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Abstract 

Evidence-based reasoning is at the core of many problem 
solving and decision making tasks in a wide variety of 
domains. This paper introduces a computational theory of 
evidence-based reasoning, the architecture of a learning 
agent shell which incorporates general knowledge for 
evidence-based reasoning, a methodology that uses the shell 
to rapidly develop cognitive assistants in a specific domain, 
and a sample cognitive assistant for intelligence analysis. 

Introduction   

Evidence-based reasoning is at the core of many problem 

solving and decision making tasks in a wide variety of 

domains, including law, intelligence analysis, forensics, 

medicine, physics, chemistry, history, archaeology, and 

many others.  

 “In its simplest sense, evidence may be defined as any 

factual datum which in some manner assists in drawing 

conclusions, either favorable or unfavorable, to some 

hypothesis whose proof or refutation is being attempted” 

(Murphy, 2003, p.1). The conclusions are probabilistic in 

nature because our evidence is always incomplete (we can 

look for more, if we have time), usually inconclusive (it is 

consistent with the truth of more than one hypothesis), 

frequently ambiguous (we cannot always determine exactly 

what the evidence is telling us), commonly dissonant 

(some of it favors one hypothesis but other evidence favors 

other hypotheses), and has various degrees of believability 

(Schum, 2001a; Boicu et al., 2008). Often stunningly 

complex arguments, requiring both imaginative and 

critical reasoning through deduction, induction, and 

abduction, are necessary in order to establish and defend 

the three major credentials of evidence: its relevance, its 

believability, and its inferential force or weight with 

respect to the considered hypotheses (Tecuci et al., 2010b).  

 Because evidentiary reasoning is frequently of such an 

astonishing complexity, we believe that it can be best 

approached through the mixed-initiative integration of 
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human imagination and computer knowledge-based 

reasoning (Tecuci et al., 2007). Toward this purpose, the 

next section introduces several elements of an emerging 

computational theory of evidence-based reasoning, as a 

basis for automating parts of this process. This includes 

general knowledge, such as an ontology of evidence and 

believability assessment procedures. This theory, as well as 

previous work on Disciple learning assistants (Tecuci, 

1998; Tecuci et al., 2001, 2002, 2005; Boicu 2002), is at 

the basis of a learning agent shell that includes a general 

knowledge base for evidence-based reasoning. Using this 

agent shell, a subject matter expert can rapidly develop a 

cognitive assistant for a specific domain, with limited 

knowledge engineering support, by teaching it domain-

specific knowledge and reasoning, which extends the 

agent’s general knowledge for evidence-based reasoning.  

After introducing the general architecture of the shell, 

the paper presents a methodology for rapid development of 

a specific cognitive assistant, illustrating it with an 

example of a cognitive assistant for intelligence analysis.  

Toward a Computational Theory 

of Evidence-based Reasoning 

Evidence-based Reasoning as Discovery of 

Evidence, Hypotheses, and Arguments 

We view evidence-based reasoning as collaborative 

processes of evidence in search of hypotheses, hypotheses 

in search of evidence, and evidential tests of hypotheses, 

all taking place simultaneously, as illustrated in the upper 

right part of Figure 1. Through abductive reasoning, which 

shows that something is possibly true (Peirce, 1898), we 

generate hypotheses from our observations; through 

deductive reasoning, which shows that something is 

necessarily true, we use our hypotheses to generate new 

lines of inquiry and discover new evidence; and through 

inductive reasoning, which shows that something is 

probably true, we test our hypotheses with this discovered 

evidence. The left and bottom part of Figure 1 illustrate 

this approach with an example from intelligence analysis.  

 Imagine that a counterterrorism analyst reads in today’s 
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Washington Post an article where a person named Willard 

reports that a canister of cesium-137 has gone missing 

from the XYZ Company in Maryland (see E at the bottom-

left of Figure 1). The question is: What hypothesis of 

interest would explain this evidence? To answer it, the 

analyst and her cognitive assistant develop the following 

chain of abductive inferences (see the left side of Figure 1). 

E: There is evidence that the cesium-137 canister is 

missing  H1: It is possible that the cesium-137 

canister is indeed missing  H2: It is possible that it 

was stolen  H3: It is possible that it was stolen by 

someone associated with a terrorist organization  

H4: It is possible that the terrorist organization will use 

the cesium-137 canister to build a dirty bomb  H5: It 

is possible that the dirty bomb will be set off in the 

Washington DC area.  

In this case, we have evidence in search of hypotheses 

where an item of evidence “searches” for hypotheses that 

explain it.  

 But these are not the only hypotheses that explain the 

evidence. Indeed, just because there is evidence that the 

cesium-137 canister is missing does not mean that it is 

indeed missing. At issue here is the believability of Willard 

who provided this information. Thus an alternative 

hypothesis is that the cesium-137 canister is not missing. 

But let us assume that it is missing. Then it is possible that 

it was stolen. But it is also possible that it was lost, or 

maybe it was used in a project at the XYZ Company. 

 The analyst and her cognitive assistant need to assess 

each of these hypotheses, starting from bottom-up, by 

employing the general approach from the upper right of 

Figure 1. So they put hypothesis H1 at work to guide them 

in collecting additional evidence, as illustrated by the 

middle (blue) tree at the bottom of Figure 1. The question 

is: Assuming that the hypothesis H1 is true, what other 

things should be observable? The reasoning might start as 

follows: “If H1 were true, there are sub-hypotheses, listed 

as H11, H12, and H13, that would be necessary and sufficient 

(or, at least, sufficient) to make H1 true. If H11 were true 

then one would need to observe evidence that supports it. 

Similarly, H12 and H13 lead to the deduction of potential 

items of evidence (shown as shaded circles) that bear upon 

them. In our example, the hypothesis “H1: The cesium-137 

canister is missing from the XYZ Warehouse” is reduced 

to the following three sub-hypotheses: “H11: The cesium-

137 canister is registered as being in the XYZ warehouse”; 

“H12: The cesium-137 canister is not found in the XYZ 

warehouse”; and “H13: The cesium-137 canister was not 

checked out from the XYZ warehouse.” As a result, the 

analyst contacts Ralph, the supervisor of the warehouse, 

who reports that the cesium-137 canister is registered as 

being in the warehouse, that no one at the XYZ Company 

had checked it out, but it is not located anywhere in the 

hazardous materials locker. He also indicates that the lock 

on the hazardous materials locker appear to have been 

forced. Ralph’s testimony provides several items of 

 
Figure 1: Evidence-based hypothesis generation and analysis. 
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relevant evidence in support of H11, H12, and H13.  

 So here we have hypothesis in search of evidence that 

guides the analyst in collecting new evidence. 

 Now, some of the newly discovered items of evidence 

may trigger new hypotheses, or the refinement of the 

current hypotheses (e.g. “H2: The cesium-137 canister was 

stolen from the hazardous material locker”). So, as 

indicated by the curved arrows at the bottom of the abstract 

diagram in Figure 1, the processes of evidence in search of 

hypotheses and hypotheses in search of evidence take place 

at the same time, and in response to one another. 

 The combination of evidence in search of hypotheses 

and hypotheses in search of evidence results in hypotheses 

which have to be tested, through inductive reasoning, 

based on the discovered items of evidence, as illustrated at 

the bottom-right part of Figure 1. This is a probabilistic 

inference network that shows how the evidence at the 

leaves of the network (shown as black circles) is linked to 

the hypotheses H11, H12, H13, and to H1, through an 

argument that establishes the relevance, believability and 

inferential force of evidence with respect to these 

hypotheses, as discussed in the next section. The result of 

the testing process is the likelihood of the hypothesis H1: It 

is very likely that the cesium-137 canister is missing from 

the XYZ warehouse. 

 Having concluded that the cesium-137 canister is 

missing, the analyst and her cognitive assistant now need 

to consider the competing hypotheses H2, H’2, and H”2, 

from the left part of Figure 1. Each of these hypotheses 

will be put to work to guide the analyst in collecting new 

items of evidence, and the identified evidence is used to 

assess the likelihoods of these competing hypotheses. If, 

for instance, it is determined that the cesium-137 canister 

was used in a project at the XYZ Company, then the 

investigation stops here. But if it is determined that the 

cesium-137 canister was stolen, then the analyst and the 

cognitive assistant will continue with the investigation of 

upper level hypotheses (i.e., H3, H’3, H”3, …).  

 While this is a systematic approach to hypotheses 

generation and analysis, except for trivial cases, it is too 

complex to be done manually. Indeed, real cases of 

analysis involve hundreds or thousands of items of 

evidence. We therefore claim that it can and has to be 

performed by analysts supported by their cognitive 

assistants, as discussed in the rest of this paper.  

Knowledge-based Hybrid Reasoning 

Notice that the investigative strategy that we have just 

illustrated is a type of hybrid reasoning where small 

abduction, deduction, and induction steps feed on each 

other, in a recursive spiral of discovery of hypotheses, 

evidence, and arguments that provide a better and better 

understanding of the world.  

 Another important aspect is that the analysis of an upper 

level hypothesis (e.g. “H2: stolen”) makes use of the 

previously performed analyses of the hypotheses on the 

chain from the initial evidence E to it (i.e., “H1: missing”). 

That is, both the middle (blue) and the right (green) trees 

corresponding to “H2: stolen” will contain, as subtrees, the 

middle and the right trees corresponding to “H1: missing,” 

shown at the bottom of Figure 1. 

 Our goal is to enable a cognitive assistant to perform 

much of this reasoning, under the guidance of a human 

user. Figure 2 shows how the generated hypotheses are 

assessed by employing a divide and conquer approach 

(called problem reduction and solution synthesis) which 

combines the deductive and inductive reasoning trees from 

Figure 1. This approach is grounded in the problem 

reduction representations developed in the field of artificial 

intelligence (Nilsson, 1971; Tecuci, 1998), and in the 

argument construction methods provided by the noted 

jurist John H. Wigmore (1937), the philosopher of science 

Stephen Toulmin (1963), and the evidence professor David 

Schum (1987, 2001a). In essence, a hypothesis to be 

assessed is successively reduced to simpler and simpler 

hypotheses. Then the simplest hypotheses are assessed 

based on the available evidence, resulting in probabilistic 

solutions because of the characteristics of evidence 

mentioned in the introduction. Finally, these probabilistic 

solutions are successively combined, from bottom-up, to 

obtain the solution of the top-level hypothesis.  

 In Figure 2 the assessment of the hypothesis H1 is 

reduced to the assessment of three simpler hypotheses, H11, 

H12, and H13. The middle hypothesis H12 is assessed based 

on the available evidence. As indicated in Figure 2, one has 

to consider both favoring evidence and disfavoring 

evidence. In this illustration there are two items of favoring 

evidence, E1 and E2. Therefore one has to assess to what 

extent each of these items of evidence favors the 

hypothesis H12. This, in turn, requires the assessment of the 

relevance of E1 to H12, and the believability of E1 which, in 

this illustration, are assumed to be: “If we believe E1 then 

H12 is almost certain” and “It is likely that E1 is true.” By 

composing the assessed relevance and believability of E1 

(e.g., through a “min” function) one assesses the inferential 

force of E1 on H12 (“Based on E1 it is likely that H12 is 

true”). Similarly one assesses the inferential force of E2 on 

H12 (“almost certain”). Then, by composing these solutions 

(e.g., through a “max” function), one assesses the 

inferential force or weight of the favoring evidence (i.e. 

both E1 and E2) on H12: Based on the favoring evidence it 

is almost certain that H12 is true. Through a similar process 

one assesses the inferential force of the disfavoring 

evidence on H12, and then the likelihood of H12, based both 

on the favoring and the disfavoring evidence (“It is very 

likely that H12 is true”). H11 and H13 are assessed in a 

similar way. Then the assessments of H11, H12, and H13 are 
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combined into the assessment of the top level hypothesis 

H1: “It is very likely that H1 is true.” 

 Notice that the reduction and synthesis tree from Figure 

2 combines the deduction (blue) tree and the induction 

(green) tree from the bottom right of Figure 1. Notice also 

that we have expressed the probabilistic solutions by using 

symbolic probability values (e.g. “very likely”) which, in 

the current implementation correspond to specific 

probability intervals, as shown in the table from the left of 

Figure 2.  

 A basic element of the computational theory of 

evidence-based reasoning is a “substance-blind” ontology 

of evidence (Boicu et al., 2008; Schum, 2009) which is 

applicable in every domain. A fragment of this ontology is 

shown in the bottom right of Figure 2. This ontology 

distinguishes between various types of tangible evidence 

and testimonial evidence, where each type is associated 

with a specific believability evaluation procedure, as 

illustrated at the left of this ontology fragment. For 

example, to assess the believability of an item of 

unequivocal testimonial evidence based upon direct 

observation (such as Ralph’s testimony mentioned in the 

previous section), one needs to assess the competence and 

the credibility of the source (i.e. Ralph). Competence 

involves access (Did Ralph actually make the observation 

he claims to have made? Did he have access to the 

information he reports?) and understandability (Did Ralph 

understand what he observed well enough to provide us 

with an intelligible account?). Credibility involves veracity 

(Is Ralph telling us about an event he believes to have 

occurred?), objectivity (Did Ralph base his belief on 

sensory evidence received during an observation, or did he 

believe the reported event occurred either because he 

expected or wished it to occur?), and observational 

sensitivity under the conditions of observation (If Ralph 

did base a belief on sensory evidence, how good was this 

sensory evidence?). This knowledge is based upon 600 

years of experience in our system of law (Schum, 2001a), 

 
Figure 2: Hypothesis analysis through problem reduction and solution synthesis. 
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and is incorporated in the knowledge base of the agent. 

 Notice that the reasoning approach illustrated in Figure 2 

represents a natural integration of logic and probabilistic 

reasoning. This is important because most of the work on 

the development of cognitive systems has been done either 

in a logical framework or a probabilistic one, with not 

much interaction between the two research communities. 

 One problem in evidence-based reasoning is that there 

are several quite different views among probabilists about 

what the force or weight of evidence means and how it 

should be assessed and combined across evidence in both 

simple and complex arguments, such as Subjective Bayes, 

Baconian, Belief Functions, and Fuzzy (Schum, 2001a). 

This is primarily because none of these views can cope 

with all the five characteristics of evidence mentioned in 

the introduction, when testing a hypothesis. For example, 

Subjective Bayes, which is by far the best known and most 

frequently used, cannot cope with the incompleteness of 

evidence. In fact, only the Baconian view, which is the 

least known, can cope with this. But neither the Subjective 

Bayes view nor the Baconian view can cope with the 

ambiguity in evidence. However, both the Belief Functions 

view and the Fuzzy view have solutions for this. 

 While here we have primarily illustrated the use of 

fuzzy-like probabilities, Baconian elements appear in 

several places. One is that each sub-hypothesis of a 

hypothesis, such as the sub-hypotheses H11, H12, and H13 of 

H1, is, in fact, a test for H1. Moreover, if we do not have 

evidence for a sub-hypothesis (for example H13), we can 

give it the benefit of the doubt and reason “as if” the 

hypothesis H13 were true. Our goal, of course, is to 

synergistically integrate more of the existing probability 

views within a logical argumentation structure, to provide 

more informative assessments of our hypotheses.  

Sample Evidence-based Reasoning Tasks 

The examples provided in the previous sections are based 

on the TIACRITIS cognitive assistant for intelligence 

analysts which is currently experimentally used in several 

government organizations (Tecuci et al., 2010a, b). We 

claim, however, that this type of evidence-based reasoning 

is applicable for many tasks. We have developed, for 

example, another cognitive assistant for modeling the 

behavior of violent extremists, and a cognitive assistant for 

assessing a potential PhD advisor.  

 Scientists from various domains, such as physics, 

chemistry, or biology, may regard the presented approach 

as a formulation of the scientific method (Noon, 2009), and 

we have developed a case study that uses it to teach the 

scientific method to middle school students. 

 In law, a prosecutor makes observations in a criminal 

case and seeks to generate hypotheses in the form of 

charges that seem possible in explaining these 

observations. Then, assuming that a charge is justified, 

attempts are made to deduce further evidence bearing on it. 

Finally, the obtained evidence is used to prove the charge. 

 In medicine, a doctor makes observations with respect to 

a patient’s complaints and attempts to generate possible 

diagnoses (hypotheses) that would explain them. She then 

performs medical tests that provide further evidence which 

is used in forming a final diagnosis for the patient. 

 In forensics (Noon, 2009), observations made at the site 

of an explosion in a power plant lead to the formulation of 

several possible causes. The analysis of each possible 

cause leads to the discovery of new evidence that 

eliminates or refines some of the causes, and may even 

suggest new ones. This cycle continues until enough 

evidence is found to determine the most likely cause. 

Learning Agent Shell for EBR Tasks 

The cognitive assistant for evidence-based reasoning 

briefly presented above was developed by employing the 

Disciple learning agent shell for evidence-based reasoning. 

As indicated in Figure 3, this shell includes multiple 

modules for problem solving, learning, tutoring, evidence-

based reasoning, mixed-initiative interaction, as well as a 

hierarchically organized knowledge base with domain-

independent knowledge for evidence-based reasoning at 

the top of the knowledge hierarchy. A Disciple shell can 

learn complex problem solving expertise directly from 

human experts and, in doing so, it evolves into a cognitive 

assistant that can support experts and non-experts in 

problem solving, and can teach their problem solving 

expertise to students. 

 Over the years, the knowledge representation, problem 

solving, and learning methods of the Disciple cognitive 

assistants have been continuously improved, as they have 

been applied to many domains, including course of action 

critiquing (Tecuci et al., 2001), military center of gravity 

determination (Tecuci et al., 2002), and, most recently, 

intelligence analysis (Tecuci et al., 2010a,b). A newer 

feature of this shell is that now it also includes general 

knowledge for evidence-based reasoning from the 

emerging Science of Evidence (Schum, 2009). Therefore, 

what remains to be acquired from an expert is specific 

domain knowledge. Moreover, this knowledge is rapidly 

acquired by employing its learning methods. Maintenance 

and adaptation is done through additional learning. 

 In essence, the knowledge base of the agent consists of 

an evolving ontology of concepts and different types of if-

then rules expressed with these concepts. The ontology 

includes both general concepts for evidence-based 

reasoning, such as the partial evidence ontology from the 

bottom-right of Figure 2, and domain-specific concepts. It 

is assumed that the ontology is incomplete and is 
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Figure 4: Learning with an evolving representation language. 

continuously extended with new concepts and features, 

through knowledge acquisition and learning (Boicu, 2002). 

 An if-then problem reduction rule expresses how and 

under what conditions a generic hypothesis can be reduced 

to simpler generic hypotheses. These conditions are 

represented as first-order logical expressions (Tecuci et al., 

2005). It is by the application of such rules that an agent 

can generate the reduction part of the tree in Figure 2. 

Similarly, an if-then solution synthesis rule expresses how 

and under what conditions generic probabilistic solutions 

can be combined into another probabilistic solution. The 

application of these rules generates the synthesis part of the 

tree in Figure 2. 

 A Disciple agent is taught directly by a subject matter 

expert, with limited knowledge engineering assistance, in a 

way that is similar to how one would teach a student or 

apprentice, through specific examples and explanations, 

and through the supervision and correction of its problem 

solving behavior (Tecuci et al., 2005). In essence, a subject 

matter expert will show the agent a sample reasoning tree 

like the ones in Figure 1, and the agent will learn general 

rules and ontology elements from the specific reasoning 

steps and their explanations, with the help of the expert. 

This integrates teaching and multistrategy learning, where 

the expert helps the agent to learn (e.g., by providing 

examples, hints and explanations), 

and the agent helps the expert to 

teach it (e.g., by asking relevant 

questions and proposing plausible 

explanations). 

 The left part of Figure 4 shows a 

reduction step provided by the 

subject matter expert, where a 

specific problem P1 is reduced to n 

subproblems P11, … , P1n. To help the 

expert express her reasoning in this 

way, we instruct her to formulate a 

question Q on how to solve P1, and 

then provide the answer A that 

should guide her to reduce P1 to n 

subproblems. In this way, the Q/A 

pair represents the reason for this 

reduction, or its explanation.  

 To learn a general reduction rule 

from this specific reduction, the 

agent needs first to understand the 

meaning of the Q/A pair in terms of 

the object concepts and relationships 

from its ontology. This meaning is 

illustrated by the network fragment at 

the bottom left of Figure 4 that shows 

the objects O1, O2, and O3 and the 

relationships f1 and f2 between them. 

Based on the reduction and its 

explanation, an initial rule is automatically generated by 

replacing each object from the reduction with a general 

variable, and by adding a main applicability condition 

restricting the possible values of these variables. The 

general structure of the learned rule is shown in the right 

part of Figure 4. Initially, the rule only contains the main 

applicability condition (shown in green), but no except-

when conditions (shown in red), or exceptions. The main 

applicability condition is represented as a plausible version 

space consisting of a plausible lower bound condition and 

 
Figure 3: The general architecture and life cycle of an evidence-based cognitive assistant. 
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a plausible upper bound condition. They are obtained as 

minimal and, respectively, maximal generalizations of the 

objects from the reduction example, in the context of the 

current ontology which is used a generalization hierarchy. 

 As the agent learns new rules and concepts from the 

expert, their interaction evolves from a teacher-student 

interaction, toward an interaction where they both 

collaborate in problem solving. In this case the agent 

automatically generates parts of the reasoning tree and the 

expert critiques the reasoning, implicitly guiding the agent 

in refining its rules. For example, based on the explanation 

of why an instance of the rule in Figure 4 is wrong, the 

agent learns an except-when plausible version space 

condition which is added to the rule. Such conditions 

should not be satisfied in order to apply the rule. Correct 

reductions may lead to the generalization of the plausible 

lower bound of the main applicability condition, or to the 

specialization of the plausible upper bound of one or 

several except-when condition, or to the addition of a 

positive exception when none of the above operations is 

possible. Incorrect reductions and their explanations may 

lead to the specialization of the plausible upper bound of 

the main applicability condition, or to the generalization of 

the plausible lower bound of an except-when condition, or 

to the learning of a plausible version space for a new 

except-when condition, or to the addition of a negative 

exception. The goal is to improve the applicability 

condition of the rule so that it only generates correct 

reductions. 

 At the same time with learning new rules and refining 

previously learned rules, the agent may also extend the 

ontology with new object concepts and features. For 

example, to explain the agent why a generated reduction is 

wrong, the expert may use a new object concept or feature. 

As a result, the agent will add the new concept or a new 

feature definition in its ontology of concepts and features. 

This, however, requires an adaptation of the previously 

learned rules since the generalization hierarchies used to 

learn them have changed. To cope with this issue, the agent 

keeps minimal generalizations of the examples and the 

explanations from which each rule was learned, and uses 

this information to automatically regenerate the rules in the 

context of a changed ontology. Notice that this is, in fact, a 

form of learning with an evolving representation language. 

 The way a partially learned rule is used depends on the 

current goal of the agent. If this goal is to support its user 

in problem solving, then the agent will generate the 

reductions that are more likely to be correct, such as a 

reduction covered by the plausible lower bound of the 

main condition and not covered by any of the Except-

When plausible upper bound conditions. However, if the 

current goal of the agent is to improve its reasoning rules, 

then it will generate reductions that will speed up the rule 

refinement process, such as a reduction that is covered by 

the plausible upper bound of the main condition, or the 

plausible upper bound of an except-when condition. 

 A challenging issue is supporting the user in generating 

new hypotheses through abductive or imaginative 

reasoning. One important feature of the presented approach 

is that a hypothesis of interest (e.g., “A dirty bomb will be 

set off in the Washington DC area”) is not generated 

through a single glorious abduction from evidence. Instead, 

it emerges from the spiral hybrid reasoning that generates 

chains of simpler abductions from evidence to hypotheses 

which are increasingly more mission-relevant. To generate 

these simpler abductions, we research an approach that 

combines ideas from Thagard’s (1993) simple, existential, 

and analogical abductions, with ideas from Eco’s (1983) 

overcoded, undercoded, and creative abductions. In our 

approach each step is a combined abduction, such as 

simple undercoded abduction, or analogical overcoded 

abduction, as first proposed in (Schum, 2001b).  

Agent Lifecycle 

The outside border hexagon in Figure 3 summarizes the 

life cycle of a Disciple cognitive assistant for evidence-

based reasoning. The first stage is Shell Customization 

where, based on the specification of the type of problems 

to be solved and the agent to be built, the developer and the 

knowledge engineer may decide that some extensions of 

the Disciple shell may be necessary or useful. It is through 

such successive extensions during the development of 

Disciple agents for various applications that the current 

version of the shell for evidence-based reasoning problems 

(which includes the EBR knowledge base) has emerged.  

 The next stage is Agent Teaching by subject matter 

expert and the knowledge engineer, supported by the agent 

itself which simplifies and speeds-up the knowledge base 

development process (Tecuci et al., 2001; 2002; 2005).  

 Once an operational agent is developed, it is used for the 

Education and Training of the end users, possibly in a 

classroom environment. The next stage is Field Use, were 

copies of these agents support users in their operational 

environments. In this stage an agent assists its user both in 

solving problems and in collaborating with other users and 

their cognitive assistants. At the same time, it continuously 

learns from this problem solving experience by employing 

a form of non-disruptive learning. In essence, it learns new 

rules from examples, as illustrated in Figure 4. However, 

because there is no assistance from the user, the learned 

rules will not include a formal applicability condition. It is 

during the next stage of After Action Review, when the user 

and the agent analyze past problem solving episodes, that 

the formal applicability conditions are learned, based on 

the accumulated examples. 

 In time, each cognitive assistant extends its knowledge 
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with expertise acquired from its user. This creates the 

opportunity of developing a more competent agent by 

integrating the knowledge of all these agents. This is 

accomplished by a knowledge engineer, with assistance 

from a subject matter expert, in the next stage of 

Knowledge Integration. The result is an improved agent 

which may be used in a new iteration of a continuous 

process of spiral development and use. 

 The TIACRITIS agent, developed with the Disciple 

shell, is a web agent specialized for teaching intelligence 

analysts the critical thinking skills needed to perform 

evidence-based reasoning (Tecuci et al., 2010a, b). The 

agent is accompanied by a textbook that teaches basic 

knowledge about the properties, uses, and marshaling of 

evidence to show students what is involved in assessing the 

relevance, believability, and inferential force credentials of 

evidence. It includes a wide array of examples of the use of 

the TIACRITIS agent and hands-on exercises involving 

both real and hypothetical cases chosen to help students 

recognize and evaluate many of the complex elements of 

the analyses they are learning to perform. Each chapter 

starts with a presentation of some important matter, such as 

assessing the believability of evidence. Then the students 

are asked to use TIACRITIS and experiment with what 

they have just been taught. Both the textbook and the agent 

are easily customizable by selecting the chapters and the 

case studies to be used.  

 A just-developed agent for modeling the behavior of 

violent extremists includes the entire knowledge base for 

evidence-based reasoning of TIACRITIS. 

Conclusions 

We have presented a learning agent shell that enables rapid 

development of specific cognitive assistants for tasks 

requiring evidence-based reasoning. In addition to having 

the necessary knowledge representation, problem solving, 

and learning modules, it also includes general knowledge 

for evidence-based reasoning. Thus, to evolve into a 

cognitive assistant for a specific domain, it only needs 

domain-specific knowledge, which is acquired through 

learning from a subject matter expert. 
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