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Abstract— This paper presents an approach to rapid devel-

opment of virtual planning experts that can collaborate to 

develop plans of action requiring expertise from multiple 

domains. The approach is implemented into a new type of 

software tool, called Disciple-VPT, which includes an exten-

sible library of virtual planning experts from different do-

mains. Teams of such virtual experts can be rapidly assem-

bled from the library to generate complex plans of actions 

that require their joint expertise. The basic component of 

the Disciple-VPT tool is the Disciple-VE learning agent shell 

that can be taught directly by a subject matter expert how 

to plan, trough planning examples and explanations, in a 

way that is similar to how the expert would teach an ap-

prentice. Copies of the Disciple-VE shells are used by ex-

perts in different domains to rapidly populate the library of 

virtual experts of Disciple-VPT.  

Index Terms—knowledge engineering, HTN planning, learn-

ing, collaboration, expert systems, emergency response 

planning, knowledge bases, ontology, rules, software tool 

I. INTRODUCTION

This paper presents an approach to rapid development 

of virtual experts for application areas requiring multi-

domain collaborative planning. A virtual expert is a 

knowledge-based agent that can rapidly acquire planning 
expertise from a subject matter expert and can collabo-

rate with other virtual experts to develop plans that are 

beyond the capabilities of individual virtual experts.

In this paper, planning means finding a partially or-

dered set of elementary actions that perform a complex 

task [1]. 

The multi-domain collaborative planning approach is 

being implemented into a new type of software tool, 

called Disciple-VPT (Virtual Planning Team), which 

consists of a library of virtual experts and a generic soft-

ware shell for creating multi-agent planning systems for a 

variety of application domains. A representative applica-

tion of Disciple-VPT is planning the response to emer-

gency situations, such as, a tanker truck leaking toxic 

substance near a residential area, a propane truck explo-

sion, a bio hazard, an aircraft crash, a natural disaster or a 

terrorist attack [2]. The US National Response Plan [3] 

identifies 15 primary emergency support functions per-

formed by federal agencies in emergency situations. 

Similarly local and state agencies undertake these func-

tions responding to such emergencies without or before 

any federal assistance is provided. Each such function de-

fines an expertise domain, such as emergency manage-

ment; police operations; fire department operations; haz-

ardous materials handling; health and emergency medical 

services; sheltering, public works and facilities; and fed-

eral law enforcement. In this case, the library of Disciple-

VPT will include virtual experts corresponding to these 

domains.  

Critical to the generality and usefulness of Disciple-

VPT is its ability to rapidly develop virtual experts that 

have the expertise of specific human experts from a wide 

variety of domains. Disciple-VPT incorporates the Disci-

ple-VE system, a learning agent shell that can be taught 

directly by a subject matter expert how to plan, for in-

stance, by showing it how to plan the performance of a 

specific task and helping it understand the reasoning 

process. As a result, the agent learns general planning 

rules from such planning examples and builds its knowl-

edge base. In time, the expert-agent interaction evolves 

from a teacher-student interaction toward an interaction 

where both collaborate in planning. During this joint 

planning process, the agent learns not only from the con-

tributions of the expert, but also from its own successful 

or unsuccessful planning attempts. 

Disciple-VE builds on the previous versions of the 

Disciple learning agent shell that were used to develop 

agents for course of action critiquing and center of grav-

ity analysis, and were successfully evaluated as part of 

DARPA’s High Performance Knowledge Bases and 

Rapid Knowledge Formation programs [4]. The Disciple 

agents for center of gravity analysis have been used in 

several courses at the US Army War College [5] and the 

Air War College. The Disciple approach has been signifi-

cantly extended to develop the Disciple-VPT software 

tool, as presented in the rest of this paper.  

The next section presents the general architecture of 

Disciple-VPT and discusses the different possible uses of 

this general and flexible tool. Sec. III describes a sample 

scenario from the emergency response planning area, 

which is used to present the features of Disciple-VPT. 

Sec. IV presents the architecture of the Disciple-VE 

learning agent shell which is at the basis of the capabili-

ties of Disciple-VPT. Sec. V presents the learning-

oriented knowledge representation of Disciple-VE. Sec. 

VI presents the hierarchical task-network (HTN) planning 

performed by the Disciple virtual experts. After that, Sec. 

VII presents a modeling language and methodology de-

veloped to help a subject matter expert explain to a Dis-

ciple agent how to plan, by using the task reduction para-

digm. Sec. VIII discusses how a Disciple-VE agent can 

perform complex inferences as part of a planning process. 
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Figure 1. Overall architecture of Disciple-VPT. 

The next two sections, IX and X, present the teaching and 

learning methods of Disciple-VE, first for inference tasks 

and then for planning tasks. Sec. XI presents the organi-

zation of the library of virtual experts of Disciple-VPT. 

After that, Sec. XII presents Disciple-VPT’s approach to 

multi-agent collaboration. Sec. XIII discusses the devel-

opment of two virtual experts, one for fire operations and 

the other for emergency management. Sec. XIV presents 

the evaluation results, and Sec. XV summarizes our re-

search contributions and the future research directions. 

II. THE ARCHITECTURE OF DISCIPLE-VPT

Fig. 1 presents the end-user’s view of the three major 

components of Disciple-VPT:  

VE Assistant, an agent that supports the user in us-

ing Disciple-VPT; 

VE Library, an extensible library of virtual plan-

ning experts; 

VE Team, a dynamically assembled team of virtual 

experts selected from the VE Library. 

The user interacts with the VE Assistant to specify a 

situation and the profiles of several human experts that 

may collaborate to plan the achievement of various goals 

in that situation. Next, a team of virtual planning experts 

with similar profiles is automatically assembled from the 

VE Library. This VE Team then simulates the planning 

performed by the human experts, generating plans for 

achieving various goals in the given situation. 

Disciple-VPT allows the development of collaborative 

planners for a variety of applications by populating its li-

brary with corresponding virtual experts. For instance, 

planning the response to emergency situations requires 

virtual experts for emergency management, hazardous 

materials handling, federal law enforcement, etc. Other 

application areas, such as planning of military operations, 

require a different set of virtual experts in the VE Library. 

Moreover, for a given type of task and application area, 

different multi-domain planning systems can be created 

by assembling different teams of virtual experts.  

There are many ways in which a fully-functional Dis-

ciple-VPT system can be used for training or actual plan-

ning assistance. For instance, in the context of emergency 

response planning, it can be used to develop a wide range 

of training scenarios by guiding the user to select between 

different scenario characteristics. Disciple-VPT can also 

be used to assemble teams of virtual planning experts that 

can demonstrate and teach how people should plan the re-

sponse to various emergency situations. Another ap-

proach is to assemble combined teams which include 

both people and virtual experts. The team members will 

then collaborate in planning the response to the generated 

emergency scenario. In a combined team, human re-

sponders can play certain emergency support functions by 

themselves, or can play these functions with the assis-

tance of corresponding virtual experts. During the train-

ing exercise a responder who has a certain emergency 

support function will learn how to perform that function 

from a corresponding virtual expert with higher compe-

tence. The responder will also learn how to collaborate 

with the other responders or virtual experts that perform 

complementary support functions. 

The Disciple-VPT approach to expert problem solving 

extends significantly the applicability of the traditional 

expert systems [6-10]. Such an expert system is limited to 

a narrow expertise domain and its performance decreases 

dramatically when attempting to solve problems that have 

elements outside its domain of expertise. On the contrary, 

a Disciple-VPT type system can efficiently solve such 

problems by incorporating additional virtual experts. Be-

cause many expert tasks actually require collaboration 

with other experts, a Disciple-VPT type system is more 

suitable for solving real-world problems. 

The next section introduces in more detail the scenario 

from the emergency response planning area that guided 

the development of Disciple-VPT. 

III. EMERGENCY RESPONSE PLANNING

Emergency Response Planning was introduced in the 

previous sections. A sample emergency situation which 

will be used in the rest of this paper is the following one: 

“Workers at the Propane bulk storage facility in 

Gainsville, Virginia, have been transferring propane from 

a train car to fill one of two 30,000 gallon bulk storage 

tanks. A fire is discovered in the fill pipe at the bulk tank 

and a large fire is developing. The time is 15:12 on a 

Wednesday in the month of May. The temperature is 72 

degrees and there is a light breeze out of the west. The 

roads are dry and traffic volume is moderate. The fire de-

partment is summoned to the scene 5 minutes after the 

fire started. The facility is located in a rapidly growing 

area 2,000 ft from an interstate highway and 200 ft from 

two heavily traveled US highways. New shopping centers 

have popped up in the area including food stores, large 

box building supply facilities, and large box retail facili-

ties. As always, these facilities are accompanied by fast 

food restaurants and smaller retail stores. Residential 

concentrations include approximately 2400 residents. The 
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Local Emergency Operations Plan has all the required 

components including Public Information, Communica-

tions, and Sheltering. Shelters utilize schools managed by 

the Red Cross. The Virginia Department of Transporta-

tion provides highway services.” 

Planning the appropriate response to this emergency 

situation requires the collaboration of experts in fire de-

partment operations, in emergency management, and in 

police operations. The generated plan will consist of hun-

dreds of partially order actions.  

One group of actions deal with the arrival of resources, 

such as fire units, emergency management services units, 

police units, as well as individuals with different areas of 

expertise (e.g. emergency manager, safety officer, high-

way supervisor, planning officer, training logistics offi-

cer, public information officer). 

Another group of actions deal with the establishment 

of the structure of the Incident Command System (ICS) 

and the allocation of resources based on the evaluation of 

the situation. The structure of the ICS follows the stan-

dard U.S. National Incident Management System [11]. 

The National Incident Management System establishes 

standard incident management processes, protocols and 

procedures so that all local, state, federal and private-

sector emergency responders can coordinate their re-

sponses, share a common focus and more effectively re-

solve events. Its main components are the unified com-

mand, the command staff, and the general staff. The 

structure and organization of these components depend 

on the current situation. For example, in the case of the 

above scenario, the unified command includes representa-

tives from the fire department, police department, high-

way department, and propane company. The command 

staff includes a safety officer, a public information officer 

and a liaison officer. The general staff includes an opera-

tion section, a planning section, a logistics section, and a 

finance and administration section. Each of these sections 

is further structured and staffed. 

Yet other groups of actions deal with the various ac-

tivities performed by the components of the Incident 

Command System. For instance, in the case of the above 

scenario, the fire management group may perform the 

cooling of the propane tank with water. The evacuation 

branch may evacuate the Gainsville hot zone. The emer-

gency manager may arrange for transportation, sheltering, 

and emergency announcements to support the evacuation. 

The Gainsville perimeter control branch implements the 

perimeter control for the Gainsville hot zone. The Gains-

ville traffic control branch implements the traffic control 

to facilitate the evacuation of the Gainsville hot zone. The 

Gainsville command establishes rapid intervention task 

forces to respond if the propane tank explodes. 

One difficulty in generating such a plan, apart from the 

fact that it involves many actions, is that the actions from 

the above groups are actually performed in parallel. The 

goal of the research presented in this paper is to create a 

capability for rapid and low cost development of virtual 

planning experts to be used in this type of multi-domain 

collaborative planning. Moreover, the plans generated by 

the system should be more comprehensive than those 

produced by a collaborative team of humans, and should 

be generated much faster and cheaper than currently pos-

sible. The next section introduces the Disciple-VE learn-

ing agent shell which is at the basis of Disciple-VPT. 

IV. THE DISCIPLE-VE LEARNING AGENT SHELL

Disciple denotes an evolving theory, methodology and 
family of tools for the development of knowledge-based 

agents by subject matter experts, with limited assistance 

from knowledge engineers [12-14]. The main goal of the 

Disciple approach is to overcome the knowledge acquisi-

tion bottleneck in the development of knowledge-based 

systems [6]. Its basic idea is to develop a general problem 

solving and learning agent that has no specific knowledge 

in its knowledge base, but can be taught directly by a sub-

ject matter expert, and can develop its knowledge base to 

become an expert system. We call such an agent, a learn-

ing agent shell. The Disciple-VE learning agent shell ex-

tends significantly the previous versions by incorporating 

capabilities of learning for planning and by allowing 

rapid development of knowledge-based planners, as will 

be discussed in more details in the rest of this paper. 

The general problem solving paradigm of a Disciple 

agent is task reduction [12, 15-17]. In the task reduction 

paradigm, a complex problem solving task is successively 

reduced to simpler tasks, solutions of the simplest tasks 

are found, and these solutions are successively combined 

into the solutions of the initial task, as illustrated in Fig. 

7. In the context of planning, this approach reduces to Hi-

erarchical Task Network (HTN) planning where the ini-

tial complex task is reduced to a partially ordered set of 

elementary actions [1, 18-20]. This process is illustrated 

in Fig. 5. In the case of Disciple-VE, planning tasks are 

integrated with inference tasks, which significantly in-

creases the power of HTN planning. 

In order to perform HTN planning and inference, the 

knowledge base of Disciple-VE contains two main types 

of knowledge: an object ontology and a set of reasoning 

rules. The object ontology, which is described in more 

details in the next section, represents the types of objects 

from an application domain, together with their properties 

and relationships [21, 22]. A fragment of the object on-

tology for emergency planning is shown in Fig. 2. 

The reasoning rules are expressed with the elements of 

the object ontology. Reduction rules indicate how gen-

eral planning or inference tasks can be reduced to sim-

pler tasks, actions, or solutions. Synthesis rules indicate 

how solutions of simpler tasks can be combined into solu-

tions of complex tasks, or how actions can be combined 

into partially ordered plans for more complex tasks. The

main strength of the Disciple agents comes from the fact 

that they can easily and rapidly learn rules (such as those 

in Fig. 15) from subject matter experts. 

The Disciple-VE shell is used to rapidly develop a 

Disciple-VE agent for a specific planning domain by fol-

lowing a two phase process: 

The development of an initial object ontology for 

that domain, which is performed jointly by a knowl-

edge engineer and a subject matter expert. 
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Figure 2. Fragment of the object ontology from the emergency planning area. 

The teaching of Disciple-VE, which is performed by 

the subject matter expert, with limited assistance 

from the knowledge engineer.  

The subject matter expert teaches Disciple-VE how to 

plan the performance of a complex task in a way that is 

similar to how the expert would teach a person. For in-

stance, the expert will show and explain the agent how to 

plan the performance of “Respond to Gainsville incident” and 

the agent will learns general planning and inference rules 

for this type of task. This process is based on: 

Mixed-initiative planning [23, 24], where the expert 

develops the more creative parts of the plan and the 

agent develops the more routine ones. 

Integrated learning and teaching [13], where the ex-

pert helps the agent to learn (e.g. by providing exam-

ples, hints and explanations), and the agent helps the 

expert to teach it (e.g. by asking relevant questions). 

Multistrategy learning [25], where the agent integrates 

complementary strategies, such as learning from exam-

ples, learning from explanations, and learning by anal-

ogy, to learn general concepts and rules. 

The integrated learning, planning, and inference capa-

bilities of Disciple-VE are based on a learning-oriented 

knowledge representation which is presented next. 

V. LEARNING-ORIENTED KNOWLEDGE REPRESENTATION

A.  The Object Ontology 

At the basis of Disciple’s learnable knowledge repre-

sentations are the notions of instances, concepts and gen-

eralization. An instance is a representation of a particu-

lar entity in the application domain (e.g. Gainsville inci-
dent, from the bottom-left of Fig. 2). A concept is a rep-

resentation of a set of instances. For example, the major 
fire emergency concept represents all the incidents that are 

major fire emergencies. One such instance is Gainsville in-
cident. As shown in Fig. 2, this information is represented 

as “Gainville incident instance_of major fire emergency”.
A concept P is said to be more general than (or a gen-

eralization of) another concept Q if and only if the set of 

instances represented by P includes the set of instances 

represented by Q. For example, major emergency is more 

general than major fire emergency, which is expressed as 

“major fire emergency subconcept_of major emergency.”
The instances and concepts are organized into gener-

alization hierarchies like the one from Fig. 2. These struc-

tures are not strict hierarchies, meaning that a concept 

may be a subconcept of several concepts (e.g. propane is 

both a chemical substance and a hazardous substance). 

The instances and concepts may have features repre-

senting their properties and relationships. For example, 

“Gainsville incident is_caused_by fire1” and “fire1 is_fuelled_by 
gas propane f1”, as illustrated in Fig. 2. The bottom part of 

Fig. 3 shows all the features of fill pipe1 in the interface of 

the Association Browser of Disciple. 

Each feature, such as is_fuelled_by, is characterized by a 

domain and a range. The domain of a feature is a concept 

that represents all objects that may have that feature. The 

range of a feature is a concept that represents all the 

possible values of that feature. For example, the domain 

of is_fuelled_by is fire and its range is hazardous substance.

The features are also organized into a generalization 

hierarchy. For example, the top part of Fig. 3 shows (a ro-

tated view of) a fragment of the feature hierarchy, in the 

interface of the Hierarchy Browser of Disciple. In this hi-

erarchy the feature has_as_part (shown in the left hand 

side of Fig. 3) is more general than has_as_member
which, in turn, is more general than has_as_supervisor.

Together, the object hierarchy and the feature hierar-

chy represent the object ontology of a Disciple-VE agent. 

Thus, the object ontology is a hierarchical representation 

of the objects from the application domain, representing 

the different kinds of objects, the properties of each ob-

ject, and the relationships existing between objects.

In general the object ontology does not contain all the 

relevant concepts and in-

stances from the ap-

plication domain and is 

therefore incomplete. Also 

the representation of a 

given concept or instance 

may by not include all its 

relevant features, being 

itself incomplete. Such an 

object ontology will have 

to be extended by the 

agent during the planning 

and learning process.  

The object ontology 

plays a crucial role in Dis-

ciple, being at the basis of 

knowledge representation, 

user-agent communica-

tion, planning, knowledge 

acquisition, and learning, 

as discussed in the follow-

ing. 
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Figure 3. Feature hierarchy (top) and instance description (bottom). 

B.  Concept Representation 

Using the (object and feature) concepts from the object 

ontology, one can define more complex concepts as logi-

cal expressions involving these primary concepts. The 

basic representation unit (BRU) for a more complex con-

cept has the form {?O1, ?O2 ,…, ?On}, where each ?Oi

has the structure indicated in (1). 

?Oi is concepti     (1)

  featurei1 ?Oi1

  . . .  
  featureim ?Oim

Concepti is an object concept from the object ontology, 

a numeric interval, or a list of strings, and ?Oi1 … ?Oim

are distinct variables from the set {?O1, ?O2, … , ?On}.

For example, the concept “fire fuelled by gas propane” is 

represented by the pair {?O1, ?O2}, where ?O1 is a fire   

fuelled by ?O2, and ?O2 is gas propane, as indicated by the 

expression (2). 

?O1 is fire    (2) 

  is_fuelled_by  ?O2

?O2 is gas propane 

In general, a concept may be a conjunctive expression 

of form (3), meaning that its instances satisfy BRU and do 

not satisfy BRU1 and … and do not satisfy BRUp.

BRU & not BRU1 & … & not BRUp   (3) 

However, instead of “not” we write “Except When”. 

For example, expression (4) represents the concept      

“fire fuelled by gas propane where the fire is not small”.

?O1 is fire     (4) 

 is_fuelled_by ?O2

?O2 is gas propane 
Except When 
?O1 is fire 

 has_as_size small  

C.  Generalization and Specialization Rules 

The object ontology is at 

the basis of the generalize-

tion language for learning, 

as discussed in the follow-

ing. A concept, such as (2), 

may be generalized or spe-

cialized by using generaliza-

tion or specialization rules. 

A generalization rule is a 

rule that transforms a con-

cept into a more general 

concept. The reverse of any 

generalization rule is a

specialization rule which 

transforms a concept into a 

less general concept.

Examples of generali-

zation rules are climbing the 

generalization hierarchy, 

dropping conditions, turning 

numbers into intervals, and 

generalizing to feature do-

mains and ranges [13].  

The climbing genera-

lization hierarchy rule gen-
eralizes a concept by 

replacing a concept from its 

description with a more 
general concept. For exam-

ple, by replacing gas propane
with propane in (2), the 

concept “fire is_fuelled_by gas 
propane” is generalized to 

“fire is_fuelled_by propane”.
The dropping condition 

rule generalizes a concept 
by eliminating a constraint 

from its description. For 

example, by eliminating the 

Except When condition 

42 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER



Universe of 

Instances
Eh

Plausible 

Upper Bound

Plausible 

Lower Bound
Plausible Lower Bound

?O1 is {fire}

is_fuelled_by ?O2

?O2 is {gas propane, 

liquid propane}

Plausible Upper Bound

?O1 is {fire}

is_fuelled_by ?O2

?O2 is {hazardous substance, 

chemical substance}

Universe of 

Instances
Eh

Plausible 

Upper Bound

Plausible 

Lower Bound
Plausible Lower Bound

?O1 is {fire}

is_fuelled_by ?O2

?O2 is {gas propane, 

liquid propane}

Plausible Upper Bound

?O1 is {fire}

is_fuelled_by ?O2

?O2 is {hazardous substance, 

chemical substance}

Figure 4. A plausible version space for a partially learned concept.

from (4), the concept “fire is_fuelled_by gas propane where 
the fire is not small” is generalized to “fire is_fuelled_by gas 
propane”.

Let us consider the fact “fire1 is_fuelled_by gas propane 
f1” which is represented at the bottom of Fig. 2. This fact 

can be rewritten as shown in (5). 

?O1 is fire1   (5) 

 is_fuelled_by ?O2

?O2 is gas propane f1 

As indicated above, the domain and the range of the 

feature is_fuelled_by are fire and hazardous substance, re-

spectively. Therefore, a maximally general generalization 

of “fire1 is_fuelled_by gas propane f1” is “fire is_fuelled_by 
hazardous substance.” This is obtained by applying the 

generalizing to feature domains and ranges rule, where 

the entity which has a feature f (e.g. fire1) is generalized 

to the domain of the feature (e.g. fire), and the entity 

which is the value of the feature f (e.g. gas propane f1) is

generalized to the range of that feature. This rule is im-

portant because it imposes limits on how much an expres-

sion can be generalized. 

During learning, Disciple-VE learns general concepts 

and rules by applying such generalizations and specializa-

tion rules, as discussed in the following sections. 

D.  Plausible Version Spaces 

Disciple-VE learns general reasoning rules (or con-

cepts) staring from a single example of a reasoning step. 

During the learning process, Disciple-VE maintains a set 

of possible versions of the rule (concept) to be learned, 
called a version space [13, 26]. The concepts in this 

space are partially ordered, based on the “more general 

than” relationship defined in Sec. V.A. A concept from 

this space can be obtained from another concept from the 

space by applying generalization or specialization rules. 

For that reason, the version space can be represented by 

an upper bound and a lower bound. The upper bound of 

the version space contains the most general concepts 

from the version space and the lower bound contains the 

least general concepts. Any concept which is more gen-

eral than a concept from the lower bound and less general 

than a concept from the upper bound is part of the version 

space and may be the actual concept to be learned. A ver-

sion space may be regarded as a partially learned con-

cept.

The version spaces built by Disciple-VE during the 

learning process are called plausible version spaces be-

cause their upper and lower bounds are generalizations 

based on an incomplete object ontology. Therefore a 

plausible version space is only a plausible approximation 

of the concept Eh to be learned, as illustrated in Fig. 4.  

The plausible upper bound of the version space from 

the right hand side of Fig. 4 contains two concepts: “fire 
fuelled by hazardous substance” and “fire fuelled by chemical 
substance”, as shown by (6). 

?O1 is fire     (6) 

 is_fuelled_by ?O2

?O2 is hazardous substance 
and 

?O1 is fire 
 is_fuelled_by ?O2

?O2 is chemical substance 

Similarly, the plausible lower bound of this version 

space contains two concepts, “fire fuelled by gas propane”
and “fire fuelled by liquid propane”.

The concept Eh to be learned (shown in the left hand 

side of Fig. 4) is, as an approximation, less general than 

one of the concepts from the plausible upper bound. Also, 

Eh is, as an approximation, more general than any of the 

concepts from the plausible lower bound. As Disciple-VE 

encounters additional positive and negative examples of 

the concept (rule) to be learned, it generalizes and/or spe-

cializes the two bounds so that they converge toward one 

another and approximate Eh better and better. This behav-

ior is different from that of the version spaces introduced 

by [26], where one of the concepts from the upper bound 

is always more general than the concept to be learned 

(and the upper bound is always specialized during learn-

ing), and any of the concepts from the lower bound is al-

ways less general than the concept to be learned (and the 

lower bound is always generalized during learning). The 

major difference is that the version spaces introduced by 

[26] are based on a complete representation space that in-

cludes the concept to be learned. On the contrary, the rep-

resentation space for Disciple is based on an incomplete 

and evolving object ontology, as mentioned above. 

Therefore, Disciple addresses the more complex and 

more realistic problem of learning in the context of an 

evolving representation space. 

The notion of plausible version space is fundamental to 

the knowledge representation, problem solving, and 

learning methods of Disciple because all the partially 

learned concepts are represented using 

this construct. For instance, a partially 

learned feature has its domain and range 

represented as plausible version spaces. 

Similarly, as discussed in more details in 

Sec. IX and X, a partially learned rule is 

also represented as a plausible version 

space. 

The next section introduces the type of 

hierarchical task-network planning 

performed by Disciple-VE and the as-

sociated elements that are represented 

into its knowledge base. 
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Figure 5. Hierarchical task network planning example. 

VI. HIERARCHICAL TASK NETWORK PLANNING

The planning paradigm used by Disciple-VE is HTN 

planning [1], extended to facilitate agent teaching and 

learning, and mixed-initiative planning. 

The goal of an HTN planner is to find a partially or-

der set of elementary actions that perform a complex 

task, by successively decomposing the task into simpler 

and simpler tasks, down to the level of elementary ac-

tions. HTN planning is the planning approach that has 

been used for practical applications more than any other 

approach because it is closer to how human experts think 

about when solving a planning problem.  

We will illustrate the HTN planning process performed 

by a Disciple-VE agent with the abstract example from 

Fig. 5. In this example, Planning Task 1 is reduced to Plan-
ning Task 2 and Planning Task 3. This means that by per-

forming Planning Task 2 and Planning Task 3 one accom-

plishes the performance of Planning Task 1. Because Plan-
ning Task 2 is reduced to Action 1 and Action 2, and Planning 
Task 3 is reduced to Action 3, a plan for performing Plan-
ning Task 1 consists of Action 1, Action 2, and Action 3.

There are two types of reductions, task decomposition 

and task specialization. Task decomposition means 

breaking a task into a partially ordered set of subtasks 

and/or actions. Task specialization means reducing a 

task to a more detailed task or to an action.

The tasks or actions in a decomposition can be par-

tially ordered. For instance, in Fig. 5, Action 2 has to be 

performed after Action 1 has been performed. Notice also 

that there is no order relation between Planning Task 2 and 

Planning Task 3. This means that these tasks may be per-

formed in parallel or in any order. Stating that Planning 
Task 3 is performed after Planning Task 2 would mean that 

any subtask or action of Planning Task 3 has to be per-

formed after any subtask or action of Planning Task 2.

Formulating such order relations between the tasks sig-

nificantly increases the efficiency of the planning process 

because it reduces the number of partial orders that it has 

to consider. On the other hand, it also reduces the number 

of generated plans, if the tasks should not to be ordered. 

Planning takes place in a given world state. A world

state is represented by all the objects present in the world 

together with their properties and relationships at a given 

moment of time. For instance, the bottom part of Fig. 2 

shows a partial representation of a world state where fire1,

which is situated in fill pipe1, is impinging on propane 
tank1. As will be discussed in more details in Sec. XI, 

each world state is represented by Disciple-VE as a tem-

porary state knowledge base. 

The states are changed by the performance of elemen-

tary actions. Abstract representations of actions are 

shown at the bottom of Fig. 5. An action is characterized 

by name, preconditions, delete effects, add effects, re-

sources and duration. An action can be performed in a 

given world state Si if the action’s preconditions are sat-

isfied in that state. Action’s execution has a duration and 

requires the use of some resources. The resources are ob-

jects from the state Si that are uniquely used by this ac-

tion during its execution. This means that any other ac-

tion that would need some of these resources cannot be 

executed in parallel with it. As a result of action’s execu-

tion the state Si changes into the state Sj, as specified by 
the action’s effects. The delete effects indicate what facts 

from the initial state Si are no longer true in the final 

state Sj. The add effects indicate what new facts become 

true in the final state Sj.

An action from the emergency planning area is shown 

in the bottom-right pane of Fig. 6. The action’s precondi-

tions, name, delete and add effects are represented as 

natural language phrases that contain instances, concepts 

and constants from the agent’s ontology. Action’s dura-

tion can be a constant, as in this example, or a function of 

the other instances from the action’s description. Re-

sources are represented as a list of instances from the on-

tology. The starting time is computed by the planner. 

A goal is a representation of a partial world state. It

specifies what facts should be true in a world state so that 

the goal is achieved. As such, a goal may be achieved in 

several world states. 

A task is characterized by name, preconditions and 

goal. A task is considered 

for execution in a given 

world state if its precondi-

tions are satisfied in that 

state. Successful execution of 

the task leads to a new world 

state in which the task’s goal 

is achieved. Unlike actions, 

tasks are not executed direc-

tly, but are first reduced to 

actions which are executed.  

The top-right part of Fig. 

6 shows a task reduction tree 

in the interface of the Rea-

soning Hierarchy Browser of 

Disciple. The initial task “Re-
spond to the Gainsville incident”
is reduced to five subtasks. 

The second of these subtasks 

(which is outlined in the 
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Figure 6. Reasoning hierarchy (top right), reasoning step (left) and elementary action (bottom right). 

figure) is successively reduced to simpler subtasks and 

actions. The left part of Fig. 6 shows the reduction of the 

initial task in the interface of the Reasoning Step Editor, 

which displays more details about each task. As in the 

case of an action, the task’s name, preconditions and goal 

are represented as natural language phrases that include 

instances and concepts from the agent’s ontology. Notice 

that none of the visible “After” boxes is checked, which 

means that Sub-task(1), Sub-task(2), and Sub-task(3) are not 

ordered.  

The single most difficult agent training activity for the 

subject matter expert is to make explicit how s/he solves 

problems, by using the task reduction paradigm, activity 

which we call modeling expert’s reasoning. To cope with 

this problem, we have developed an intuitive modeling 

language, a set of modeling guidelines, and a set of mod-

eling modules which help the subject matter experts to 

express his/her reasoning [27]. However, planning intro-

duces additional complexities related to reasoning with 

different world states and with new types of knowledge 

elements, such as preconditions, effects, and goals. For 

these reasons, and to facilitate agent teaching by a subject 

matter expert, we have extended both the modeling ap-

proach of Disciple and the classical HTN planning para-

digm [1], as discussed in the next section. 

VII. A MODELING LANGUAGE FOR HTN PLANNING

To teach the agent how to plan the expert has to first 

show the agent an example in the form of a planning tree 

like the ones in Fig. 5 and Fig. 6. The expert formulates 

the initial task (e.g. Planning Task 1 in Fig. 5) and then fol-

lows a systematic procedure to develop a detailed plan of 

actions that perform the initial task. S/He follows a task 

reduction paradigm where the initial task is successively 

reduced to simpler and simpler tasks, down to the level of 

elementary actions. The partially ordered set of these 

elementary actions represents the plan for performing the 

initial task. 

As illustrated in Fig.5 and Fig. 6, the task reduction 

process is guided by questions and answers, as if the ex-

pert is asking himself/herself how to reduce the current 

task. Consider, for instance, a task that may be reduced 

(i.e. performed) in different ways. Then the question 

should be related to the factors that determine the reduc-

tion strategy to choose. Therefore the answer will help 

the expert to choose the strategy and define the reduction. 

If there is only one way to reduce the current task, then 

no Question/Answer pair is necessary. The above strategy 

is summarized by the following modeling guideline. 

Guideline 1: When reducing a task, ask a question re-

lated to the reduction strategy to use. Find the answer to 

the question and then reduce the task appropriately. 

Notice that Planning Task 1 from Fig. 5 has to be per-

formed in the initial state S1. Planning Task 2 is also per-

formed in the state S1 and its preconditions have to be sat-

isfied in that state. Similarly, Action 1 has to be performed 

in the state S1. However, this action changes the world 

state from S1 to S2. Therefore Action 2 has to be performed 

in the state S2 and its preconditions have to be satisfied in 

that state. Moreover, it also changes the world state to S3.

What is the state in which Planning Task 3 is executed? 

Because there is no order relationship between Planning 
Task 2 and Planning Task 3, Planning Task 3 can, in princi-

ple, be executed either in the state S1, or S2, or S3. In real-

ity, some order relationships may be determined by the 

resources used by the elementary actions. For instance, if 

both Action 2 and Action 3 need the same resource, they 
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cannot be executed in parallel. 

When showing a planning example to the agent, the 

expert does not need to consider all the possible ordering 

relations discussed above, which would be very difficult 

in the case of the complex problems addressed by Disci-

ple-VE. Instead, the expert has to consider one possible 

order, such as the one in which Planning Task 3 is exe-

cuted after Action 2, in state S3. This allows both the ex-

pert and the agent to have a precise understanding of the 

state in which each task is performed, which is necessary 

in order to check that its preconditions are satisfied. This 

leads to the following modeling guideline.  

Guideline 2: When specifying a decomposition of a 

task into subtasks and/or actions, the expert has to de-

scribe the subtasks and actions in a plausible order, even 

though they can also be performed in a different order.

The following guideline is intended to facilitate the 

specification of an entire planning tree by the expert. 

Guideline 3: The expert has to specify the planning 

tree in a top-down and left-right fashion, indicating a re-

duction of a task into its subtasks, and continuing with the 

further reduction of the left-most subtask. 

However, allowing the process specified by the above 

guideline required the extension of the HTN planning 

paradigm, as discussed in the following. Let us consider 

the decomposition of Planning Task 1 from Fig. 5 into 

Planning Task 2 and Planning Task 3, by following the top-

down and left-right process. At the time the expert has to 

specify this decomposition, s/he knows that Planning Task 
2 has to be performed in the state S1, by s/he does not 

know which is the state in which Planning Task 3 has to be 

performed. This state can only be determined after the en-

tire subplan for Task 2 has been specified. In other words, 

Task 3 can only be specified after the entire subplan for 

Task 2 has been specified. In order to resolve this contra-

diction, we have introduced the notion of abstract task.  

An abstract task is a simplified specification of a task 
that does not depend on the actual state in which the task 

is going to be executed. As such, an abstract task does not 

have any precondition, and does not refer to any specific 

objects or their properties. 

An abstract task can be reduced to a concrete task if 

certain preconditions are satisfied. In principle, the same 

abstract task may be reduced to different concrete tasks. 

Therefore the abstract task is not a characteristic of a 

given concrete task. The following is a guideline for re-

ducing an abstract task to a concrete task. 

Guideline 4: When reducing an abstract task to a con-

crete task formulate the preconditions to identify those 

instances and constants from the current world state 

which are referred in the name of the concrete task, but 
are not referred in the previous elements of the task re-

duction step that includes this concretion. 

To illustrate the above guideline, let us consider again 

the reduction step from the left side of Fig. 6 and the pane 

labeled Sub-task(3). Notice that the concrete task includes 

the following instances: Gainsville command and Gainsville 
incident. Each of these instances appear in the elements 

listed under Sub-task(2). For example Gainsville command
appears in the Goal part. Therefore, according to Guide-

line 4, no preconditions are required to make the concre-

tion from the abstract task to the concrete task shown in 

the pane labeled Sub-task(3). However, the expert may 

still wish (and is allowed) to specify preconditions that 

identify the instances that appear in the concrete task, as 

was actually done in this example. 

With the introduction of the abstract tasks the expert 

can now reduce Planning Task 1 to Abstract Task 2 and Ab-
stract Task 3. Then s/he can continue with the reduction of 

Abstract Task 2 to Planning Task 2, reduction performed in 

state S1. Preconditions 2 represents the facts from the state 

S1 that are required in order to make this reduction. 

After that the expert continues with the reduction of 

Planning Task 2 to Action 1 and Action 2. Thus Planning Task 
2 is actually performed by executing Action 1 and Action 2,

which change the world state from S1 to S3. At this point 

the expert can specify the goal achieved by Planning Task 
2. This goal is an expression that depends on the effects 

of Action 1 and Action 2, but is also unique for Task 2,

which is now completely specified. Next the expert can 

continue with planning for Abstract Task 3 in the state S3.

The goal of a task represents the result obtained if the 
task is successfully performed. The main purpose of the 

goal is to identify those instances or facts that have been 

added by its component actions and are needed by its fol-

low-on tasks or actions, as indicated in Guideline 5. 

Guideline 5: Specify the goal of the current task such 

that it includes those instances or facts created by its 

component actions which are needed in the specification 

of the follow-on actions or tasks from the current task re-

duction step. 

To illustrate this guideline, let us consider the Sub-
task(2) pane in the left-side of Fig. 6. Notice that the two 

instances from the Goal part (Gainsville command and 

Gainsville ICS) are used in the follow-on expressions of the 

reduction from Fig. 6. 

The Reasoning Hierarchy Browser and the Reasoning 

Step Editor (see Fig. 6) support the modeling process. 

The Reasoning Hierarchy Browser provides operations to 

browse the planning tree under development, such as ex-

panding or collapsing it step by step, or in its entirety. It 

also provides the expert with macro editing operations, 

such as deleting an entire subtree or copying a subtree 

and pasting it under a different task. Each reduction step 

of the planning tree is defined by using the Reasoning 

Step Editor which includes several editors for specifying 

the components of a task reduction step. It has comple-

tion capabilities that allow easy identification of the 

names from the object ontology. It also facilitates the 

viewing of the instances and concepts from the expres-

sions being edited by invoking various ontology viewers.  

An important contribution of Disciple-VE is the ability 

to combine HTN planning with inference, as described in 

the following section. 

VIII. INTEGRATION OF PLANNING AND INFERENCE

As illustrated in Fig. 5, each planning operation takes 

place in a given world state and the actions, through their 

effects, change this state. The planning process is com-

plex and computationally expensive because one has to 

46 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER



Inference Task 1

Question/Answer 

Inference Task 2 Inference Task 3

World

State S

Solution 1

Solution 2 Solution 3

Question/Answer 

Inference Task 4 Inference Task 5

Question

Answer 

Solution 4 Solution 5

Question/Answer 

Question/Answer 

Question

Answer 

Question

Answer 

Inference Task 1

Question/Answer 

Inference Task 2 Inference Task 3

World

State S

Solution 1

Solution 2 Solution 3

Question/Answer 

Inference Task 4 Inference Task 5

Question

Answer 

Solution 4 Solution 5

Question/Answer 

Question/Answer 

Question

Answer 

Question

Answer 

Figure 7. Abstract inference tree. 

Reduction 

Step

Figure 8. Inference reduction tree.

keep track of these various world states. However, 

some operations do not involve the change of the 

world state, but reasoning about a given state. Let 

us consider the top level reasoning steps from the 

right-top pane of Fig. 6 where the task ”Respond to 
the Gainsville incident” is reduced to five subtasks. 

The third of these subtasks “The Gainsville command 
evaluates the Gainsville incident and determines the 
needed incident action plan” is further reduced to two 

inference actions: 

Inference: The Gainsville command evaluates  
the situation created by the Gainsville incident. 
Inference: The Gainsville command determines  
the incident action plan for overpressure situation  
with danger of BLEVE. 

The first of these inference actions has as result “overpres-
sure situation with danger of BLEVE in propane tank1 caused 
by fire1”. BLEVE is the acronym of “Boiling Liquid Ex-

panding Vapors Explosion”. 

From the perspective of the planning process, an in-

ference action simulates a complex inference process by 

representing the result of that process as the add effect of 

the inference action. An inference action is automatically 

reduced to an inference task. The inference task is per-

formed in a given world state to infer new facts about that 

state. These facts are represented as the add effects of the 

corresponding inference action and added into the world 

state in which the inference action is performed.  

The inference process associated with an inference task 

is also performed by using the task reduction paradigm, 

but it is much simpler than the planning process because 

all the reductions take place in the same world state. An 

abstract example of an inference tree is shown in Fig. 7.  

An inference task is performed by successively reduc-

ing it to simpler inference tasks, until the tasks are simple 

enough to find their solutions. Then the solutions of the 

simplest tasks are successively combined, from bottom-

up, until the solution of the initial task is obtained. 
This task reduction and solution synthesis process is 

also guided by questions and answers, similarly to the 

planning process. Fig. 8 shows the top part of the infer-

ence tree corresponding to the task “Inference: Gainsville 
command determines the incident action plan for overpressure 
situation with danger of BLEVE.” This task is first reduced to 

two simpler inference tasks: ”Determine what can be done to 
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Figure 9. Example of a reduction step for an inference task (top)  

and the rule learned from it (bottom). 

prevent the overpressure situation with danger of BLEVE to 
evolve in a BLEVE” and “Determine how to reduce the effects 
in case the overpressure situation with danger of BLEVE does 
evolve in a BLEVE.” The first of these subtasks is succes-

sively reduced to simpler and simpler subtasks, guided by 

questions and answers, as shown in the top part of Fig. 8. 

Notice that an inference tree no longer needs to use 

elements such as abstract task, preconditions, actions, ef-

fects, resources, or duration. The teaching process is also 

much simpler than in the case of the planning process. 

Therefore we will first present how the expert can teach 

Disciple-VE to perform inference tasks. Then we will 

present how the teaching and learning methods for infer-

ence tasks have been extended to allow the expert to also 

teach the agent how to perform planning tasks. 

IX. TEACHING AN AGENT TO PERFORM INFERENCE TASKS

A.  Learning Inference Rules 

Let us consider again the fragment of the inference tree 

shown in Fig. 8. During the teaching process the subject 

matter expert builds this inference tree. Each step in the 

tree consists of a task, a question, its answer, and one or 

several subtasks. From each of these steps the agent 

learns a general task reduction rule. Table I defines the 

problem of learning these rules.  

Let us consider the 3rd reduction step from the task re-

duction tree in Fig. 8, step also shown at the top of Fig. 9. 

From this task reduction step, Disciple-VE learned the 

rule shown at the bottom of Fig. 9. This is an IF-THEN rule 

that preserves the structure and natural language patterns 

from the example. Indeed, the IF task, the ques-

tion/answer pair, and the THEN task are generalizations of 

the corresponding elements from the example where the 

instances and constants have been replaced with vari-

ables. In addition, the rule contains a main condition. An 

instance of the rule is considered a correct reduction if the 

corresponding variable values satisfy the main condition.  

The rule in Fig. 9 is only partially learned because, in-

stead of a single applicability condition, it contains a 

plausible version space for it. The plausible lower bound 

of the applicability condition is the set of the tuples of the 

rule variable values that are less general than the corre-

sponding elements of the Lower Bound table and satisfy 

the relationships from the Relationship table. For exam-

ple, any value of ?O4 should be an instance of shut off 
valve which has_as_operating_status ?S1 which should 

have the value damaged. Moreover, this value of ?O4
should be the value of the relationship has_as_part of an 

instance of ?O5 which should be a fill pipe and should have 

the relationships indicated in the relationship table, and so 

on. The plausible upper bound of the applicability condi-

tion is interpreted in a similar way, using the concepts 

from the Upper Bound table. 

Rule learning is accomplished through a mixed-

initiative process between the expert (who knows why the 

reduction is correct and can help the agent to understand 

this) and the Disciple-VE agent (which is able to general-

ize the task reduction example and its explanation into a 

general rule, by using the object ontology as a generaliza-

tion language). The learning method is presented in Table 

2 and is described in the following sections.  

TABLE II.  
THE LEARNING METHOD FOR TASK REDUCTION INFERENCE RULES

Let E be a reduction of a specific inference task T to one or several 

inference subtasks Ti, reduction taking place in state Sk

1. Example Understanding: Interact with the subject matter expert to 

understand the meaning of the question/answer pair from the ex-

ample reduction E in terms of the objects and their features from 

the state Sk. These expressions represent the explanation EX of E. 

2. Example Parameterization: Express the example E and its expla-

nation EX into an equivalent IF-THEN rule R with the applicabil-

ity condition IC, where each instance, number and string from the 

example and the explanation is parameterized to a variable. IC in-

cludes both the association of variables to instances or constants 

and the features from the explanation EX. 

3. Rule Generalization: Generalize IC to a plausible version space 

condition of the rule R, where the plausible upper bound is the 

maximally general generalization of IC, and the plausible lower 

bound is the minimally general generalization of IC, both generali-

zations containing no instances and being based on the agent’s ob-

ject ontology. 

4. Rule Analysis and Refinement: If the rule is determined to be in-

completely learned then go to step 1 to identify additional explana-

tion pieces for EX. Otherwise end the rule learning process.   

TABLE I.  
THE LEARNING PROBLEM FOR TASK REDUCTION INFERENCE RULES

Given: 

An example E of a reduction step for inference tasks. 

A knowledge base that includes an ontology and a set of rules. 

A subject matter expert who understands why the given example 

is correct and may answer the agent’s questions. 

Determine: 

A plausible version space rule R for inference tasks, which is a 

generalization of E. 

An extended object ontology (if needed for rule learning). 
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B.  Example Understanding 

The question and its answer from the task reduction 

step represent the expert’s reason (or explanation) for 

performing that reduction. Therefore understanding the 

example by Disciple-VE means understanding the mean-

ing of the question/answer pair in terms of the concepts 

and features from the agent’s ontology. This process is 

difficult for a learning agents that does not have much 

knowledge because the experts express themselves in-

formally, using natural language and common sense, and 

often omit essential details that are considered obvious. 

The question/answer pair from the example in Fig. 9 is: 

Can we turn gas propane f1 off from fire1?     (7)

No because shut off valve1 is damaged.

We can expect a person to assume, without being told, 

that the reason we are considering turning the gas propane 
f1 off from fire1 is because it is fueling fire1. We can also 

expect the person to assume that we are considering shut-

ting off valve1 because it is part of fill pipe1 with the pro-
pane. However, an automated agent is not able to make 

these assumptions and has to be helped to get an as com-

plete understanding of the example as possible. For in-

stance, a more complete explanation of the example from 

the top of Fig. 9 consists of the following facts: 

fire1 is_fuelled_by gas_propane_f1    (8) 

fire1 is_situated_in fill pipe1 has_as_part shutoff valve1 
shutoff valve1 has_as_operating_status damaged 
the value damaged is required

The process of identifying such explanation pieces is 

based on a communication protocol between the expert 

and Disciple-VE which takes into account that: 

It is easier for a human expert to understand sentences 

in the formal language of the agent, such as (8), than it 

is to produce such formal sentences. 

It is easier for the agent to generate formal sentences 

than it is to understand sentences in the natural lan-

guage used by the expert, such as (7). 

This protocol is implemented in the Explanation mod-

ule of Disciple-VE, as explained in the following. 

The subject matter expert cannot easily specify the ex-

planation pieces in (8) because s/he is not a knowledge 

engineer. For instance, s/he would need to use the formal 

language of the agent. But this would not be enough, as 

the expert would also need to know the names of the po-

tentially many thousands of concepts and features from 

the agent’s ontology. However, the expert can understand 

the meaning of the above formal expressions. Therefore, 

the agent will hypothesize plausible meanings of the 

question-answer pair by using simple natural language 

processing, analogical reasoning with previously learned 

rules, and general heuristics, and will express them as ex-

planation pieces, such as those in (8). In general, an ex-

planation piece is a relationship (or a relationship chain) 

involving instances, concepts, and constants from the task 

reduction step and from the knowledge base.

The agent will propose the explanation pieces to the 

expert, ordered by their plausibility. Then the expert can 

select the explanation pieces that express approximately 

the same meaning as the question-answer pair, including 

the facts that were not explicitly stated, as discussed 

above. The expert may also help the agent to propose the 

right explanation pieces by providing hints, such as ask-

ing the agent to generate explanation pieces related to 

certain instances from the example.  

The quality of the learned rule depends directly on the 

completeness of the found explanation. However, there is 

no requirement that the found explanation be complete 

and, in fact, this rarely occurs. The agent will continue to 

improve the rule while using it in reasoning, when it will 

be easier to discover the missing explanation pieces. 

C.  Example Parameterization 

Example parameterization consists in transforming the 

example and its explanation into an equivalent IF-THEN
rule, by replacing each instance or constant with a vari-

able, and restricting the variables to those values, as illus-

trated in Table III. 

D.  Rule Generalization 

The expression in Table III is an instance of the gen-

eral rule to be learned from the example in Fig. 9 and its 

explanation in (8). The next step in the rule learning proc-

ess is to determine which are the values of the variables 

from the condition IC that lead to correct task reduction 

steps. That is, Disciple-VE has to learn the concept that 

represents the set of instances of the rule’s variables for 

which the corresponding instantiation of the rule R is cor-

rect. We call this concept the applicability condition of 

the rule and Disciple-VE learns it by using a plausible 

version space approach.  

First Disciple-VE generalizes the applicability condi-

tion IC to an initial plausible version space condition, as 

described in the following and illustrated in Fig. 10. The 

plausible upper bound condition is obtained by replac-

ing each variable value with its most general generaliza-

tion, based on the object ontology.

Let us consider the value fire1 of the variable ?O2. The 

most general concept from the object ontology which is 

more general than fire1 but less general than object is 

event. However, the possible values for ?O2 are restricted 

TABLE III. 
PARAMETERIZATION OF THE EXAMPLE IN FIG. 9

AND ITS EXPLANATION (8) 

IF the task is to

Determine whether we can prevent the ?O1 by extinguishing ?O2  

Q: Can we turn ?O3 off from ?O1?  

A: No because ?O4 is ?S1 

Condition IC

 ?O1 is BLEVE1 

 ?O2 is fire1 

  is_fuelled_by ?O3 

  is_situated_in ?O5 

 ?O3 is gas propane f1 

 ?O4 is shutoff valve1 

  has_as_operating_status ?S1 

 ?O5 is fill pipe1 

  has_as_part ?O4 

 ?S1 is damaged 

THEN 

Determine whether we can prevent the ?O1 by extinguishing ?O2 

when we cannot turn ?O3 off from ?O2  
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Figure 10. Generation of the initial plausible version space condition. 

Figure 11. Rule learned from the example  

at the top of Fig. 9 and the explanation (9). 

by the features of fire1 identified as relevant as part of the 

explanation (8) of the example in Fig. 9. As indicated in 

Table III, ?O2 should have the features is_fuelled_by and 

is_situated_in. This means that the values of ?O2 have to 

be part of the domains of these features. Thus: 

most general generalization(fire1) =  
= {event}  Domain(is_fuelled_by)  Domain(is_situated_in) 
= {event} {fire} {object} = {fire} 

Applying a similar procedure to each variable value 

from IC one obtains the plausible upper bound condition 

shown in Fig. 10. 

The plausible lower bound condition is obtained by 
replacing each variable value with its least general gen-

eralization which is not an instance, based on the object 

ontology. The procedure is similar with the one for ob-

taining the plausible upper bound condition. Therefore: 

least general generalization(fire1) =  
= {fire}  Domain(is_fuelled_by)  Domain(is_situated_in) = 
= {fire} {fire} {object} = {fire} 

The reason the lower bound cannot contain any in-

stance is that the learned rule will be used by Disciple-VE 

in other scenarios where the instances from the current 

scenario (such as fire1) do not exist, and Disciple-VE 

would not know how to generalize them. On the other 

hand, we also do not claim that the concept to be learned 

is more general than the lower bound, as discussed in 

Sec. V.D and illustrated in Fig. 4. 

Notice that the features from the explanation (8) sig-

nificantly limit the size of the initial plausible version 

space condition and thus speed up the rule learning proc-

ess. This is a type of explanation-based learning [28, 29] 

except that the knowledge base of Disciple-VE is incom-

plete and therefore rule learning requires additional ex-

amples and interaction with the expert.  

E.  Rule Analysis and Refinement 

After the rule was generated, Disciple-VE analyzes it 

to determine whether it was learned from an incomplete 

explanation [30]. To illustrate, let us consider again the 

process of understanding the meaning of the ques-

tion/answer pair in (7) in terms of the concepts and fea-

tures from the agent’s ontology. In the previous sections 

we have assumed that this process has led to the uncover-

ing of implicit explanation pieces. However, this does not 

always happen. Therefore let us now assume that, instead 

of (8), the identified explanation pieces of the example 

are the following ones: 

shutoff valve1 has_as_operating_status damaged  (9) 

The value damaged is required

In this case the learned rule is the one from Fig. 11.  

The variables from the IF task of a rule are called in-

put variables because they are instantiated when the rule 

is invoked in problem solving. The other variables of the 
rule are called output variables.

During the problem solving process the output vari-

ables are instantiated by the agent with specific values 

that satisfy the rule’s applicability condition. In a well-

formed rule, the output variables need to be linked 

through explanation pieces to some of the input variables 

of the rule. Therefore one rule analysis method consists 

of determining whether there is any output variable which 

is not constrained by the input variables. For instance, in 

the case of the rule from Fig. 11, Disciple-VE determined 

that the variables ?O3, ?O4, and ?S1 are not constrained, 

and asks the expert to guide it to identify additional ex-

planation pieces related to their corresponding values (i.e. 

gas propane f1, shutoff valve1 and damaged).

If the rule passes the structural analysis test, Disciple-

VE determines the number of its instances in the current 
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Figure 12. Learning Inference Rules Versus Learning Planning Rules.

knowledge base and considers that the rule in incom-

pletely learned if this number is above a pre-defined 

threshold. In such a case, the agent will attempt to iden-

tify which variables are the least constrained and will at-

tempt to further constrain them by interacting with the 

expert to find additional explanation pieces.  

Following such a process, Disciple-VE succeeds in 

learning a reasonable good rule from only one example 

and its explanation, a rule that may be used by Disciple in 

the planning process. The plausible upper bound condi-

tion of the rule allows it to apply to situations that are 

analogous with the one from which the rule was learned. 

If the expert judges this application as correct, then this 

represents a new positive example of the rule, and the 

plausible lower bound condition is generalized to cover it. 

Otherwise, the agent will interact with the expert to find 

an explanation of why the application is incorrect, and 

will specialize the rule’s conditions appropriately. Rule 

refinement could lead to a complex task reduction rule, 

with except-when conditions which should not be satis-

fied in order for the rule to be applicable. 

X. TEACHING AN AGENT TO PERFORM PLANNING TASKS

A.  Why Learning Planning Rules is Difficult 

Fig. 12 compares the learning of inference rules with 

the learning of planning rules. The left hand side of Fig. 

12 shows an inference step and a planning step, while the 

right hand side shows the rules that would be learned 

from these steps. In the case of an inference step, Disci-

ple-VE learns a rule by generalizing the expressions from 

the examples to patterns, and by generating a plausible 

version space for the applicability condition of the rule. 

The learning of the planning rule is much more com-

plex, not just because it involves the learning of several 

applicability conditions, but mainly because these condi-

tions have to be learned in different states of the world. 

Indeed, Condition 1g and Condition 2g are learned in the 

state S1, but Condition 3g has to be learned in the state S3.

However, the state S3 is only known after the entire re-

duction tree for Planning Task 2 has been developed. What 

this means is that Disciple-VE would start learning the 

rule in the state S1, will than continue with the planning 

and inference corresponding to the subtree of Planning 
Task 2, and only after that can resume and finalize the 

learning of the rule. But this is impractical for two main 

reasons. First, it leads to the starting of learning many 

complex planning rules, with the associated management 

of temporary representations for these rule fragments. 

Second, these incompletely learned rules cannot be used 

in problem solving. Thus, in the case of a planning tree 

that contains recursive applications of a task reduction 

step Disciple would start learning a new rule for each ap-

plication, although these rules will end up being identical. 

B.  Learning a Set of Correlated Planning Rules 

The main source of difficulty for learning a planning 

rule from the planning example in Fig. 12 is the need to 

first develop the entire planning tree for Planning Task 2.

We have discussed a similar difficulty in Sec. VII, in the 

context of modeling expert’s planning process. In that 

case the expert could not specify the reduction of Planning 
Task 1 into Planning Task 2 and Planning Task 3 before 

completing the entire planning for Planning Task 2. The 

solution found to that problem was to introduce the no-

tion of abstract task. This notion will also help overcome 

the difficulty of learning planning rules, as will be ex-

plained in the following. 

Rather than learning a single complex planning rule 

from a task reduction example, Disciple-VE will learn a 

set of simpler planning rules that share common vari-

ables, as illustrated in the right part of Fig. 13. These 

rules will not be learned all at once, but in the sequence 

indicated in Fig. 14. This sequence corresponds to the se-

quence of modeling operations for the subtree of Planning 
Task 1, as discussed in Sec. VII. First the expert asks him-

self/herself a question related to how to reduce Planning 
Task 1. The answer guides him/her to reduce this task to 

two abstract tasks. From this reduction the agent learns a 

planning task reduction rule (see Fig. 14a), by using the 
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Figure 13. Learning Correlated Planning Rules.

method described in Sec. X.D. Next the expert reduces 

Abstract Task 2 to Planning Task 2 and the agent learns a 

task concretion rule (see Fig. 14b), by using the method 

described in Sec. X.E. After that the expert continues 

with specifying the reduction tree corresponding to Plan-
ning Task 2 and the agent learns rules from the specified 

planning step, as indicated above. During the develop-

ment of this planning tree, the agent may apply the above 

rules, if their conditions are satisfied, and may refine 

them based on expert’s feedback. After the entire subtree 

corresponding to Planning Task 2 was developed, the agent 

can learn the Goal Mapping Rule corresponding to Goal 2,

as described in Sec. X.D. The learning of the concretion 

rule for Abstract Task 3 and of the goal mapping rule for 

Goal 3 is done as described above. After that Disciple-VE 

learns the goal synthesis rule corresponding to Goal 1, as 

described in Sec. X.D. 

The above illustration corresponds to a reduction of a 

planning task into planning subtasks. However, a plan-

ning task can also be reduced to elementary actions, as il-

lustrated at the bottom part of Fig. 13. In this case Disci-

ple-VE will learn more complex action concretion rules 

instead of task concretion rules, as discussed in Sec. X.F. 

In the following sections we will present the learning 

methods mentioned above. 

C.  The Learning Problem and Method for a Set of 

Correlated Planning Rules 

The problem of learning a set of correlated planning 

rules is presented in Table IV, and the corresponding 

learning method is presented in Table V. We will illus-

trate them by using the top task reduction from Fig. 6. 

D.  Learning a Correlated Planning Task Reduction Rule 

The method for learning a correlated planning reduc-

tion rule in presented in Table VI. This method is similar  

TABLE IV. 
THE LEARNING PROBLEM FOR CORRELATED PLANNING RULES

Given: 

A sequence of reduction and synthesis steps SE that indicate how 

a specific planning task is reduced to its immediate specific sub-

tasks and/or actions, and how its goal is synthesized from their 

goals/effects. 

A knowledge base that includes an ontology and a set of rules. 

A subject matter expert who understands why the given planning 

steps are correct and may answer the agent’s questions. 

Determine: 

A set of reduction, concretion, goal and/or action rules SR which 

share a common space of variables, each rule being a generaliza-

tion of an example step from SE. 

An extended object ontology (if needed for rule learning). 
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Figure 14. The sequence of learning correlated planning rules.

to the method of learning an inference rule presented in 

Table II and Sec. IX, except for the addition of Step 3 in 

Table VI which adds to the set V the variables from the 

learned rule and their values in the example. 

To illustrate the method in Table VI, let us consider the 

top-level reduction from Fig. 6. In that reduction the top 

level task is reduced to 5 abstract tasks. The reduction is 

justified by the following Question/Answer pair: 

What king of incident is Gainsville incident? 
Gainsville incident is a major fire emergency  
because it involves a large propane tank on fire. 

As part of example understanding, Disciple-VE will 

interact with the expert to find the following explanation 

pieces which represents an approximation of the meaning 

of the Question/Answer pair in the current world state: 

Gainsville incident instance_of major fire emergency 
Gainsville incident is_caused_by fire1 has_as_size large 
fire1 is_impinging_on propane tank1 instance_of  

propane tank 

Continuing with the steps from Table VI Disciple-VE 

will learn the rule from the 

left-hand side pane of Fig. 15. 

The list of shared variables is 

shown in the right hand side 

of this pane. The right hand 

side of the pane shows also 

the goal produced by the Goal
synthesis rule. This rule gen-

eralizes the expression repre-

senting the goal associated 

with the IF task by replacing 

its instances and constants 

with the corresponding vari-

ables from the list of shared 

variables. Similarly, the Goal
mapping rule generalizes the 

goals of the THEN tasks. 

E.  Learning Correlated Plan-

ning Task Concretion Rules 

The method of learning a 

correlated planning task con-

cretion rule is similar to the 

method of learning a corre-

lated planning reduction rule 

presented in Table VI and 

Sec. X.D. To illustrate it, let 

us consider again the reduc-

tion in the left side of Fig. 6. 

The Sub-Task(3) pane includes 

a concretion step which  is 

shown again in Table VII. 

The rule learned from this 

concretion example is shown 

in the right pane of Fig. 15. 

As part of Example under-

standing (see Table VI), what 

needs to be understood are the 

preconditions of the concre-

TABLE V.  
THE LEARNING METHOD FOR CORRELATED PLANNING RULES

Let SE be a sequence of reduction and synthesis steps that indicate how 

a specific planning task T is reduced to its immediate specific subtasks 

and/or actions, and how its goal is synthesized from their goals/effects. 

1. Initialize the set V of shared variables and their values in SE  V 

2. Learn a Planning Task Reduction Rule from the reduction of T to the 

abstract tasks ATi and update the set V (by using the method described 

in Table VI and Sec. X.D) 

3. For each abstract task ATi do 

If  ATi is reduced to a concrete Task Ti

Then3.1. Learn a Planning Task Concretion Rule and update set V 

   (by using the method described in Sec. X.E) 

3.2. Develop the entire subtree of Ti

   (this may lead to learning of new rules by using  

    the methods from Tables II and V) 

3.3. Learn the Goal Mapping Rule for Ti

   (by using the method described in Sec. X.D) 

Else if ATi is reduced to an elementary action Ai

Then 3.1. Learn an Action Concretion Rule and update the set V 

   (by using the method described in Sec. X.F) 

4. Learn the Goal Synthesis Rule for T 

   (by using the method described in Sec. X.D. 
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Figure 15. Planning task reduction rule (left), action concretion rule (middle) and task concretion rule (right). 

tion step. The approximation of their meaning is: 

Gainsville incident has_as_ICS Gainsville ICS  
 has_as_unified_command Gainsville command 

The Rule Analysis and Refinement step takes the 

value of the set V into account to determine the unlinked 

output variables (see Sec. IX.E). In particular, an output 

variable from the concrete task does not need to be linked 

to input variables if it is part of the input value of V. 

F.  Learning a Correlated Action Concretion Rule 

If the reduction of a planning tasks includes actions, 

then Disciple-VE learns also correlated action concretion 

rules, as illustrated at the bottom part of Fig. 13. The 

learning method is similar to that for learning a correlated 

task concretion rule, except that the resulting rule has ad-

ditional action components such as Delete Effects, Add Ef-
fects, Resources and Duration.

Let us consider the abstract task from the bottom pane 

in Fig. 6 and its concretion. The action concretion rule 

learned from this example is shown in the middle pane of 

Fig. 15.  

XI. THE VIRTUAL EXPERTS LIBRARY

A.  The Organization of the VE Library 

The previous sections have presented the capability of 

a Disciple-VE agent shell to rapidly acquire planning ex-

pertise from a subject matter expert. This capability 

makes possible the development of a wide range of plan-

ning agents that can collaborate in performing complex 

tasks. These agents are maintained into the VE Library 

where their knowledge bases (KBs) are hierarchically or-

ganized, as illustrated in Fig. 16. In this illustration there 

are four expertise domains, D1, D2, D3, and D4, and nine 

virtual experts, each associated with a KB from the bot-

tom of the hierarchy. Each virtual expert engine VE is a 

customization of the Disciple-VE shell. The three left-

most virtual experts are experts in the domain D1 with 

different levels of expertise: basic, intermediary and ad-

vanced. In addition to their specific KBs (e.g. KB-B1), 

they all inherit general knowledge about the domain D1,

knowledge represented in KB-D1. They also inherit 

knowledge from the higher level KBs KB-12 and KB-0.

These higher level KBs contain general knowledge, use-

ful to many agents, such as ontologies for units of meas-

ure, time, and space.  

Traditional knowledge engineering practice builds 

each KB from scratch, with no knowledge reuse, despite 

the fact that this is a very time-consuming, difficult and 

error-prone process [6-10]. On the contrary, the hierarchy 

TABLE VI.  
THE LEARNING METHOD FOR A CORRELATED PLANNING TASK 

REDUCTION RULE

Let E be a reduction of a specific planning task T to one or several 

abstract tasks ATi, reduction taking place in state Sk, and let V be 

the set of shared variables and their values. 

1. Example Understanding: Interact with the expert to understand the 

meaning of the question/answer pair from the example reduction E 

in terms of the objects and their features from the state Sk. These 

expressions represent the explanation EX of the example E. 

2. Example Parameterization: Express the example E and its expla-

nation EX into an equivalent IF-THEN rule R with the applicabil-

ity condition IC, where each instance, number and string from the 

example and the explanation is parameterized to a variable. IC in-

cludes both the association of variables to instances or constants 

and the features from the explanation EX. 

3. Updating of Shared Variables and Values: Add to the set V the 

new variable and their values from the condition IC. 

4. Rule Generalization: Generalize IC to a plausible version space 

condition R, where the plausible upper bound is maximally general 

generalization of IC, and the plausible lower bound is the mini-

mally general generalization of IC, both generalizations containing 

no instances and being based on the agent’s object ontology. 

5. Rule Analysis and Refinement: If the rule is determined to be in-

completely learned then go to step 1 to identify additional explana-

tion pieces for EX. Otherwise end the rule learning process.   

TABLE VII.
A TASK CONCRETION EXAMPLE

Abstract: Command evaluates the incident and determines the abstract 

incident action plan. 

Preconditions: Gainsville command is the command of the Gainsville 

ICS, the incident command system for the Gainsville incident. 

Task: Gainsville command evaluates the Gainsville incident and de-

termines the needed incident action plan. 
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Figure 16. The organization of the VE Library.

Figure 17. The interface of the Object Browser and Object Viewer. 

of KBs from the VE Library offers a practical solution to 

the problem of knowledge reuse, speeding up the process 

of building a new virtual expert. Consider, for example, 

developing a new virtual expert for the D3 domain. This 

expert will already start with a KB composed of KB-D3,

KB-34, and KB-0. Thus, the VE Library can also be re-

garded as a knowledge repository for the new virtual ex-

perts to be developed.  

B.  Knowledge Base Development and Maintenance 

The updating of each KB from the hierarchical reposi-

tory (e.g. KB-12) is the responsibility of a team consisting 

of a knowledge engineer and one or several subject mat-

ter experts. They use the specialized browsers and editors 

of the Disciple-VE shell. The left hand side of Fig. 17 

shows the interface of the Object Browser which displays 

the objects in a tree structure. The objects that are inher-

ited from an upper level KB (such as information measure
or length measure) are displayed in a gray background. 

The right hand side of Fig. 17 shows the interface of the 

Object Viewer, which displays additional information 

about the object selected in the Object Browser (e.g. fire
engine company E501), such as its direct super-concepts 

and its features. The top part of 

Fig. 3 shows the interface of the 

Hierarchical Browser which 

displays the hierarchical re-

lationships between objects or 

features in a graph structure. 

The bottom part of Fig. 3 shows 

the interface of the Association 

Browser which displays an 

object and its relationships with 

other objects. Additional tools 

include the Object Editor, the 

Feature Editor, and the Rule 

Editor. 

To allow the KBs from the 

hierarchy to be updated and 

extended separately, the 

Disciple-VPT system maintains 

multiple versions for each KB. 

Let us assume that each KB 

from Fig. 16 has the version 1.0. 

Let us further assume that the 

management team for KB-0
decides to make some changes 

to this KB which contains units 

of measure. For instance, the team decides to include the 

metric units, to rename gallon into US gallon, and to add UK 
gallon. As a result, the team creates version 2.0 of KB-0.

However, the other knowledge bases from the library 

(e.g. KB-12) still refer to version 1.0 of KB-0. The man-

agement team for KB-12 is informed that a higher version 

of KB-0 is available. At this point the team can decide 

whether it wants to create a new version of KB-12 that in-

herits knowledge from version 2.0 of KB-0. The KB up-

date process uses the KB updating tool of Disciple-VE. 

This tool creates version 2.0 of KB-12 by importing the 

knowledge from version 1.0 of KB-12, in the context of 

version 2.0 of KB-0. Even though the version 2.0 of KB-12
has been created, Disciple-VPT still maintains KB-0 ver-

sion 1.0 and KB-12 version 1.0, because these versions are 

used by KB-D1 version 1.0 and by other KBs from the re-

pository. The management team for KB-D1 may now de-

cide whether it wants to upgrade KB-D1 to the new ver-

sions of its upper level KBs, and so on. Because of the 

version system, each KB from the library maintains, in 

addition to its version, the versions of the other KBs from 

which it inherits knowledge. 

Another important knowledge management functional-

ity offered by Disciple-VPT is that of splitting a KB into 

two parts, a more general one and a more specific one. 

This allows a KB developer to first build a large KB and 

then to split it and create a hierarchy of KBs. 

C.  Organization of an Agent’s Knowledge Base 

When a virtual expert is extracted from the VE Library 

and introduced into a VE Team (see Fig. 1), all the KBs 

from which it inherits knowledge are merged into a 

shared KB in order to increase the performance of the 

agent. Let us consider the Intermediate agent from the 

domain D3 (see Fig. 16). In this case KB-D3, KB-12, KB-34
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Figure 18. The organization of an agent’s 

knowledge base during planning. 

Figure 19. Sample coverage 

of expertise domains. 

and KB-0 are all 

merged into the 

Shared KB of this 

agent. As a cones-

quence, the struc-

ture of the KBs of 

this agent during 

planning is the one 

from Fig. 18. Notice 

that, in addition to 

the Shared KB, there 

are three other types 

of KBs, Domain KB,

Scenario KB, and 

State KB, all hierar-

chically organized. 

Domain KB is the KB 

of this Intermediate 

agent from the 

domain D3, know-

ledge independent 

of any particular scenario. Each scenario is represented 

into a different KB called Scenario KB. For example, there 

would be a Scenario KB for the propane tank of fire sce-

nario described in Sec. III, and a different Scenario KB for 

a scenario involving red-fuming nitric acid spilling from 

a truck parked near a residential area [2, 31]. Moreover, 

under each scenario KB there is a hierarchy of State KBs.
KB-S1 represents the state obtained from SKB-M after the 

execution of an action which had delete and/or add ef-

fects. As additional actions are simulated during plan-

ning, their delete and add effects change the state of the 

world. KB-S11, KB-S12, and KB-S13 are the states corre-

sponding to three alternative actions. The entire descrip-

tion of the state corresponding to KB-S11 is obtained by 

considering the delete and add effects in the states KB-S11
and KB-S1, and the facts in the scenario SKB-M.

XII. MULTI-DOMAIN COLLABORATIVE PLANNING

Each virtual agent from the VE Library is expert in a 

certain expertise domain. However, these expertise do-

mains are not disjoint, but overlapping, as illustrated in 

Fig. 19. In this illustration the planning task Tm belongs 

only to D2 and can only be performed by a virtual expert 

from that domain. Ti is a task common to D1 and D2 and 

can, in principle, be performed either by a virtual expert 

in D1 or by a virtual expert in D2. In general, a virtual ex-

pert will only cover a part of a given expertise domain, 

depending on its level of expertise. For instance, the vir-

tual expert library illustrated in Fig. 16 includes three vir-

tual experts from the domain D1, a basic one, an interme-

diate one, and an ad-

vanced one, each cov-

ering an increasingly 

larger portion of the 

domain. Therefore, 

whether a specific vir-

tual expert from the 

domain D2 can generate 

a plan for Tm, and the 

actual plan generated, depend on its level of expertise.  

A virtual expert has partial knowledge about its ability 

to generate plans for a given task, knowledge that is im-

proved through learning. For instance, the virtual expert 

knows that it may be able to generate plans for a given 

task instantiation because that task belongs to its exper-

tise domain, or because it was able to solve other instan-

tiations of that task in the past. Similarly, it knows when a 

task does not belong to its area of expertise. The virtual 

experts, however, do not have predefined knowledge 

about the problem solving capabilities of the other ex-

perts from a VE Team, or from the VE Library. This is a 

very important feature of Disciple-VPT that facilitates the 

addition of new agents to the library, or the improvement 

of the existing agents, because this will not require taking 

into account the knowledge of the other agents. 

The task reduction paradigm facilitates the develop-

ment of plans by cooperating virtual experts, where plans 

corresponding to different subtasks of a complex task 

may be generated by different agents. This multi-agent 

planning process is driven by an auction mechanism that 

may apply several strategies. For instance, the agents can 

compete for solving the current task based on their prior 

knowledge on their ability to solve that task. Alterna-

tively, the agents may actually attempt to solve the task 

before they bid on it. 

XIII. BASIC VIRTUAL EXPERTS

We have developed two basic virtual experts, a fire 

department operations expert, and an emergency man-

agement expert. The development of these virtual experts 

was guided by a toxic substance leaking scenario de-

scribed in [2] and by the propane tank on fire scenario de-

scribed in Sec. III.  

First we have worked with a subject matter expert to 

model the plan generation process for these two scenarios 

by using the task reduction paradigm, as illustrated in Fig. 

6. Besides the development of the two reasoning trees, 

another result of this modeling process was the develop-

ment of the modeling methodology presented in Sec. VII. 

Yet another result of this modeling process was the iden-

tification of the object concepts that need to be present in 

Disciple’s ontology so that it can perform this type of 

reasoning. Based on this specification of the object ontol-

ogy, and by using the ontology development modules of 

Disciple-VE, we have developed an object ontology con-

sisting of 410 concepts, 172 feature definitions, 319 ge-

neric instances, and 944 facts. Fragments of this ontology 

were presented in Fig. 2 and Fig. 3. 

Although we have worked with both scenarios men-

tioned above to develop the modeling trees and the ontol-

ogy, the teaching of the fire expert and of the emergency 

management expert was only based on the propane tank 

on fire scenario. As a result of the teaching process, the 

virtual fire expert learned 81 planning rules, and the vir-

tual emergency management expert learned 47 planning 

rules. The current versions of the two developed virtual 

experts share the object ontology. This ontology will be 

split into shared and private ontologies in the next ver-

sions of these agents. 
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XIV. EVALUATION

To evaluate the Disciple-VPT system we have devel-

oped a scenario pattern based on the scenario from Sec. 

III. Then we have asked a fire department operations ex-

pert and an emergency management expert to define a 

specific scenario based on this pattern, by providing the 

missing elements. For example, the two experts decided 

on the day and time of the incident, the position of the 

fire with respect to the propane tank, the estimated 

amount of propane in the tank, the available resources 

(e.g. fire engine companies, truck engine companies, hazmat 
units, police personnel, county personnel, etc.) and when are 

they arriving at the scene of the incident. After that, both 

the team of human experts and Disciple-VPT independ-

ently generated plans to respond to this situation.  

The plan generated by Disciple-VPT consisted of 89 

partially ordered elementary actions. A fragment of this 

plan is shown in Table VIII. This plan was evaluated by 

the above mentioned experts and by the expert with 

whom we have developed the agents. Then each expert 

has filled-in a questionnaire. The questionnaire included 

statements about various characteristics of the generated 

plan and about the Disciple-VPT system. The experts 

were asked to indicate whether they strongly agree (SA), 

agree (A), are neutral (N), disagree (D) or strongly dis-

agree (SD) with these statements.  

The top part of Table IX presents some of the results of 

the evaluation of the plan generated by Disciple-VPT, 

which was considered good and easy to understand by the 

human experts. One of the experts disagreed with the way 

Disciple-VPT ordered some of the actions. However, this 

reflected a disagreement between the evaluating experts 

and not a planning error, the generated order being that 

taught by the expert who instructed Disciple-VPT. 

The evaluation of the hierarchical plan generation 

TABLE VIII. 
FRAGMENT OF A PLAN GENERATED BY DISCIPLE-VPT 

Id Action Result Resources 
Sart 

Time 

Dura-

tion 

1

Suburbane Propane Company facility 

manager, a person, arrives at the scene 

of the Gainsville incident

Add: Suburbane Propane Company facility 

manager arrived at the scene and is available

to take required actions 

Suburbane Propane Company facility 

manager
0.0 s

1.0 

min 

0.0 s

2
ALS unit M504, an ALS unit, arrives at 

the scene of the Gainsville incident

Add: ALS unit M504 arrived at the scene and 

is available to take required actions 

ALS unit M504, paramedic 504a, and 

paramedic 504b
0.0 s

5.0 

min 

0.0 s

3

fire engine company E504, a fire engine 

company, arrives at the scene of the 

Gainsville incident

Add: fire engine company E504 arrived at 

the scene and is available to take required ac-

tions

fire engine driver E504, fire fighter 

E504b, fire engine company E504,

fire engine E504, deluge nozzle E504,

water hose E504, fire officer E504,

and fire fighter E504a

0.0 s

5.0 

min 

0.0 s

… … … … …

48

fire officer E504 assumes the command 

of the incident command system for the 

Gainsville incident, as fire department

representative in the ICS unified com-

mand

Delete: fire officer E504 is no longer avail-

able

Add: Gainsville ICS, the incident command 

system for the Gainsville incident, is created 

and fire officer E504 assumes ICS command

as fire department representative in the 

Gainsville command

fire officer E504

5.0 

min 

0.0 s

15.0 s

49

Gainsville command evaluates the 

situation created by the Gainsville inci-

dent

Add: overpressure situation with danger of 

BLEVE in propane tank1 is caused by fire1
Gainsville command

5.0 

min 

15.0 s

30.0 s

50

Gainsville command determines the ab-

stract incident action plan for overpres-

sure situation

Add: The plan is to apply cooling water, to 

evacuate people from 1.0 mi around propane 

tank1, to perform traffic control, perimeter 

control, and to establish rapid intervention 

task forces

Gainsville command

5.0 

min 

45.0 s

30.0 s

… … … … …

54

fire engine company E504 sets up water 

hose E504 to apply water to propane 

tank1

Delete: water hose E504 is available

Add: water hose E504 is assigned  

fire engine company E504, fire engine 

driver E504, fire fighter E504b, fire 

fighter E504a, water hose E504, and 

fire engine E504

8.0 

min 

30.0 s

3.0 

min 

0.0 s

55

fire engine company E525 drops off 

deluge nozzle E525 for fire engine 

company E504

Delete: deluge nozzle E525 that belongs to 

fire engine E525 is no longer available

Add: deluge nozzle E525 is assigned

fire fighter E525a, fire officer E525,

deluge nozzle E525, fire engine driver 

E525, and fire fighter E525b

8.0 

min 

30.0 s

2.0 

min 

0.0 s

… … … … …

63

fire engine company E525 establishes 

continuous water supply from fire hy-

drant1 for fire engine company E504

Add: fire hydrant1 is assigned to fire engine 

company E504

fire fighter E525a, fire fighter E525b,

fire officer E525, fire engine driver 

E525, and fire engine company E525

14.0 

min 

30.0 s

7.0 

min 

0.0 s

… … … … …
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process (see the middle of Table IX) shows that it signifi-

cantly improves the understandability of this process. Fi-

nally the experts agreed or strongly agreed that Disciple-

VPT has many potential applications in emergency re-

sponse planning, from developing exercises for training, 

to actual training, and to its use as planning assistant. 

A limitation of this evaluation is that it is based on the 

opinion of only 3 experts. More experts are needed in or-

der for the results to have statistical significance. 

XV. CONTRIBUTIONS AND FUTURE DIRECTIONS

This paper presented a major extension of the Disciple 

theory and methodology for the development of knowl-

edge-based agents by subject matter experts, with limited 

assistance from knowledge engineers.  

First we have extended the Disciple approach to allow 

the development of complex HTN planning agents that 

can be taught their planning knowledge, rather then hav-

ing it defined by a knowledge engineer. This is a new and 

very powerful capability that is not present in current ac-

tion planning systems [1, 18-20]. This capability was 

made possible by several major developments of the Dis-

ciple approach. For instance, we have significantly ex-

tended the knowledge representation and management of 

a Disciple agent by introducing new types of knowledge 

that are characteristic to planning systems, such as plan-

ning tasks and actions (with preconditions, effects, goal, 

duration, and resources) and new types of rules (e.g. 

planning tasks reduction rules, concretion rules, action 

rules, goal synthesis rules). We have introduced state 

knowledge bases and have developed the ability to man-

age the evolution of the states in planning. We have de-

veloped a modeling language and a set of guidelines that 

help subject matter experts express their planning proc-

ess. We have developed an integrated set of learning 

methods for planning, allowing the agent to learn general 

planning knowledge from a single planning example for-

mulated by the expert. 

A second result is the development of an integrated 

approach to planning and inference, both processes being 

based on the task reduction paradigm. This improves the 

power of the planning systems that can now include com-

plex inference trees. It also improves the efficiency of the 

planning process because some of the planning operations 

can be performed as part of a much more efficient infer-

ence process that does not require a simulation of the 

change of the state of the world. 

A third result is the development and implementation 

of the concept of library of virtual experts. This required 

the development of methods for the management of a hi-

erarchical knowledge repository. The hierarchical organi-

zation of the knowledge bases of the virtual experts also 

serves as a knowledge repository that speeds-up the de-

velopment of new virtual experts that can reuse the 

knowledge bases from the upper levels of this hierarchy.  

A fourth result is the development of the multi-domain 

architecture of Disciple-VPT which extends the applica-

bility of the current expert systems to problems whose so-

lutions require knowledge of more than one domain [31]. 

A fifth result is the development of two basic virtual 

experts, a basic fire expert and a basic emergency man-

agement expert, that can collaborate to develop plans of 

actions that are beyond their individual capabilities.  

Finally, a sixth result is the development of an ap-

proach and system that has high potential for supporting a 

wide range of training and planning activities.  

Future research will involve the development of addi-

tional agents for the VE Library, and of the Disciple-VPT 

system for actual use in training personnel for emergency 

response planning, and for other areas. 
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