy, to learn general concepts and rules.

The integrated learning, planning, and inference capa-

bilities of Disciple-VE are based on a learning-oriented

knowledge representation which is presented next.

V. LEARNING-ORIENTED KNOWLEDGE REPRESENTATION

A. The Object Ontology

At the basis of Disciple’s learnable knowledge repre-

sentations are the notions of instances, concepts and gen-

eralization. An instance is a representation of a particu-

lar entity in the application domain (e.g. Gainsville inci-
dent, from the bottom-left of Fig. 2). A concept is a rep-

resentation of a set of instances. For example, the major
fire emergency concept represents all the incidents that are

major fire emergencies. One such instance is Gainsville in-
cident. As shown in Fig. 2, this information is represented

as “Gainville incident instance_of major fire emergency”.
A concept P is said to be more general than (or a gen-

eralization of) another concept Q if and only if the set of

instances represented by P includes the set of instances

represented by Q. For example, major emergency is more

general than major fire emergency, which is expressed as

“major fire emergency subconcept_of major emergency.”
The instances and concepts are organized into gener-

alization hierarchies like the one from Fig. 2. These struc-

tures are not strict hierarchies, meaning that a concept

may be a subconcept of several concepts (e.g. propane is

both a chemical substance and a hazardous substance).

The instances and concepts may have features repre-

senting their properties and relationships. For example,

“Gainsville incident is_caused_by fire1” and “fire1 is_fuelled_by
gas propane f1”, as illustrated in Fig. 2. The bottom part of

Fig. 3 shows all the features of fill pipe1 in the interface of

the Association Browser of Disciple.

Each feature, such as is_fuelled_by, is characterized by a

domain and a range. The domain of a feature is a concept

that represents all objects that may have that feature. The

range of a feature is a concept that represents all the

possible values of that feature. For example, the domain

of is_fuelled_by is fire and its range is hazardous substance.

The features are also organized into a generalization

hierarchy. For example, the top part of Fig. 3 shows (a ro-

tated view of) a fragment of the feature hierarchy, in the

interface of the Hierarchy Browser of Disciple. In this hi-

erarchy the feature has_as_part (shown in the left hand

side of Fig. 3) is more general than has_as_member
which, in turn, is more general than has_as_supervisor.

Together, the object hierarchy and the feature hierar-

chy represent the object ontology of a Disciple-VE agent.

Thus, the object ontology is a hierarchical representation

of the objects from the application domain, representing

the different kinds of objects, the properties of each ob-

ject, and the relationships existing between objects.

In general the object ontology does not contain all the

relevant concepts and in-

stances from the ap-

plication domain and is

therefore incomplete. Also

the representation of a

given concept or instance

may by not include all its

relevant features, being

itself incomplete. Such an

object ontology will have

to be extended by the

agent during the planning

and learning process.

The object ontology

plays a crucial role in Dis-

ciple, being at the basis of

knowledge representation,

user-agent communica-

tion, planning, knowledge

acquisition, and learning,

as discussed in the follow-

ing.

JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008 41

© 2008 ACADEMY PUBLISHER

Figure 3. Feature hierarchy (top) and instance description (bottom).

B. Concept Representation

Using the (object and feature) concepts from the object

ontology, one can define more complex concepts as logi-

cal expressions involving these primary concepts. The

basic representation unit (BRU) for a more complex con-

cept has the form {?O1, ?O2 ,…, ?On}, where each ?Oi

has the structure indicated in (1).

?Oi is concepti (1)

 featurei1 ?Oi1

 . . .
 featureim ?Oim

Concepti is an object concept from the object ontology,

a numeric interval, or a list of strings, and ?Oi1 … ?Oim

are distinct variables from the set {?O1, ?O2, … , ?On}.

For example, the concept “fire fuelled by gas propane” is

represented by the pair {?O1, ?O2}, where ?O1 is a fire

fuelled by ?O2, and ?O2 is gas propane, as indicated by the

expression (2).

?O1 is fire (2)

 is_fuelled_by ?O2

?O2 is gas propane

In general, a concept may be a conjunctive expression

of form (3), meaning that its instances satisfy BRU and do

not satisfy BRU1 and … and do not satisfy BRUp.

BRU & not BRU1 & … & not BRUp (3)

However, instead of “not” we write “Except When”.

For example, expression (4) represents the concept

“fire fuelled by gas propane where the fire is not small”.

?O1 is fire (4)

 is_fuelled_by ?O2

?O2 is gas propane
Except When
?O1 is fire

 has_as_size small

C. Generalization and Specialization Rules

The object ontology is at

the basis of the generalize-

tion language for learning,

as discussed in the follow-

ing. A concept, such as (2),

may be generalized or spe-

cialized by using generaliza-

tion or specialization rules.

A generalization rule is a

rule that transforms a con-

cept into a more general

concept. The reverse of any

generalization rule is a

specialization rule which

transforms a concept into a

less general concept.

Examples of generali-

zation rules are climbing the

generalization hierarchy,

dropping conditions, turning

numbers into intervals, and

generalizing to feature do-

mains and ranges [13].

The climbing genera-

lization hierarchy rule gen-
eralizes a concept by

replacing a concept from its

description with a more
general concept. For exam-

ple, by replacing gas propane
with propane in (2), the

concept “fire is_fuelled_by gas
propane” is generalized to

“fire is_fuelled_by propane”.
The dropping condition

rule generalizes a concept
by eliminating a constraint

from its description. For

example, by eliminating the

Except When condition

42 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER

Universe of

Instances
Eh

Plausible

Upper Bound

Plausible

Lower Bound
Plausible Lower Bound

?O1 is {fire}

is_fuelled_by ?O2

?O2 is {gas propane,

liquid propane}

Plausible Upper Bound

?O1 is {fire}

is_fuelled_by ?O2

?O2 is {hazardous substance,

chemical substance}

Universe of

Instances
Eh

Plausible

Upper Bound

Plausible

Lower Bound
Plausible Lower Bound

?O1 is {fire}

is_fuelled_by ?O2

?O2 is {gas propane,

liquid propane}

Plausible Upper Bound

?O1 is {fire}

is_fuelled_by ?O2

?O2 is {hazardous substance,

chemical substance}

Figure 4. A plausible version space for a partially learned concept.

from (4), the concept “fire is_fuelled_by gas propane where
the fire is not small” is generalized to “fire is_fuelled_by gas
propane”.

Let us consider the fact “fire1 is_fuelled_by gas propane
f1” which is represented at the bottom of Fig. 2. This fact

can be rewritten as shown in (5).

?O1 is fire1 (5)

 is_fuelled_by ?O2

?O2 is gas propane f1

As indicated above, the domain and the range of the

feature is_fuelled_by are fire and hazardous substance, re-

spectively. Therefore, a maximally general generalization

of “fire1 is_fuelled_by gas propane f1” is “fire is_fuelled_by
hazardous substance.” This is obtained by applying the

generalizing to feature domains and ranges rule, where

the entity which has a feature f (e.g. fire1) is generalized

to the domain of the feature (e.g. fire), and the entity

which is the value of the feature f (e.g. gas propane f1) is

generalized to the range of that feature. This rule is im-

portant because it imposes limits on how much an expres-

sion can be generalized.

During learning, Disciple-VE learns general concepts

and rules by applying such generalizations and specializa-

tion rules, as discussed in the following sections.

D. Plausible Version Spaces

Disciple-VE learns general reasoning rules (or con-

cepts) staring from a single example of a reasoning step.

During the learning process, Disciple-VE maintains a set

of possible versions of the rule (concept) to be learned,
called a version space [13, 26]. The concepts in this

space are partially ordered, based on the “more general

than” relationship defined in Sec. V.A. A concept from

this space can be obtained from another concept from the

space by applying generalization or specialization rules.

For that reason, the version space can be represented by

an upper bound and a lower bound. The upper bound of

the version space contains the most general concepts

from the version space and the lower bound contains the

least general concepts. Any concept which is more gen-

eral than a concept from the lower bound and less general

than a concept from the upper bound is part of the version

space and may be the actual concept to be learned. A ver-

sion space may be regarded as a partially learned con-

cept.

The version spaces built by Disciple-VE during the

learning process are called plausible version spaces be-

cause their upper and lower bounds are generalizations

based on an incomplete object ontology. Therefore a

plausible version space is only a plausible approximation

of the concept Eh to be learned, as illustrated in Fig. 4.

The plausible upper bound of the version space from

the right hand side of Fig. 4 contains two concepts: “fire
fuelled by hazardous substance” and “fire fuelled by chemical
substance”, as shown by (6).

?O1 is fire (6)

 is_fuelled_by ?O2

?O2 is hazardous substance
and

?O1 is fire
 is_fuelled_by ?O2

?O2 is chemical substance

Similarly, the plausible lower bound of this version

space contains two concepts, “fire fuelled by gas propane”
and “fire fuelled by liquid propane”.

The concept Eh to be learned (shown in the left hand

side of Fig. 4) is, as an approximation, less general than

one of the concepts from the plausible upper bound. Also,

Eh is, as an approximation, more general than any of the

concepts from the plausible lower bound. As Disciple-VE

encounters additional positive and negative examples of

the concept (rule) to be learned, it generalizes and/or spe-

cializes the two bounds so that they converge toward one

another and approximate Eh better and better. This behav-

ior is different from that of the version spaces introduced

by [26], where one of the concepts from the upper bound

is always more general than the concept to be learned

(and the upper bound is always specialized during learn-

ing), and any of the concepts from the lower bound is al-

ways less general than the concept to be learned (and the

lower bound is always generalized during learning). The

major difference is that the version spaces introduced by

[26] are based on a complete representation space that in-

cludes the concept to be learned. On the contrary, the rep-

resentation space for Disciple is based on an incomplete

and evolving object ontology, as mentioned above.

Therefore, Disciple addresses the more complex and

more realistic problem of learning in the context of an

evolving representation space.

The notion of plausible version space is fundamental to

the knowledge representation, problem solving, and

learning methods of Disciple because all the partially

learned concepts are represented using

this construct. For instance, a partially

learned feature has its domain and range

represented as plausible version spaces.

Similarly, as discussed in more details in

Sec. IX and X, a partially learned rule is

also represented as a plausible version

space.

The next section introduces the type of

hierarchical task-network planning

performed by Disciple-VE and the as-

sociated elements that are represented

into its knowledge base.

JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008 43

© 2008 ACADEMY PUBLISHER

S1

Abstract Task 2

Planning Task 1

Question 1/Answer 1

Planning

Task 2

Planning

Task 3

S1 S4

S1

S4

Goal 1

Goal 2 Goal 3

Abstract Task 3

Action 1
Add

Effects 1

Delete

Effects 1

Duration 1 Resources 2

Action 2
Add

Effects 2

Delete

Effects 2

Duration 2

Question 2/Answer 2

S2 S3

Resources 3

Action 3
Add

Effects 3

Delete

Effects 3

Duration 3

S4

Question 3/Answer 3

S3 S3

Abstract Task 4 Abstract Task 6Abstract Task 5

Resources 1

Preconditions 4 Preconditions 5 Preconditions 6

Preconditions 2 Preconditions 3

S1

Abstract Task 2

Planning Task 1

Question 1/Answer 1

Planning

Task 2

Planning

Task 3

S1 S4

S1

S4

Goal 1

Goal 2 Goal 3

Abstract Task 3

Action 1
Add

Effects 1

Delete

Effects 1

Duration 1 Resources 2

Action 2
Add

Effects 2

Delete

Effects 2

Duration 2

Question 2/Answer 2

S2 S3

Resources 3

Action 3
Add

Effects 3

Delete

Effects 3

Duration 3

S4

Question 3/Answer 3

S3 S3

Abstract Task 4 Abstract Task 6Abstract Task 5

Resources 1

Preconditions 4 Preconditions 5 Preconditions 6

Preconditions 2 Preconditions 3

Figure 5. Hierarchical task network planning example.

VI. HIERARCHICAL TASK NETWORK PLANNING

The planning paradigm used by Disciple-VE is HTN

planning [1], extended to facilitate agent teaching and

learning, and mixed-initiative planning.

The goal of an HTN planner is to find a partially or-

der set of elementary actions that perform a complex

task, by successively decomposing the task into simpler

and simpler tasks, down to the level of elementary ac-

tions. HTN planning is the planning approach that has

been used for practical applications more than any other

approach because it is closer to how human experts think

about when solving a planning problem.

We will illustrate the HTN planning process performed

by a Disciple-VE agent with the abstract example from

Fig. 5. In this example, Planning Task 1 is reduced to Plan-
ning Task 2 and Planning Task 3. This means that by per-

forming Planning Task 2 and Planning Task 3 one accom-

plishes the performance of Planning Task 1. Because Plan-
ning Task 2 is reduced to Action 1 and Action 2, and Planning
Task 3 is reduced to Action 3, a plan for performing Plan-
ning Task 1 consists of Action 1, Action 2, and Action 3.

There are two types of reductions, task decomposition

and task specialization. Task decomposition means

breaking a task into a partially ordered set of subtasks

and/or actions. Task specialization means reducing a

task to a more detailed task or to an action.

The tasks or actions in a decomposition can be par-

tially ordered. For instance, in Fig. 5, Action 2 has to be

performed after Action 1 has been performed. Notice also

that there is no order relation between Planning Task 2 and

Planning Task 3. This means that these tasks may be per-

formed in parallel or in any order. Stating that Planning
Task 3 is performed after Planning Task 2 would mean that

any subtask or action of Planning Task 3 has to be per-

formed after any subtask or action of Planning Task 2.

Formulating such order relations between the tasks sig-

nificantly increases the efficiency of the planning process

because it reduces the number of partial orders that it has

to consider. On the other hand, it also reduces the number

of generated plans, if the tasks should not to be ordered.

Planning takes place in a given world state. A world

state is represented by all the objects present in the world

together with their properties and relationships at a given

moment of time. For instance, the bottom part of Fig. 2

shows a partial representation of a world state where fire1,

which is situated in fill pipe1, is impinging on propane
tank1. As will be discussed in more details in Sec. XI,

each world state is represented by Disciple-VE as a tem-

porary state knowledge base.

The states are changed by the performance of elemen-

tary actions. Abstract representations of actions are

shown at the bottom of Fig. 5. An action is characterized

by name, preconditions, delete effects, add effects, re-

sources and duration. An action can be performed in a

given world state Si if the action’s preconditions are sat-

isfied in that state. Action’s execution has a duration and

requires the use of some resources. The resources are ob-

jects from the state Si that are uniquely used by this ac-

tion during its execution. This means that any other ac-

tion that would need some of these resources cannot be

executed in parallel with it. As a result of action’s execu-

tion the state Si changes into the state Sj, as specified by
the action’s effects. The delete effects indicate what facts

from the initial state Si are no longer true in the final

state Sj. The add effects indicate what new facts become

true in the final state Sj.

An action from the emergency planning area is shown

in the bottom-right pane of Fig. 6. The action’s precondi-

tions, name, delete and add effects are represented as

natural language phrases that contain instances, concepts

and constants from the agent’s ontology. Action’s dura-

tion can be a constant, as in this example, or a function of

the other instances from the action’s description. Re-

sources are represented as a list of instances from the on-

tology. The starting time is computed by the planner.

A goal is a representation of a partial world state. It

specifies what facts should be true in a world state so that

the goal is achieved. As such, a goal may be achieved in

several world states.

A task is characterized by name, preconditions and

goal. A task is considered

for execution in a given

world state if its precondi-

tions are satisfied in that

state. Successful execution of

the task leads to a new world

state in which the task’s goal

is achieved. Unlike actions,

tasks are not executed direc-

tly, but are first reduced to

actions which are executed.

The top-right part of Fig.

6 shows a task reduction tree

in the interface of the Rea-

soning Hierarchy Browser of

Disciple. The initial task “Re-
spond to the Gainsville incident”
is reduced to five subtasks.

The second of these subtasks

(which is outlined in the

44 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER

Figure 6. Reasoning hierarchy (top right), reasoning step (left) and elementary action (bottom right).

figure) is successively reduced to simpler subtasks and

actions. The left part of Fig. 6 shows the reduction of the

initial task in the interface of the Reasoning Step Editor,

which displays more details about each task. As in the

case of an action, the task’s name, preconditions and goal

are represented as natural language phrases that include

instances and concepts from the agent’s ontology. Notice

that none of the visible “After” boxes is checked, which

means that Sub-task(1), Sub-task(2), and Sub-task(3) are not

ordered.

The single most difficult agent training activity for the

subject matter expert is to make explicit how s/he solves

problems, by using the task reduction paradigm, activity

which we call modeling expert’s reasoning. To cope with

this problem, we have developed an intuitive modeling

language, a set of modeling guidelines, and a set of mod-

eling modules which help the subject matter experts to

express his/her reasoning [27]. However, planning intro-

duces additional complexities related to reasoning with

different world states and with new types of knowledge

elements, such as preconditions, effects, and goals. For

these reasons, and to facilitate agent teaching by a subject

matter expert, we have extended both the modeling ap-

proach of Disciple and the classical HTN planning para-

digm [1], as discussed in the next section.

VII. A MODELING LANGUAGE FOR HTN PLANNING

To teach the agent how to plan the expert has to first

show the agent an example in the form of a planning tree

like the ones in Fig. 5 and Fig. 6. The expert formulates

the initial task (e.g. Planning Task 1 in Fig. 5) and then fol-

lows a systematic procedure to develop a detailed plan of

actions that perform the initial task. S/He follows a task

reduction paradigm where the initial task is successively

reduced to simpler and simpler tasks, down to the level of

elementary actions. The partially ordered set of these

elementary actions represents the plan for performing the

initial task.

As illustrated in Fig.5 and Fig. 6, the task reduction

process is guided by questions and answers, as if the ex-

pert is asking himself/herself how to reduce the current

task. Consider, for instance, a task that may be reduced

(i.e. performed) in different ways. Then the question

should be related to the factors that determine the reduc-

tion strategy to choose. Therefore the answer will help

the expert to choose the strategy and define the reduction.

If there is only one way to reduce the current task, then

no Question/Answer pair is necessary. The above strategy

is summarized by the following modeling guideline.

Guideline 1: When reducing a task, ask a question re-

lated to the reduction strategy to use. Find the answer to

the question and then reduce the task appropriately.

Notice that Planning Task 1 from Fig. 5 has to be per-

formed in the initial state S1. Planning Task 2 is also per-

formed in the state S1 and its preconditions have to be sat-

isfied in that state. Similarly, Action 1 has to be performed

in the state S1. However, this action changes the world

state from S1 to S2. Therefore Action 2 has to be performed

in the state S2 and its preconditions have to be satisfied in

that state. Moreover, it also changes the world state to S3.

What is the state in which Planning Task 3 is executed?

Because there is no order relationship between Planning
Task 2 and Planning Task 3, Planning Task 3 can, in princi-

ple, be executed either in the state S1, or S2, or S3. In real-

ity, some order relationships may be determined by the

resources used by the elementary actions. For instance, if

both Action 2 and Action 3 need the same resource, they

JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008 45

© 2008 ACADEMY PUBLISHER

cannot be executed in parallel.

When showing a planning example to the agent, the

expert does not need to consider all the possible ordering

relations discussed above, which would be very difficult

in the case of the complex problems addressed by Disci-

ple-VE. Instead, the expert has to consider one possible

order, such as the one in which Planning Task 3 is exe-

cuted after Action 2, in state S3. This allows both the ex-

pert and the agent to have a precise understanding of the

state in which each task is performed, which is necessary

in order to check that its preconditions are satisfied. This

leads to the following modeling guideline.

Guideline 2: When specifying a decomposition of a

task into subtasks and/or actions, the expert has to de-

scribe the subtasks and actions in a plausible order, even

though they can also be performed in a different order.

The following guideline is intended to facilitate the

specification of an entire planning tree by the expert.

Guideline 3: The expert has to specify the planning

tree in a top-down and left-right fashion, indicating a re-

duction of a task into its subtasks, and continuing with the

further reduction of the left-most subtask.

However, allowing the process specified by the above

guideline required the extension of the HTN planning

paradigm, as discussed in the following. Let us consider

the decomposition of Planning Task 1 from Fig. 5 into

Planning Task 2 and Planning Task 3, by following the top-

down and left-right process. At the time the expert has to

specify this decomposition, s/he knows that Planning Task
2 has to be performed in the state S1, by s/he does not

know which is the state in which Planning Task 3 has to be

performed. This state can only be determined after the en-

tire subplan for Task 2 has been specified. In other words,

Task 3 can only be specified after the entire subplan for

Task 2 has been specified. In order to resolve this contra-

diction, we have introduced the notion of abstract task.

An abstract task is a simplified specification of a task
that does not depend on the actual state in which the task

is going to be executed. As such, an abstract task does not

have any precondition, and does not refer to any specific

objects or their properties.

An abstract task can be reduced to a concrete task if

certain preconditions are satisfied. In principle, the same

abstract task may be reduced to different concrete tasks.

Therefore the abstract task is not a characteristic of a

given concrete task. The following is a guideline for re-

ducing an abstract task to a concrete task.

Guideline 4: When reducing an abstract task to a con-

crete task formulate the preconditions to identify those

instances and constants from the current world state

which are referred in the name of the concrete task, but
are not referred in the previous elements of the task re-

duction step that includes this concretion.

To illustrate the above guideline, let us consider again

the reduction step from the left side of Fig. 6 and the pane

labeled Sub-task(3). Notice that the concrete task includes

the following instances: Gainsville command and Gainsville
incident. Each of these instances appear in the elements

listed under Sub-task(2). For example Gainsville command
appears in the Goal part. Therefore, according to Guide-

line 4, no preconditions are required to make the concre-

tion from the abstract task to the concrete task shown in

the pane labeled Sub-task(3). However, the expert may

still wish (and is allowed) to specify preconditions that

identify the instances that appear in the concrete task, as

was actually done in this example.

With the introduction of the abstract tasks the expert

can now reduce Planning Task 1 to Abstract Task 2 and Ab-
stract Task 3. Then s/he can continue with the reduction of

Abstract Task 2 to Planning Task 2, reduction performed in

state S1. Preconditions 2 represents the facts from the state

S1 that are required in order to make this reduction.

After that the expert continues with the reduction of

Planning Task 2 to Action 1 and Action 2. Thus Planning Task
2 is actually performed by executing Action 1 and Action 2,

which change the world state from S1 to S3. At this point

the expert can specify the goal achieved by Planning Task
2. This goal is an expression that depends on the effects

of Action 1 and Action 2, but is also unique for Task 2,

which is now completely specified. Next the expert can

continue with planning for Abstract Task 3 in the state S3.

The goal of a task represents the result obtained if the
task is successfully performed. The main purpose of the

goal is to identify those instances or facts that have been

added by its component actions and are needed by its fol-

low-on tasks or actions, as indicated in Guideline 5.

Guideline 5: Specify the goal of the current task such

that it includes those instances or facts created by its

component actions which are needed in the specification

of the follow-on actions or tasks from the current task re-

duction step.

To illustrate this guideline, let us consider the Sub-
task(2) pane in the left-side of Fig. 6. Notice that the two

instances from the Goal part (Gainsville command and

Gainsville ICS) are used in the follow-on expressions of the

reduction from Fig. 6.

The Reasoning Hierarchy Browser and the Reasoning

Step Editor (see Fig. 6) support the modeling process.

The Reasoning Hierarchy Browser provides operations to

browse the planning tree under development, such as ex-

panding or collapsing it step by step, or in its entirety. It

also provides the expert with macro editing operations,

such as deleting an entire subtree or copying a subtree

and pasting it under a different task. Each reduction step

of the planning tree is defined by using the Reasoning

Step Editor which includes several editors for specifying

the components of a task reduction step. It has comple-

tion capabilities that allow easy identification of the

names from the object ontology. It also facilitates the

viewing of the instances and concepts from the expres-

sions being edited by invoking various ontology viewers.

An important contribution of Disciple-VE is the ability

to combine HTN planning with inference, as described in

the following section.

VIII. INTEGRATION OF PLANNING AND INFERENCE

As illustrated in Fig. 5, each planning operation takes

place in a given world state and the actions, through their

effects, change this state. The planning process is com-

plex and computationally expensive because one has to

46 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER

Inference Task 1

Question/Answer

Inference Task 2 Inference Task 3

World

State S

Solution 1

Solution 2 Solution 3

Question/Answer

Inference Task 4 Inference Task 5

Question

Answer

Solution 4 Solution 5

Question/Answer

Question/Answer

Question

Answer

Question

Answer

Inference Task 1

Question/Answer

Inference Task 2 Inference Task 3

World

State S

Solution 1

Solution 2 Solution 3

Question/Answer

Inference Task 4 Inference Task 5

Question

Answer

Solution 4 Solution 5

Question/Answer

Question/Answer

Question

Answer

Question

Answer

Figure 7. Abstract inference tree.

Reduction

Step

Figure 8. Inference reduction tree.

keep track of these various world states. However,

some operations do not involve the change of the

world state, but reasoning about a given state. Let

us consider the top level reasoning steps from the

right-top pane of Fig. 6 where the task ”Respond to
the Gainsville incident” is reduced to five subtasks.

The third of these subtasks “The Gainsville command
evaluates the Gainsville incident and determines the
needed incident action plan” is further reduced to two

inference actions:

Inference: The Gainsville command evaluates
the situation created by the Gainsville incident.
Inference: The Gainsville command determines
the incident action plan for overpressure situation
with danger of BLEVE.

The first of these inference actions has as result “overpres-
sure situation with danger of BLEVE in propane tank1 caused
by fire1”. BLEVE is the acronym of “Boiling Liquid Ex-

panding Vapors Explosion”.

From the perspective of the planning process, an in-

ference action simulates a complex inference process by

representing the result of that process as the add effect of

the inference action. An inference action is automatically

reduced to an inference task. The inference task is per-

formed in a given world state to infer new facts about that

state. These facts are represented as the add effects of the

corresponding inference action and added into the world

state in which the inference action is performed.

The inference process associated with an inference task

is also performed by using the task reduction paradigm,

but it is much simpler than the planning process because

all the reductions take place in the same world state. An

abstract example of an inference tree is shown in Fig. 7.

An inference task is performed by successively reduc-

ing it to simpler inference tasks, until the tasks are simple

enough to find their solutions. Then the solutions of the

simplest tasks are successively combined, from bottom-

up, until the solution of the initial task is obtained.
This task reduction and solution synthesis process is

also guided by questions and answers, similarly to the

planning process. Fig. 8 shows the top part of the infer-

ence tree corresponding to the task “Inference: Gainsville
command determines the incident action plan for overpressure
situation with danger of BLEVE.” This task is first reduced to

two simpler inference tasks: ”Determine what can be done to

JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008 47

© 2008 ACADEMY PUBLISHER

Figure 9. Example of a reduction step for an inference task (top)

and the rule learned from it (bottom).

prevent the overpressure situation with danger of BLEVE to
evolve in a BLEVE” and “Determine how to reduce the effects
in case the overpressure situation with danger of BLEVE does
evolve in a BLEVE.” The first of these subtasks is succes-

sively reduced to simpler and simpler subtasks, guided by

questions and answers, as shown in the top part of Fig. 8.

Notice that an inference tree no longer needs to use

elements such as abstract task, preconditions, actions, ef-

fects, resources, or duration. The teaching process is also

much simpler than in the case of the planning process.

Therefore we will first present how the expert can teach

Disciple-VE to perform inference tasks. Then we will

present how the teaching and learning methods for infer-

ence tasks have been extended to allow the expert to also

teach the agent how to perform planning tasks.

IX. TEACHING AN AGENT TO PERFORM INFERENCE TASKS

A. Learning Inference Rules

Let us consider again the fragment of the inference tree

shown in Fig. 8. During the teaching process the subject

matter expert builds this inference tree. Each step in the

tree consists of a task, a question, its answer, and one or

several subtasks. From each of these steps the agent

learns a general task reduction rule. Table I defines the

problem of learning these rules.

Let us consider the 3rd reduction step from the task re-

duction tree in Fig. 8, step also shown at the top of Fig. 9.

From this task reduction step, Disciple-VE learned the

rule shown at the bottom of Fig. 9. This is an IF-THEN rule

that preserves the structure and natural language patterns

from the example. Indeed, the IF task, the ques-

tion/answer pair, and the THEN task are generalizations of

the corresponding elements from the example where the

instances and constants have been replaced with vari-

ables. In addition, the rule contains a main condition. An

instance of the rule is considered a correct reduction if the

corresponding variable values satisfy the main condition.

The rule in Fig. 9 is only partially learned because, in-

stead of a single applicability condition, it contains a

plausible version space for it. The plausible lower bound

of the applicability condition is the set of the tuples of the

rule variable values that are less general than the corre-

sponding elements of the Lower Bound table and satisfy

the relationships from the Relationship table. For exam-

ple, any value of ?O4 should be an instance of shut off
valve which has_as_operating_status ?S1 which should

have the value damaged. Moreover, this value of ?O4
should be the value of the relationship has_as_part of an

instance of ?O5 which should be a fill pipe and should have

the relationships indicated in the relationship table, and so

on. The plausible upper bound of the applicability condi-

tion is interpreted in a similar way, using the concepts

from the Upper Bound table.

Rule learning is accomplished through a mixed-

initiative process between the expert (who knows why the

reduction is correct and can help the agent to understand

this) and the Disciple-VE agent (which is able to general-

ize the task reduction example and its explanation into a

general rule, by using the object ontology as a generaliza-

tion language). The learning method is presented in Table

2 and is described in the following sections.

TABLE II.
THE LEARNING METHOD FOR TASK REDUCTION INFERENCE RULES

Let E be a reduction of a specific inference task T to one or several

inference subtasks Ti, reduction taking place in state Sk

1. Example Understanding: Interact with the subject matter expert to

understand the meaning of the question/answer pair from the ex-

ample reduction E in terms of the objects and their features from

the state Sk. These expressions represent the explanation EX of E.

2. Example Parameterization: Express the example E and its expla-

nation EX into an equivalent IF-THEN rule R with the applicabil-

ity condition IC, where each instance, number and string from the

example and the explanation is parameterized to a variable. IC in-

cludes both the association of variables to instances or constants

and the features from the explanation EX.

3. Rule Generalization: Generalize IC to a plausible version space

condition of the rule R, where the plausible upper bound is the

maximally general generalization of IC, and the plausible lower

bound is the minimally general generalization of IC, both generali-

zations containing no instances and being based on the agent’s ob-

ject ontology.

4. Rule Analysis and Refinement: If the rule is determined to be in-

completely learned then go to step 1 to identify additional explana-

tion pieces for EX. Otherwise end the rule learning process.

TABLE I.
THE LEARNING PROBLEM FOR TASK REDUCTION INFERENCE RULES

Given:

An example E of a reduction step for inference tasks.

A knowledge base that includes an ontology and a set of rules.

A subject matter expert who understands why the given example

is correct and may answer the agent’s questions.

Determine:

A plausible version space rule R for inference tasks, which is a

generalization of E.

An extended object ontology (if needed for rule learning).

48 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER

B. Example Understanding

The question and its answer from the task reduction

step represent the expert’s reason (or explanation) for

performing that reduction. Therefore understanding the

example by Disciple-VE means understanding the mean-

ing of the question/answer pair in terms of the concepts

and features from the agent’s ontology. This process is

difficult for a learning agents that does not have much

knowledge because the experts express themselves in-

formally, using natural language and common sense, and

often omit essential details that are considered obvious.

The question/answer pair from the example in Fig. 9 is:

Can we turn gas propane f1 off from fire1? (7)

No because shut off valve1 is damaged.

We can expect a person to assume, without being told,

that the reason we are considering turning the gas propane
f1 off from fire1 is because it is fueling fire1. We can also

expect the person to assume that we are considering shut-

ting off valve1 because it is part of fill pipe1 with the pro-
pane. However, an automated agent is not able to make

these assumptions and has to be helped to get an as com-

plete understanding of the example as possible. For in-

stance, a more complete explanation of the example from

the top of Fig. 9 consists of the following facts:

fire1 is_fuelled_by gas_propane_f1 (8)

fire1 is_situated_in fill pipe1 has_as_part shutoff valve1
shutoff valve1 has_as_operating_status damaged
the value damaged is required

The process of identifying such explanation pieces is

based on a communication protocol between the expert

and Disciple-VE which takes into account that:

It is easier for a human expert to understand sentences

in the formal language of the agent, such as (8), than it

is to produce such formal sentences.

It is easier for the agent to generate formal sentences

than it is to understand sentences in the natural lan-

guage used by the expert, such as (7).

This protocol is implemented in the Explanation mod-

ule of Disciple-VE, as explained in the following.

The subject matter expert cannot easily specify the ex-

planation pieces in (8) because s/he is not a knowledge

engineer. For instance, s/he would need to use the formal

language of the agent. But this would not be enough, as

the expert would also need to know the names of the po-

tentially many thousands of concepts and features from

the agent’s ontology. However, the expert can understand

the meaning of the above formal expressions. Therefore,

the agent will hypothesize plausible meanings of the

question-answer pair by using simple natural language

processing, analogical reasoning with previously learned

rules, and general heuristics, and will express them as ex-

planation pieces, such as those in (8). In general, an ex-

planation piece is a relationship (or a relationship chain)

involving instances, concepts, and constants from the task

reduction step and from the knowledge base.

The agent will propose the explanation pieces to the

expert, ordered by their plausibility. Then the expert can

select the explanation pieces that express approximately

the same meaning as the question-answer pair, including

the facts that were not explicitly stated, as discussed

above. The expert may also help the agent to propose the

right explanation pieces by providing hints, such as ask-

ing the agent to generate explanation pieces related to

certain instances from the example.

The quality of the learned rule depends directly on the

completeness of the found explanation. However, there is

no requirement that the found explanation be complete

and, in fact, this rarely occurs. The agent will continue to

improve the rule while using it in reasoning, when it will

be easier to discover the missing explanation pieces.

C. Example Parameterization

Example parameterization consists in transforming the

example and its explanation into an equivalent IF-THEN
rule, by replacing each instance or constant with a vari-

able, and restricting the variables to those values, as illus-

trated in Table III.

D. Rule Generalization

The expression in Table III is an instance of the gen-

eral rule to be learned from the example in Fig. 9 and its

explanation in (8). The next step in the rule learning proc-

ess is to determine which are the values of the variables

from the condition IC that lead to correct task reduction

steps. That is, Disciple-VE has to learn the concept that

represents the set of instances of the rule’s variables for

which the corresponding instantiation of the rule R is cor-

rect. We call this concept the applicability condition of

the rule and Disciple-VE learns it by using a plausible

version space approach.

First Disciple-VE generalizes the applicability condi-

tion IC to an initial plausible version space condition, as

described in the following and illustrated in Fig. 10. The

plausible upper bound condition is obtained by replac-

ing each variable value with its most general generaliza-

tion, based on the object ontology.

Let us consider the value fire1 of the variable ?O2. The

most general concept from the object ontology which is

more general than fire1 but less general than object is

event. However, the possible values for ?O2 are restricted

TABLE III.
PARAMETERIZATION OF THE EXAMPLE IN FIG. 9

AND ITS EXPLANATION (8)

IF the task is to

Determine whether we can prevent the ?O1 by extinguishing ?O2

Q: Can we turn ?O3 off from ?O1?

A: No because ?O4 is ?S1

Condition IC

 ?O1 is BLEVE1

 ?O2 is fire1

 is_fuelled_by ?O3

 is_situated_in ?O5

 ?O3 is gas propane f1

 ?O4 is shutoff valve1

 has_as_operating_status ?S1

 ?O5 is fill pipe1

 has_as_part ?O4

 ?S1 is damaged

THEN

Determine whether we can prevent the ?O1 by extinguishing ?O2

when we cannot turn ?O3 off from ?O2

JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008 49

© 2008 ACADEMY PUBLISHER

M
o
s
t g

e
n
e
ra

l

g
e
n

e
ra

liz
a

tio
nM

o
s
t
s
p

e
c
if
ic

g
e
n

e
ra

liz
a

ti
o
n

?O1 is BLEVE1

?O2 is fire1

is_fuelled_by ?O3

is_situated_in ?O5

?O3 is gas propane f1

?O4 is shutoff valve1

has_as_operating_status ?S1

?O5 is fill pipe1

has_as_part ?O4

?S1 is damaged

M
o
s
t g

e
n
e
ra

l

g
e
n

e
ra

liz
a

tio
nM

o
s
t
s
p

e
c
if
ic

g
e
n

e
ra

liz
a

ti
o
n

?O1 is BLEVE1

?O2 is fire1

is_fuelled_by ?O3

is_situated_in ?O5

?O3 is gas propane f1

?O4 is shutoff valve1

has_as_operating_status ?S1

?O5 is fill pipe1

has_as_part ?O4

?S1 is damaged

Figure 10. Generation of the initial plausible version space condition.

Figure 11. Rule learned from the example

at the top of Fig. 9 and the explanation (9).

by the features of fire1 identified as relevant as part of the

explanation (8) of the example in Fig. 9. As indicated in

Table III, ?O2 should have the features is_fuelled_by and

is_situated_in. This means that the values of ?O2 have to

be part of the domains of these features. Thus:

most general generalization(fire1) =
= {event} Domain(is_fuelled_by) Domain(is_situated_in)
= {event} {fire} {object} = {fire}

Applying a similar procedure to each variable value

from IC one obtains the plausible upper bound condition

shown in Fig. 10.

The plausible lower bound condition is obtained by
replacing each variable value with its least general gen-

eralization which is not an instance, based on the object

ontology. The procedure is similar with the one for ob-

taining the plausible upper bound condition. Therefore:

least general generalization(fire1) =
= {fire} Domain(is_fuelled_by) Domain(is_situated_in) =
= {fire} {fire} {object} = {fire}

The reason the lower bound cannot contain any in-

stance is that the learned rule will be used by Disciple-VE

in other scenarios where the instances from the current

scenario (such as fire1) do not exist, and Disciple-VE

would not know how to generalize them. On the other

hand, we also do not claim that the concept to be learned

is more general than the lower bound, as discussed in

Sec. V.D and illustrated in Fig. 4.

Notice that the features from the explanation (8) sig-

nificantly limit the size of the initial plausible version

space condition and thus speed up the rule learning proc-

ess. This is a type of explanation-based learning [28, 29]

except that the knowledge base of Disciple-VE is incom-

plete and therefore rule learning requires additional ex-

amples and interaction with the expert.

E. Rule Analysis and Refinement

After the rule was generated, Disciple-VE analyzes it

to determine whether it was learned from an incomplete

explanation [30]. To illustrate, let us consider again the

process of understanding the meaning of the ques-

tion/answer pair in (7) in terms of the concepts and fea-

tures from the agent’s ontology. In the previous sections

we have assumed that this process has led to the uncover-

ing of implicit explanation pieces. However, this does not

always happen. Therefore let us now assume that, instead

of (8), the identified explanation pieces of the example

are the following ones:

shutoff valve1 has_as_operating_status damaged (9)

The value damaged is required

In this case the learned rule is the one from Fig. 11.

The variables from the IF task of a rule are called in-

put variables because they are instantiated when the rule

is invoked in problem solving. The other variables of the
rule are called output variables.

During the problem solving process the output vari-

ables are instantiated by the agent with specific values

that satisfy the rule’s applicability condition. In a well-

formed rule, the output variables need to be linked

through explanation pieces to some of the input variables

of the rule. Therefore one rule analysis method consists

of determining whether there is any output variable which

is not constrained by the input variables. For instance, in

the case of the rule from Fig. 11, Disciple-VE determined

that the variables ?O3, ?O4, and ?S1 are not constrained,

and asks the expert to guide it to identify additional ex-

planation pieces related to their corresponding values (i.e.

gas propane f1, shutoff valve1 and damaged).

If the rule passes the structural analysis test, Disciple-

VE determines the number of its instances in the current

50 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER

Planning RulePlanning Step Example

Inference RuleInference Step Example

S1

Abstract Task 2

Planning Task 1

Question/Answer

Planning

Task 2

Planning

Task 3

S1 S4

S4

Goal 1

Goal 2 S3 Goal 3

Abstract Task 3

S1g

Abstract Task 2

Planning Task 1g

Condition 1g

Planning

Task 2g
Planning

Task 3g

S1g S4g

S4g

Goal 1g

Goal 2g S3g Goal 3g

Abstract Task 3

Condition 2g Condition 3g

Inference Task 1

Question/Answer

Inference Task 2 Inference Task 3

Si
Inference Task 1g

Condition g

Inference Task 2g Inference Task 3g

Question g/Answer g

Question/Answer Question g/Answer g

Precondition 2 Precondition 3
Precondition 2g Precondition 3g

Sig

Planning RulePlanning Step Example

Inference RuleInference Step Example

S1

Abstract Task 2

Planning Task 1

Question/Answer

Planning

Task 2

Planning

Task 3

S1 S4

S4

Goal 1

Goal 2 S3 Goal 3

Abstract Task 3

S1g

Abstract Task 2

Planning Task 1g

Condition 1g

Planning

Task 2g
Planning

Task 3g

S1g S4g

S4g

Goal 1g

Goal 2g S3g Goal 3g

Abstract Task 3

Condition 2g Condition 3g

Inference Task 1

Question/Answer

Inference Task 2 Inference Task 3

Si
Inference Task 1g

Condition g

Inference Task 2g Inference Task 3g

Question g/Answer g

Question/Answer Question g/Answer g

Precondition 2 Precondition 3
Precondition 2g Precondition 3g

Sig

Figure 12. Learning Inference Rules Versus Learning Planning Rules.

knowledge base and considers that the rule in incom-

pletely learned if this number is above a pre-defined

threshold. In such a case, the agent will attempt to iden-

tify which variables are the least constrained and will at-

tempt to further constrain them by interacting with the

expert to find additional explanation pieces.

Following such a process, Disciple-VE succeeds in

learning a reasonable good rule from only one example

and its explanation, a rule that may be used by Disciple in

the planning process. The plausible upper bound condi-

tion of the rule allows it to apply to situations that are

analogous with the one from which the rule was learned.

If the expert judges this application as correct, then this

represents a new positive example of the rule, and the

plausible lower bound condition is generalized to cover it.

Otherwise, the agent will interact with the expert to find

an explanation of why the application is incorrect, and

will specialize the rule’s conditions appropriately. Rule

refinement could lead to a complex task reduction rule,

with except-when conditions which should not be satis-

fied in order for the rule to be applicable.

X. TEACHING AN AGENT TO PERFORM PLANNING TASKS

A. Why Learning Planning Rules is Difficult

Fig. 12 compares the learning of inference rules with

the learning of planning rules. The left hand side of Fig.

12 shows an inference step and a planning step, while the

right hand side shows the rules that would be learned

from these steps. In the case of an inference step, Disci-

ple-VE learns a rule by generalizing the expressions from

the examples to patterns, and by generating a plausible

version space for the applicability condition of the rule.

The learning of the planning rule is much more com-

plex, not just because it involves the learning of several

applicability conditions, but mainly because these condi-

tions have to be learned in different states of the world.

Indeed, Condition 1g and Condition 2g are learned in the

state S1, but Condition 3g has to be learned in the state S3.

However, the state S3 is only known after the entire re-

duction tree for Planning Task 2 has been developed. What

this means is that Disciple-VE would start learning the

rule in the state S1, will than continue with the planning

and inference corresponding to the subtree of Planning
Task 2, and only after that can resume and finalize the

learning of the rule. But this is impractical for two main

reasons. First, it leads to the starting of learning many

complex planning rules, with the associated management

of temporary representations for these rule fragments.

Second, these incompletely learned rules cannot be used

in problem solving. Thus, in the case of a planning tree

that contains recursive applications of a task reduction

step Disciple would start learning a new rule for each ap-

plication, although these rules will end up being identical.

B. Learning a Set of Correlated Planning Rules

The main source of difficulty for learning a planning

rule from the planning example in Fig. 12 is the need to

first develop the entire planning tree for Planning Task 2.

We have discussed a similar difficulty in Sec. VII, in the

context of modeling expert’s planning process. In that

case the expert could not specify the reduction of Planning
Task 1 into Planning Task 2 and Planning Task 3 before

completing the entire planning for Planning Task 2. The

solution found to that problem was to introduce the no-

tion of abstract task. This notion will also help overcome

the difficulty of learning planning rules, as will be ex-

plained in the following.

Rather than learning a single complex planning rule

from a task reduction example, Disciple-VE will learn a

set of simpler planning rules that share common vari-

ables, as illustrated in the right part of Fig. 13. These

rules will not be learned all at once, but in the sequence

indicated in Fig. 14. This sequence corresponds to the se-

quence of modeling operations for the subtree of Planning
Task 1, as discussed in Sec. VII. First the expert asks him-

self/herself a question related to how to reduce Planning
Task 1. The answer guides him/her to reduce this task to

two abstract tasks. From this reduction the agent learns a

planning task reduction rule (see Fig. 14a), by using the

JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008 51

© 2008 ACADEMY PUBLISHER

Goal

Mapping

Rule

Concretion RuleConcretion Rule

Condition 2g

Planning Task Reduction Rule

Planning Step Example

S1

Abstract Task 2

Planning Task 1

Question/Answer

Planning

Task 2

Planning

Task 3

S1 S4

S4

Goal 1

Goal 2 S3 Goal 3

Abstract Task 3

Abstract Task 2

Planning Task 1g

Condition 1g

Goal 2g

Abstract Task 3

Abstract Task 2 Abstract Task 3

Planning Task 2g Planning Task 3g

Condition 3g

Shared Variables

Goal

Mapping

Rule

Goal 3g

Goal

Synthesis

Rule

Goal 1g

Question 1g/Answer 1g

Precondition 2 Precondition 3

Precondition 3gPrecondition 2g

Planning Step Example

Action Concretion RuleAction Concretion Rule

Condition 4g

Planning Task Reduction Rule

Abstract Task 4

Planning Task 2

Question 2/Answer 2

S1 S3Goal 2

Abstract Task 5

Abstract Task 2

Planning Task 2g

Condition g

Abstract Task 3

Abstract Task 4 Abstract Task 5

Condition 5g

Shared Variables

Question 2g/Answer 2g

Action 2
Add

Effects 2
Delete

Effects 2
Action 1

Add
Effects 1

Delete
Effects 1S1 S3

S2

Action 1g
Add

Effects 1g
Delete

Effects 1g

Resources 1g Duration 1g

Action 2g
Add

Effects 2g
Delete

Effects 2g

Resources 2g Duration 2g

Precondition 4 Precondition 5

Precondition 5gPrecondition 4gResources 2 Duration 2Resources 1 Duration 1

Goal

Synthesis

Rule

Goal 2g

Goal

Mapping

Rule

Concretion RuleConcretion Rule

Condition 2g

Planning Task Reduction Rule

Planning Step Example

S1

Abstract Task 2

Planning Task 1

Question/Answer

Planning

Task 2

Planning

Task 3

S1 S4

S4

Goal 1

Goal 2 S3 Goal 3

Abstract Task 3

Abstract Task 2

Planning Task 1g

Condition 1g

Goal 2g

Abstract Task 3

Abstract Task 2 Abstract Task 3

Planning Task 2g Planning Task 3g

Condition 3g

Shared Variables

Goal

Mapping

Rule

Goal 3g

Goal

Synthesis

Rule

Goal 1g

Question 1g/Answer 1g

Precondition 2 Precondition 3

Precondition 3gPrecondition 2g

Planning Step Example

Action Concretion RuleAction Concretion Rule

Condition 4g

Planning Task Reduction Rule

Abstract Task 4

Planning Task 2

Question 2/Answer 2

S1 S3Goal 2

Abstract Task 5

Abstract Task 2

Planning Task 2g

Condition g

Abstract Task 3

Abstract Task 4 Abstract Task 5

Condition 5g

Shared Variables

Question 2g/Answer 2g

Action 2
Add

Effects 2
Delete

Effects 2
Action 1

Add
Effects 1

Delete
Effects 1S1 S3

S2

Action 1g
Add

Effects 1g
Delete

Effects 1g

Resources 1g Duration 1g

Action 2g
Add

Effects 2g
Delete

Effects 2g

Resources 2g Duration 2g

Precondition 4 Precondition 5

Precondition 5gPrecondition 4gResources 2 Duration 2Resources 1 Duration 1

Goal

Synthesis

Rule

Goal 2g

Figure 13. Learning Correlated Planning Rules.

method described in Sec. X.D. Next the expert reduces

Abstract Task 2 to Planning Task 2 and the agent learns a

task concretion rule (see Fig. 14b), by using the method

described in Sec. X.E. After that the expert continues

with specifying the reduction tree corresponding to Plan-
ning Task 2 and the agent learns rules from the specified

planning step, as indicated above. During the develop-

ment of this planning tree, the agent may apply the above

rules, if their conditions are satisfied, and may refine

them based on expert’s feedback. After the entire subtree

corresponding to Planning Task 2 was developed, the agent

can learn the Goal Mapping Rule corresponding to Goal 2,

as described in Sec. X.D. The learning of the concretion

rule for Abstract Task 3 and of the goal mapping rule for

Goal 3 is done as described above. After that Disciple-VE

learns the goal synthesis rule corresponding to Goal 1, as

described in Sec. X.D.

The above illustration corresponds to a reduction of a

planning task into planning subtasks. However, a plan-

ning task can also be reduced to elementary actions, as il-

lustrated at the bottom part of Fig. 13. In this case Disci-

ple-VE will learn more complex action concretion rules

instead of task concretion rules, as discussed in Sec. X.F.

In the following sections we will present the learning

methods mentioned above.

C. The Learning Problem and Method for a Set of

Correlated Planning Rules

The problem of learning a set of correlated planning

rules is presented in Table IV, and the corresponding

learning method is presented in Table V. We will illus-

trate them by using the top task reduction from Fig. 6.

D. Learning a Correlated Planning Task Reduction Rule

The method for learning a correlated planning reduc-

tion rule in presented in Table VI. This method is similar

TABLE IV.
THE LEARNING PROBLEM FOR CORRELATED PLANNING RULES

Given:

A sequence of reduction and synthesis steps SE that indicate how

a specific planning task is reduced to its immediate specific sub-

tasks and/or actions, and how its goal is synthesized from their

goals/effects.

A knowledge base that includes an ontology and a set of rules.

A subject matter expert who understands why the given planning

steps are correct and may answer the agent’s questions.

Determine:

A set of reduction, concretion, goal and/or action rules SR which

share a common space of variables, each rule being a generaliza-

tion of an example step from SE.

An extended object ontology (if needed for rule learning).

52 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER

Goal Example

Goal Example

Concretion Example

Goal Example

Concretion Example

Reduction Example

Goal Mapping Rule

Planning Task Reduction Rule

Abstract Task 2

Planning Task 1

Question 1/Answer 1

S1

Goal 1

Abstract Task 3 Abstract Task 2

Planning Task 1g

Goal 2g

Abstract Task 3

Shared

Variables

Goal Mapping Rule

Goal 3g

Goal Synthesis Rule

Goal 1g

S1

Abstract Task 2

S3

Abstract Task 3

S3

S4Planning Task 1

Goal 3 S4Planning Task 3

Planning Task 3

Goal 2Planning Task 2

Planning Task 2

(a)

(b)

(c)

(d)

(e)

(f)

Condition 1gQuestion 1g/Answer 1g

Precondition 2

Precondition 3

Concretion Rule

Condition 2g

Abstract Task 2

Planning Task 2g

Precondition 2g

Concretion Rule

Abstract Task 3

Planning Task 3g

Condition 3g

Precondition 3g

S1

Abstract Task 2

Planning Task 1

Question/Answer

Planning

Task 2

Planning

Task 3

S1 S4

S1

S4

Goal 1

Goal 2 Goal 3

Abstract Task 3

Action 1
Add

Effects

Delete

Effects

Duration Resources

Action 2
Add

Effects

Delete

Effects

Duration

Question/Answer

S2 S3

Resources

Action 3
Add

Effects

Delete

Effects

Duration

S4

Question/Answer

S3 S3

Abstract Task 4 Abstract Task 6Abstract Task 5

Resources

Preconditions 4 Preconditions 5 Preconditions 6

Preconditions 2 Preconditions 3

S1

Abstract Task 2

Planning Task 1

Question/Answer

Planning

Task 2

Planning

Task 3

S1 S4

S1

S4

Goal 1

Goal 2 Goal 3

Abstract Task 3

Action 1
Add

Effects

Delete

Effects

Duration Resources

Action 2
Add

Effects

Delete

Effects

Duration

Question/Answer

S2 S3

Resources

Action 3
Add

Effects

Delete

Effects

Duration

S4

Question/Answer

S3 S3

Abstract Task 4 Abstract Task 6Abstract Task 5

Resources

Preconditions 4 Preconditions 5 Preconditions 6

Preconditions 2 Preconditions 3

Goal Example

Goal Example

Concretion Example

Goal Example

Concretion Example

Reduction Example

Goal Mapping Rule

Planning Task Reduction Rule

Abstract Task 2

Planning Task 1

Question 1/Answer 1

S1

Goal 1

Abstract Task 3 Abstract Task 2

Planning Task 1g

Goal 2g

Abstract Task 3

Shared

Variables

Goal Mapping Rule

Goal 3g

Goal Synthesis Rule

Goal 1g

S1

Abstract Task 2

S3

Abstract Task 3

S3

S4Planning Task 1

Goal 3 S4Planning Task 3

Planning Task 3

Goal 2Planning Task 2

Planning Task 2

(a)

(b)

(c)

(d)

(e)

(f)

Condition 1gQuestion 1g/Answer 1g

Precondition 2

Precondition 3

Concretion Rule

Condition 2g

Abstract Task 2

Planning Task 2g

Precondition 2g

Concretion Rule

Abstract Task 3

Planning Task 3g

Condition 3g

Precondition 3g

S1

Abstract Task 2

Planning Task 1

Question/Answer

Planning

Task 2

Planning

Task 3

S1 S4

S1

S4

Goal 1

Goal 2 Goal 3

Abstract Task 3

Action 1
Add

Effects

Delete

Effects

Duration Resources

Action 2
Add

Effects

Delete

Effects

Duration

Question/Answer

S2 S3

Resources

Action 3
Add

Effects

Delete

Effects

Duration

S4

Question/Answer

S3 S3

Abstract Task 4 Abstract Task 6Abstract Task 5

Resources

Preconditions 4 Preconditions 5 Preconditions 6

Preconditions 2 Preconditions 3

S1

Abstract Task 2

Planning Task 1

Question/Answer

Planning

Task 2

Planning

Task 3

S1 S4

S1

S4

Goal 1

Goal 2 Goal 3

Abstract Task 3

Action 1
Add

Effects

Delete

Effects

Duration Resources

Action 2
Add

Effects

Delete

Effects

Duration

Question/Answer

S2 S3

Resources

Action 3
Add

Effects

Delete

Effects

Duration

S4

Question/Answer

S3 S3

Abstract Task 4 Abstract Task 6Abstract Task 5

Resources

Preconditions 4 Preconditions 5 Preconditions 6

Preconditions 2 Preconditions 3

Figure 14. The sequence of learning correlated planning rules.

to the method of learning an inference rule presented in

Table II and Sec. IX, except for the addition of Step 3 in

Table VI which adds to the set V the variables from the

learned rule and their values in the example.

To illustrate the method in Table VI, let us consider the

top-level reduction from Fig. 6. In that reduction the top

level task is reduced to 5 abstract tasks. The reduction is

justified by the following Question/Answer pair:

What king of incident is Gainsville incident?
Gainsville incident is a major fire emergency
because it involves a large propane tank on fire.

As part of example understanding, Disciple-VE will

interact with the expert to find the following explanation

pieces which represents an approximation of the meaning

of the Question/Answer pair in the current world state:

Gainsville incident instance_of major fire emergency
Gainsville incident is_caused_by fire1 has_as_size large
fire1 is_impinging_on propane tank1 instance_of

propane tank

Continuing with the steps from Table VI Disciple-VE

will learn the rule from the

left-hand side pane of Fig. 15.

The list of shared variables is

shown in the right hand side

of this pane. The right hand

side of the pane shows also

the goal produced by the Goal
synthesis rule. This rule gen-

eralizes the expression repre-

senting the goal associated

with the IF task by replacing

its instances and constants

with the corresponding vari-

ables from the list of shared

variables. Similarly, the Goal
mapping rule generalizes the

goals of the THEN tasks.

E. Learning Correlated Plan-

ning Task Concretion Rules

The method of learning a

correlated planning task con-

cretion rule is similar to the

method of learning a corre-

lated planning reduction rule

presented in Table VI and

Sec. X.D. To illustrate it, let

us consider again the reduc-

tion in the left side of Fig. 6.

The Sub-Task(3) pane includes

a concretion step which is

shown again in Table VII.

The rule learned from this

concretion example is shown

in the right pane of Fig. 15.

As part of Example under-

standing (see Table VI), what

needs to be understood are the

preconditions of the concre-

TABLE V.
THE LEARNING METHOD FOR CORRELATED PLANNING RULES

Let SE be a sequence of reduction and synthesis steps that indicate how

a specific planning task T is reduced to its immediate specific subtasks

and/or actions, and how its goal is synthesized from their goals/effects.

1. Initialize the set V of shared variables and their values in SE V

2. Learn a Planning Task Reduction Rule from the reduction of T to the

abstract tasks ATi and update the set V (by using the method described

in Table VI and Sec. X.D)

3. For each abstract task ATi do

If ATi is reduced to a concrete Task Ti

Then3.1. Learn a Planning Task Concretion Rule and update set V

 (by using the method described in Sec. X.E)

3.2. Develop the entire subtree of Ti

 (this may lead to learning of new rules by using

 the methods from Tables II and V)

3.3. Learn the Goal Mapping Rule for Ti

 (by using the method described in Sec. X.D)

Else if ATi is reduced to an elementary action Ai

Then 3.1. Learn an Action Concretion Rule and update the set V

 (by using the method described in Sec. X.F)

4. Learn the Goal Synthesis Rule for T

 (by using the method described in Sec. X.D.

JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008 53

© 2008 ACADEMY PUBLISHER

Figure 15. Planning task reduction rule (left), action concretion rule (middle) and task concretion rule (right).

tion step. The approximation of their meaning is:

Gainsville incident has_as_ICS Gainsville ICS
 has_as_unified_command Gainsville command

The Rule Analysis and Refinement step takes the

value of the set V into account to determine the unlinked

output variables (see Sec. IX.E). In particular, an output

variable from the concrete task does not need to be linked

to input variables if it is part of the input value of V.

F. Learning a Correlated Action Concretion Rule

If the reduction of a planning tasks includes actions,

then Disciple-VE learns also correlated action concretion

rules, as illustrated at the bottom part of Fig. 13. The

learning method is similar to that for learning a correlated

task concretion rule, except that the resulting rule has ad-

ditional action components such as Delete Effects, Add Ef-
fects, Resources and Duration.

Let us consider the abstract task from the bottom pane

in Fig. 6 and its concretion. The action concretion rule

learned from this example is shown in the middle pane of

Fig. 15.

XI. THE VIRTUAL EXPERTS LIBRARY

A. The Organization of the VE Library

The previous sections have presented the capability of

a Disciple-VE agent shell to rapidly acquire planning ex-

pertise from a subject matter expert. This capability

makes possible the development of a wide range of plan-

ning agents that can collaborate in performing complex

tasks. These agents are maintained into the VE Library

where their knowledge bases (KBs) are hierarchically or-

ganized, as illustrated in Fig. 16. In this illustration there

are four expertise domains, D1, D2, D3, and D4, and nine

virtual experts, each associated with a KB from the bot-

tom of the hierarchy. Each virtual expert engine VE is a

customization of the Disciple-VE shell. The three left-

most virtual experts are experts in the domain D1 with

different levels of expertise: basic, intermediary and ad-

vanced. In addition to their specific KBs (e.g. KB-B1),

they all inherit general knowledge about the domain D1,

knowledge represented in KB-D1. They also inherit

knowledge from the higher level KBs KB-12 and KB-0.

These higher level KBs contain general knowledge, use-

ful to many agents, such as ontologies for units of meas-

ure, time, and space.

Traditional knowledge engineering practice builds

each KB from scratch, with no knowledge reuse, despite

the fact that this is a very time-consuming, difficult and

error-prone process [6-10]. On the contrary, the hierarchy

TABLE VI.
THE LEARNING METHOD FOR A CORRELATED PLANNING TASK

REDUCTION RULE

Let E be a reduction of a specific planning task T to one or several

abstract tasks ATi, reduction taking place in state Sk, and let V be

the set of shared variables and their values.

1. Example Understanding: Interact with the expert to understand the

meaning of the question/answer pair from the example reduction E

in terms of the objects and their features from the state Sk. These

expressions represent the explanation EX of the example E.

2. Example Parameterization: Express the example E and its expla-

nation EX into an equivalent IF-THEN rule R with the applicabil-

ity condition IC, where each instance, number and string from the

example and the explanation is parameterized to a variable. IC in-

cludes both the association of variables to instances or constants

and the features from the explanation EX.

3. Updating of Shared Variables and Values: Add to the set V the

new variable and their values from the condition IC.

4. Rule Generalization: Generalize IC to a plausible version space

condition R, where the plausible upper bound is maximally general

generalization of IC, and the plausible lower bound is the mini-

mally general generalization of IC, both generalizations containing

no instances and being based on the agent’s object ontology.

5. Rule Analysis and Refinement: If the rule is determined to be in-

completely learned then go to step 1 to identify additional explana-

tion pieces for EX. Otherwise end the rule learning process.

TABLE VII.
A TASK CONCRETION EXAMPLE

Abstract: Command evaluates the incident and determines the abstract

incident action plan.

Preconditions: Gainsville command is the command of the Gainsville

ICS, the incident command system for the Gainsville incident.

Task: Gainsville command evaluates the Gainsville incident and de-

termines the needed incident action plan.

54 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER

KB-D1
KB-D2

KB-D3

KB-D4

KB-B1

KB-I1

KB-A1

KB-0

KB-12 KB-34

KB-B3 KB-I3

KB-B4KB-B2 KB-I2 KB-A2

VE

VE

VE

VE

Virtual Experts Library

VE

VE

VE VE

VE

KB-D1
KB-D2

KB-D3

KB-D4

KB-B1

KB-I1

KB-A1

KB-0

KB-12 KB-34

KB-B3 KB-I3

KB-B4KB-B2 KB-I2 KB-A2

VE

VE

VE

VE

Virtual Experts Library

VE

VE

VE VE

VE

Figure 16. The organization of the VE Library.

Figure 17. The interface of the Object Browser and Object Viewer.

of KBs from the VE Library offers a practical solution to

the problem of knowledge reuse, speeding up the process

of building a new virtual expert. Consider, for example,

developing a new virtual expert for the D3 domain. This

expert will already start with a KB composed of KB-D3,

KB-34, and KB-0. Thus, the VE Library can also be re-

garded as a knowledge repository for the new virtual ex-

perts to be developed.

B. Knowledge Base Development and Maintenance

The updating of each KB from the hierarchical reposi-

tory (e.g. KB-12) is the responsibility of a team consisting

of a knowledge engineer and one or several subject mat-

ter experts. They use the specialized browsers and editors

of the Disciple-VE shell. The left hand side of Fig. 17

shows the interface of the Object Browser which displays

the objects in a tree structure. The objects that are inher-

ited from an upper level KB (such as information measure
or length measure) are displayed in a gray background.

The right hand side of Fig. 17 shows the interface of the

Object Viewer, which displays additional information

about the object selected in the Object Browser (e.g. fire
engine company E501), such as its direct super-concepts

and its features. The top part of

Fig. 3 shows the interface of the

Hierarchical Browser which

displays the hierarchical re-

lationships between objects or

features in a graph structure.

The bottom part of Fig. 3 shows

the interface of the Association

Browser which displays an

object and its relationships with

other objects. Additional tools

include the Object Editor, the

Feature Editor, and the Rule

Editor.

To allow the KBs from the

hierarchy to be updated and

extended separately, the

Disciple-VPT system maintains

multiple versions for each KB.

Let us assume that each KB

from Fig. 16 has the version 1.0.

Let us further assume that the

management team for KB-0
decides to make some changes

to this KB which contains units

of measure. For instance, the team decides to include the

metric units, to rename gallon into US gallon, and to add UK
gallon. As a result, the team creates version 2.0 of KB-0.

However, the other knowledge bases from the library

(e.g. KB-12) still refer to version 1.0 of KB-0. The man-

agement team for KB-12 is informed that a higher version

of KB-0 is available. At this point the team can decide

whether it wants to create a new version of KB-12 that in-

herits knowledge from version 2.0 of KB-0. The KB up-

date process uses the KB updating tool of Disciple-VE.

This tool creates version 2.0 of KB-12 by importing the

knowledge from version 1.0 of KB-12, in the context of

version 2.0 of KB-0. Even though the version 2.0 of KB-12
has been created, Disciple-VPT still maintains KB-0 ver-

sion 1.0 and KB-12 version 1.0, because these versions are

used by KB-D1 version 1.0 and by other KBs from the re-

pository. The management team for KB-D1 may now de-

cide whether it wants to upgrade KB-D1 to the new ver-

sions of its upper level KBs, and so on. Because of the

version system, each KB from the library maintains, in

addition to its version, the versions of the other KBs from

which it inherits knowledge.

Another important knowledge management functional-

ity offered by Disciple-VPT is that of splitting a KB into

two parts, a more general one and a more specific one.

This allows a KB developer to first build a large KB and

then to split it and create a hierarchy of KBs.

C. Organization of an Agent’s Knowledge Base

When a virtual expert is extracted from the VE Library

and introduced into a VE Team (see Fig. 1), all the KBs

from which it inherits knowledge are merged into a

shared KB in order to increase the performance of the

agent. Let us consider the Intermediate agent from the

domain D3 (see Fig. 16). In this case KB-D3, KB-12, KB-34

JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008 55

© 2008 ACADEMY PUBLISHER

KB-D3

KB-I3

KB-0

KB-12

VE-D3

KB-34

SKB-1 SKB-M SKB-N

Domain KB

Shared KB

Scenario KBs

KB-S1

KB-S11 KB-S12 KB-S13

State KBs

......

KB-D3

KB-I3

KB-0

KB-12

VE-D3

KB-34

SKB-1 SKB-M SKB-N

Domain KB

Shared KB

Scenario KBs

KB-S1

KB-S11 KB-S12 KB-S13

State KBs

......

Figure 18. The organization of an agent’s

knowledge base during planning.

Figure 19. Sample coverage

of expertise domains.

and KB-0 are all

merged into the

Shared KB of this

agent. As a cones-

quence, the struc-

ture of the KBs of

this agent during

planning is the one

from Fig. 18. Notice

that, in addition to

the Shared KB, there

are three other types

of KBs, Domain KB,

Scenario KB, and

State KB, all hierar-

chically organized.

Domain KB is the KB

of this Intermediate

agent from the

domain D3, know-

ledge independent

of any particular scenario. Each scenario is represented

into a different KB called Scenario KB. For example, there

would be a Scenario KB for the propane tank of fire sce-

nario described in Sec. III, and a different Scenario KB for

a scenario involving red-fuming nitric acid spilling from

a truck parked near a residential area [2, 31]. Moreover,

under each scenario KB there is a hierarchy of State KBs.
KB-S1 represents the state obtained from SKB-M after the

execution of an action which had delete and/or add ef-

fects. As additional actions are simulated during plan-

ning, their delete and add effects change the state of the

world. KB-S11, KB-S12, and KB-S13 are the states corre-

sponding to three alternative actions. The entire descrip-

tion of the state corresponding to KB-S11 is obtained by

considering the delete and add effects in the states KB-S11
and KB-S1, and the facts in the scenario SKB-M.

XII. MULTI-DOMAIN COLLABORATIVE PLANNING

Each virtual agent from the VE Library is expert in a

certain expertise domain. However, these expertise do-

mains are not disjoint, but overlapping, as illustrated in

Fig. 19. In this illustration the planning task Tm belongs

only to D2 and can only be performed by a virtual expert

from that domain. Ti is a task common to D1 and D2 and

can, in principle, be performed either by a virtual expert

in D1 or by a virtual expert in D2. In general, a virtual ex-

pert will only cover a part of a given expertise domain,

depending on its level of expertise. For instance, the vir-

tual expert library illustrated in Fig. 16 includes three vir-

tual experts from the domain D1, a basic one, an interme-

diate one, and an ad-

vanced one, each cov-

ering an increasingly

larger portion of the

domain. Therefore,

whether a specific vir-

tual expert from the

domain D2 can generate

a plan for Tm, and the

actual plan generated, depend on its level of expertise.

A virtual expert has partial knowledge about its ability

to generate plans for a given task, knowledge that is im-

proved through learning. For instance, the virtual expert

knows that it may be able to generate plans for a given

task instantiation because that task belongs to its exper-

tise domain, or because it was able to solve other instan-

tiations of that task in the past. Similarly, it knows when a

task does not belong to its area of expertise. The virtual

experts, however, do not have predefined knowledge

about the problem solving capabilities of the other ex-

perts from a VE Team, or from the VE Library. This is a

very important feature of Disciple-VPT that facilitates the

addition of new agents to the library, or the improvement

of the existing agents, because this will not require taking

into account the knowledge of the other agents.

The task reduction paradigm facilitates the develop-

ment of plans by cooperating virtual experts, where plans

corresponding to different subtasks of a complex task

may be generated by different agents. This multi-agent

planning process is driven by an auction mechanism that

may apply several strategies. For instance, the agents can

compete for solving the current task based on their prior

knowledge on their ability to solve that task. Alterna-

tively, the agents may actually attempt to solve the task

before they bid on it.

XIII. BASIC VIRTUAL EXPERTS

We have developed two basic virtual experts, a fire

department operations expert, and an emergency man-

agement expert. The development of these virtual experts

was guided by a toxic substance leaking scenario de-

scribed in [2] and by the propane tank on fire scenario de-

scribed in Sec. III.

First we have worked with a subject matter expert to

model the plan generation process for these two scenarios

by using the task reduction paradigm, as illustrated in Fig.

6. Besides the development of the two reasoning trees,

another result of this modeling process was the develop-

ment of the modeling methodology presented in Sec. VII.

Yet another result of this modeling process was the iden-

tification of the object concepts that need to be present in

Disciple’s ontology so that it can perform this type of

reasoning. Based on this specification of the object ontol-

ogy, and by using the ontology development modules of

Disciple-VE, we have developed an object ontology con-

sisting of 410 concepts, 172 feature definitions, 319 ge-

neric instances, and 944 facts. Fragments of this ontology

were presented in Fig. 2 and Fig. 3.

Although we have worked with both scenarios men-

tioned above to develop the modeling trees and the ontol-

ogy, the teaching of the fire expert and of the emergency

management expert was only based on the propane tank

on fire scenario. As a result of the teaching process, the

virtual fire expert learned 81 planning rules, and the vir-

tual emergency management expert learned 47 planning

rules. The current versions of the two developed virtual

experts share the object ontology. This ontology will be

split into shared and private ontologies in the next ver-

sions of these agents.

56 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER

XIV. EVALUATION

To evaluate the Disciple-VPT system we have devel-

oped a scenario pattern based on the scenario from Sec.

III. Then we have asked a fire department operations ex-

pert and an emergency management expert to define a

specific scenario based on this pattern, by providing the

missing elements. For example, the two experts decided

on the day and time of the incident, the position of the

fire with respect to the propane tank, the estimated

amount of propane in the tank, the available resources

(e.g. fire engine companies, truck engine companies, hazmat
units, police personnel, county personnel, etc.) and when are

they arriving at the scene of the incident. After that, both

the team of human experts and Disciple-VPT independ-

ently generated plans to respond to this situation.

The plan generated by Disciple-VPT consisted of 89

partially ordered elementary actions. A fragment of this

plan is shown in Table VIII. This plan was evaluated by

the above mentioned experts and by the expert with

whom we have developed the agents. Then each expert

has filled-in a questionnaire. The questionnaire included

statements about various characteristics of the generated

plan and about the Disciple-VPT system. The experts

were asked to indicate whether they strongly agree (SA),

agree (A), are neutral (N), disagree (D) or strongly dis-

agree (SD) with these statements.

The top part of Table IX presents some of the results of

the evaluation of the plan generated by Disciple-VPT,

which was considered good and easy to understand by the

human experts. One of the experts disagreed with the way

Disciple-VPT ordered some of the actions. However, this

reflected a disagreement between the evaluating experts

and not a planning error, the generated order being that

taught by the expert who instructed Disciple-VPT.

The evaluation of the hierarchical plan generation

TABLE VIII.
FRAGMENT OF A PLAN GENERATED BY DISCIPLE-VPT

Id Action Result Resources
Sart

Time

Dura-

tion

1

Suburbane Propane Company facility

manager, a person, arrives at the scene

of the Gainsville incident

Add: Suburbane Propane Company facility

manager arrived at the scene and is available

to take required actions

Suburbane Propane Company facility

manager
0.0 s

1.0

min

0.0 s

2
ALS unit M504, an ALS unit, arrives at

the scene of the Gainsville incident

Add: ALS unit M504 arrived at the scene and

is available to take required actions

ALS unit M504, paramedic 504a, and

paramedic 504b
0.0 s

5.0

min

0.0 s

3

fire engine company E504, a fire engine

company, arrives at the scene of the

Gainsville incident

Add: fire engine company E504 arrived at

the scene and is available to take required ac-

tions

fire engine driver E504, fire fighter

E504b, fire engine company E504,

fire engine E504, deluge nozzle E504,

water hose E504, fire officer E504,

and fire fighter E504a

0.0 s

5.0

min

0.0 s

… … … … …

48

fire officer E504 assumes the command

of the incident command system for the

Gainsville incident, as fire department

representative in the ICS unified com-

mand

Delete: fire officer E504 is no longer avail-

able

Add: Gainsville ICS, the incident command

system for the Gainsville incident, is created

and fire officer E504 assumes ICS command

as fire department representative in the

Gainsville command

fire officer E504

5.0

min

0.0 s

15.0 s

49

Gainsville command evaluates the

situation created by the Gainsville inci-

dent

Add: overpressure situation with danger of

BLEVE in propane tank1 is caused by fire1
Gainsville command

5.0

min

15.0 s

30.0 s

50

Gainsville command determines the ab-

stract incident action plan for overpres-

sure situation

Add: The plan is to apply cooling water, to

evacuate people from 1.0 mi around propane

tank1, to perform traffic control, perimeter

control, and to establish rapid intervention

task forces

Gainsville command

5.0

min

45.0 s

30.0 s

… … … … …

54

fire engine company E504 sets up water

hose E504 to apply water to propane

tank1

Delete: water hose E504 is available

Add: water hose E504 is assigned

fire engine company E504, fire engine

driver E504, fire fighter E504b, fire

fighter E504a, water hose E504, and

fire engine E504

8.0

min

30.0 s

3.0

min

0.0 s

55

fire engine company E525 drops off

deluge nozzle E525 for fire engine

company E504

Delete: deluge nozzle E525 that belongs to

fire engine E525 is no longer available

Add: deluge nozzle E525 is assigned

fire fighter E525a, fire officer E525,

deluge nozzle E525, fire engine driver

E525, and fire fighter E525b

8.0

min

30.0 s

2.0

min

0.0 s

… … … … …

63

fire engine company E525 establishes

continuous water supply from fire hy-

drant1 for fire engine company E504

Add: fire hydrant1 is assigned to fire engine

company E504

fire fighter E525a, fire fighter E525b,

fire officer E525, fire engine driver

E525, and fire engine company E525

14.0

min

30.0 s

7.0

min

0.0 s

… … … … …

JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008 57

© 2008 ACADEMY PUBLISHER

process (see the middle of Table IX) shows that it signifi-

cantly improves the understandability of this process. Fi-

nally the experts agreed or strongly agreed that Disciple-

VPT has many potential applications in emergency re-

sponse planning, from developing exercises for training,

to actual training, and to its use as planning assistant.

A limitation of this evaluation is that it is based on the

opinion of only 3 experts. More experts are needed in or-

der for the results to have statistical significance.

XV. CONTRIBUTIONS AND FUTURE DIRECTIONS

This paper presented a major extension of the Disciple

theory and methodology for the development of knowl-

edge-based agents by subject matter experts, with limited

assistance from knowledge engineers.

First we have extended the Disciple approach to allow

the development of complex HTN planning agents that

can be taught their planning knowledge, rather then hav-

ing it defined by a knowledge engineer. This is a new and

very powerful capability that is not present in current ac-

tion planning systems [1, 18-20]. This capability was

made possible by several major developments of the Dis-

ciple approach. For instance, we have significantly ex-

tended the knowledge representation and management of

a Disciple agent by introducing new types of knowledge

that are characteristic to planning systems, such as plan-

ning tasks and actions (with preconditions, effects, goal,

duration, and resources) and new types of rules (e.g.

planning tasks reduction rules, concretion rules, action

rules, goal synthesis rules). We have introduced state

knowledge bases and have developed the ability to man-

age the evolution of the states in planning. We have de-

veloped a modeling language and a set of guidelines that

help subject matter experts express their planning proc-

ess. We have developed an integrated set of learning

methods for planning, allowing the agent to learn general

planning knowledge from a single planning example for-

mulated by the expert.

A second result is the development of an integrated

approach to planning and inference, both processes being

based on the task reduction paradigm. This improves the

power of the planning systems that can now include com-

plex inference trees. It also improves the efficiency of the

planning process because some of the planning operations

can be performed as part of a much more efficient infer-

ence process that does not require a simulation of the

change of the state of the world.

A third result is the development and implementation

of the concept of library of virtual experts. This required

the development of methods for the management of a hi-

erarchical knowledge repository. The hierarchical organi-

zation of the knowledge bases of the virtual experts also

serves as a knowledge repository that speeds-up the de-

velopment of new virtual experts that can reuse the

knowledge bases from the upper levels of this hierarchy.

A fourth result is the development of the multi-domain

architecture of Disciple-VPT which extends the applica-

bility of the current expert systems to problems whose so-

lutions require knowledge of more than one domain [31].

A fifth result is the development of two basic virtual

experts, a basic fire expert and a basic emergency man-

agement expert, that can collaborate to develop plans of

actions that are beyond their individual capabilities.

Finally, a sixth result is the development of an ap-

proach and system that has high potential for supporting a

wide range of training and planning activities.

Future research will involve the development of addi-

tional agents for the VE Library, and of the Disciple-VPT

system for actual use in training personnel for emergency

response planning, and for other areas.

ACKNOWLEDGMENT

This research was inspired and initiated by Dr. Susan

Durham and was performed in the Learning Agents Cen-

ter. The research of the Learning Agents Center is spon-

sored by several U.S. government agencies including the

Air Force Research Laboratory (FA8750-04-1-0527), the

Air Force Office of Scientific Research (F9550-07-1-

0268), the National Science Foundation (0610743), and

the Army War College. The U.S. Government is author-

ized to reproduce and distribute reprints for Government

purposes notwithstanding any copyright notation thereon.

REFERENCES

[1] Ghallab M., Nau D., and Traverso P., Automatic Planning:

Theory and Practice, Morgan Kaufmann, 2004.

TABLE IX.
EVALUATION RESULTS

Generated Plan SA A N D SD

The generated plan is easy to understand. 3

The generated plan consists of a good se-

quence of actions. 2 1

The objectives of the actions are clear

from the generated plan. 3

The generated plan has a good manage-

ment of the resources. 1 1 1

The level of detail in the plan is appropri-

ate. 3

Hierarchical Plan Generation Process SA A N D SD

The hierarchical task-reduction structure

makes the logic of the plan clear. 2 1

The hierarchical task-reduction structure

makes the goals of the plan clear. 1 2

The questions, the answers, and the pre-

conditions help understand the logic of

the plan generation process. 2 1

The preconditions, effects, duration, and

resources, make the specification of the

plan’s actions clear. 1 2

The hierarchical task-reduction structure

may be used to teach new persons how to

plan. 3

Usability of Disciple-VPT SA A N D SD

Disciple-VPT could be used in develop-

ing and carrying out exercises for emer-

gency response planning. 2 1

Disciple-VPT could be used for training

the personnel for emergency response

planning. 2 1

Disciple-VPT could be used as an assis-

tant to typical users, guiding them how to

respond to an emergency situation. 3

58 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER

[2] Tecuci G., Boicu M., Hajduk T., Marcu D., Barbulescu M.,

Boicu C., Le V., A Tool for Training and Assistance in

Emergency Response Planning, in Proc. of the Hawaii Int.

Conf. on System Sciences, HICSS40, Hawaii, Jan.3-6, 2007

[3] Department of Homeland Security, National Response

Plan, 2004, www.dhs.gov/dhspublic/interapp/editorial/

editorial_0566.xml (accessed on 25 July, 2007).

[4] Tecuci G., Boicu M., Bowman M., and Marcu D., with a

commentary by Burke M., An Innovative Application from

the DARPA Knowledge Bases Programs: Rapid Develop-

ment of a High Performance Knowledge Base for Course

of Action Critiquing. AI Magazine, 22, 2:43-61, AAAI

Press, Menlo Park, CA, 2001.

[5] Tecuci G., Boicu M., Marcu D., Stanescu B., Boicu C.,

Comello J., Training and Using Disciple Agents: A Case

Study in the Military Center of Gravity Analysis Domain,

in AI Magazine, 24, 4:51-68, AAAI Press, CA, 2002.

[6] Buchanan, B. G. and Wilkins, D. C. (eds.), Readings in
Knowledge Acquisition and Learning: Automating the

Construction and Improvement of Expert Systems, Morgan

Kaufmann, San Mateo, CA, 1993.

[7] Durkin J., Expert Systems: Design and Development, Pren-

tice-Hall, 1994.

[8] Awad, E. M., Building Expert Systems: Principles, Proce-

dures, and Applications, West Publishing Company, 1996.

[9] Jackson P., Introduction to Expert Systems, Addison-

Wesley, Essex, England, 1999.

[10] Awad, E., and Ghaziri M. H., Knowledge Management,
Pearson Education Inc., Upper Saddle River, NJ, 2004.

[11] Federal Emergency Management Agency, National Inci-

dent Management System, http://www.fema.gov/

emergency/nims/index.shtm (accessed on 25 July 2007).

[12] Tecuci, G., Disciple: A Theory, Methodology and System

for Learning Expert Knowledge, Thèse de Docteur en Sci-

ence, University of Paris-South, 1988.

[13] Tecuci, G., Building Intelligent Agents: An Apprenticeship

Multistrategy Learning Theory, Methodology, Tool and

Case Studies. London, England: Academic Press, 1998.

[14] Boicu, M., Modeling and Learning with Incomplete

Knowledge, PhD Dissertation in Information Technology,

Learning Agents Laboratory, School of Information Tech-

nology and Engineering, George Mason University, 2002.

[15] Nilsson, N.J., Problem Solving Methods in Artificial Intel-

ligence, NY: McGraw-Hill, 1971.

[16] Powell G.M. and Schmidt C.F., A First-order Computa-

tional Model of Human Operational Planning, CECOM-

TR-01-8, US Army CECOM, Fort Monmouth, NJ, 1988.

[17] Durham S., Product-Centered Approach to Information Fu-

sion, AFOSR Forum on Information Fusion, Arlington,

VA, 18-20 October, 2000.

[18] Tate, A., Generating Project Networks, In Proceedings of

IJCAI-77, Massachusetts, pp. 888-893, 1977.

[19] Allen J., Hendler J., and Tate A. (eds), Readings in Plan-

ning, Morgan Kaufmann Publishers, 1990.

[20] Nau, D., Au, T., Ilghami, O., Kuter, U., Murdock, J., Wu,

D., Yaman, F., SHOP2: An HTN planning system, Journal

of Artificial Intelligence Research, 20, pp. 379–404, 2003.

[21] Fensel D., Ontologies: A Silver Bullet for Knowledge

Management, Springer-Verlag, Berlin, 2000.

[22] Stanescu B., Boicu C., Balan G., Barbulescu M., Boicu M.,

Tecuci G., Ontologies for Learning Agents: Problems, So-

lutions and Directions, in Proc. IJCAI-03 Workshop on

Ontologies and Distributed Systems, pp 75-82, Acapulco,

Mexico, August, AAAI Press, Menlo Park, CA, 2003.

[23] Tecuci G., Boicu M., Cox M.T., Seven Aspects of Mixed-

Initiative Reasoning, in AI Magazine, 28, 2:11-18, AAAI

Press, Menlo Park, CA, 2007.

[24] Tecuci G., Boicu M., Cox M.T. (eds.), AI Magazine: Spe-

cial Issue on Mixed-Initiative Assistants, 28, 2, AAAI

Press, Menlo Park, CA, 2007.

[25] Michalski R.S. and Tecuci G. (eds.), Machine Learning: A

Multistrategy Approach, vol. IV, 782 pages, Morgan

Kaufmann, San Mateo, 1994.

[26] Mitchell, T.M., Version Spaces: an Approach to Concept

Learning, Doctoral Dissertation, Stanford Univ., 1978.

[27] Bowman, M., A Methodology for Modeling Expert Knowl-

edge that Supports Teaching Based Development of

Agents, PhD Dissertation in Information Technology,

George Mason University, Fairfax, Virginia, USA, 2002.

[28] Mitchell, T.M., Keller, T. and Kedar-Cabelli, S., Explana-

tion-Based Generalization: A Unifying View, Machine

Learning, Vol. 1, pp. 47-80, 1986.

[29] DeJong, G. and Mooney, R., Explanation-Based Learning:

An Alternative View, Machine Learning, 1:145-176, 1986.

[30] Boicu C., Tecuci G., Boicu M., Improving Agent Learning

through Rule Analysis, in Proc. of the Int. Conf. on Artifi-

cial Intelligence, ICAI-05, Las Vegas, June 27-30, 2005.

[31] Tecuci G., Boicu M., Hajduk T., Marcu D., Barbulescu M.,

Boicu C., Le V., An Approach to Rapid Development of

Virtual Experts for Multi-Domain Collaborative Planning,

Research Report, Learning Agents Center, August 2005.

Gheorghe Tecuci is Professor of Computer Science in the

Volgenau School of Information Technology and Engineering

and Director of the Learning Agents Center at George Mason

University. He is also a member of the Romanian Academy and

former Chair of Artificial Intelligence at the US Army War Col-

lege. He received two Ph.D.s in Computer Science, from the

University of Paris-South and from the Polytechnic University

of Bucharest, and has published over 150 papers.

Mihai Boicu is Assistant Professor of Information Technol-

ogy and Associate Director of the Learning Agents Center at

George Mason University. He received a License in Informatics

from the Bucharest University in 1995, and a Ph.D. in Informa-

tion Technology from George Mason University in 2003. He

has published around 50 papers.

Dorin Marcu is a Ph.D. candidate and a Research Assistant

in the Learning Agents Center. He holds a B.S. in Computer

Science from Polytechnic University of Bucharest, Romania,

and has published over 30 conference and journal papers.

Marcel Barbulescu is a Ph.D. candidate and a Research As-

sistant in the Learning Agents Center. He received a B.S. in

Computer Science from Polytechnic University of Timisoara,

Romania, in 2001, and has published over 10 papers.

Cristina Boicu is a Research Assistant Professor in the

Learning Agents Center at George Mason University since she

received her Ph.D. in Computer Science from George Mason

University, in Fall 2006. She has published over 20 papers.

Vu Le is a Research Instructor and a Ph.D. candidate in the

Learning Agents Center. He received an M.S. in Computer Sci-

ence, in 1999, from George Mason University and has pub-

lished several papers.

Thomas Hajduk is former president of the Virginia Emer-

gency Management Association, with over 30 years of experi-

ence as Fire Division Chief, Fire Marshal, or Deputy Coordina-

tor of Emergency Services, in Prince William County, Virginia.

He received a B.S. in Fire Administration and Technology from

George Mason University, in 1981.

JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008 59

© 2008 ACADEMY PUBLISHER

