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Evidence-based Detection 
of Advanced Persistent 
Threats 

This paper presents an approach to the automation of 

Cybersecurity Operations Centers with cognitive 

assistants that capture and automatically apply the 

expertise employed by cybersecurity analysts when 

they investigate Advanced Persistent Threats. The 

goal is to significantly increase the probability of 

detecting intrusion activity while drastically reducing 

the workload of the operators. 

Despite the tens of billions of dollars spent on cybersecurity every year, the number of successful 
attacks has increased steadily year over year, due to the fast evolution of attacker methodology.   

Cyber defense is done in a cybersecurity operations center (CSOC) where analysts monitor alerts 
and log data from available information sources, each having differing levels of credibility, and 
use them to make a determination about the presence or absence of intrusion activity.1 However, 
because a single alert alone does not provide sufficient evidence that an incident has occurred, 
and modern detection technologies are error-prone, each alert must be carefully examined and 
validated by a human analyst.1 Both missed detections and false positives are costly, resulting in 
real damage to an organization or wasted incident response resources respectively. In a large en-
terprise, thousands of alerts can be reported daily. Therefore, even sensors with a false positive 
rate of one percent may have enough missed detections and false positives to be unmanageable 
by even mature CSOCs.2   

Among the most sophisticated cyber threats faced by an organization are those known as Ad-
vanced Persistent Threats (APTs). These are computer network exploitation groups (many of 
them state-sponsored) that leverage superior resources, knowledge, and tactics to gain and main-
tain access to targeted networks and adapt to defenders’ efforts to resist them. 1,3 FireEye/Mandi-
ant has published reports on more than 37 APT groups since 2013, naming them simply APT1 
through APT37 (FireEye 2015).4 

APT1 is the name given by Mandiant5 to a group of APT actors, attributed to China’s People’s 
Liberation Army unit 61398, who led a years-long campaign of cyber espionage dating back to 
at least 2004. APT1 is known for a regimented approach to computer intrusion activity. An 
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APT1 intrusion typically consists of the following phases: (1) gain access to a network by send-
ing fraudulent, malicious email messages to specific users (spearphishing); (2) use multiple types 
of backdoor programs to maintain presence and provide remote connectivity to the target net-
work; (3) use a collection of command-and-control (C2) servers to obfuscate the source of their 
attacks; (4) escalate privileges and acquire legitimate login credentials to access network re-
sources; (5) move laterally within the target network using legitimate credentials to gain redun-
dant points of presence and identify information of interest; and (6) exfiltrate targeted 
information through their C2 infrastructure.5 

Automatic security systems deployed today do not reliably detect APTs because this requires 
reasoning over a large set of weak indicators. Therefore the current practice relies on experi-
enced cyber analysts to manually investigate such indicators. However, as discussed above, the 
large and increasing number of alerts and the time required for their manual analysis creates a 
very complex, expensive, and non-sustainable security environment for network defense organi-
zations. 

The resource strain is exacerbated by the fact that intrusion detection systems have a relatively 
high false positive rate.  A network connection with 100 Mbps sustained throughput transmits 
approximately 1.8 billion packets per day.  Even an IDS with a false positive rate of one percent 
could result in an overwhelming number of security events for CSOC analysts to investigate. A 
skilled security analyst can investigate 10-20 incidents per day2 and the number of incidents a 
CSOC can investigate scales linearly with the number of analysts. Because each alert must be 
investigated as if it were a true positive, investigation of false positives can be very expensive to 
an organization. 

To alleviate these problems, we research the development of cognitive assistants capable of be-
ing taught by expert cybersecurity analysts how to investigate potential APT intrusions. Once 
taught, these agents can automatically investigate alerts, leading to a significant increase in the 
probability of detecting intrusion activity, and a drastic reduction in the workload of the opera-
tors. 

To teach such an agent, the expert cyber analyst follows a systematic evidence-based reasoning 
approach to APT detection, grounded in the scientific method. This starts with alerts that lead to 
the generation of alternative hypotheses that may explain them, some representing intrusion ac-
tivity while others representing legitimate activities (called false positives). Each of these hy-
potheses is used to guide the search for evidence to confirm it, and the found evidence is used to 
determine the probability of each hypothesis.6 

 The agent, guided by the expert, learns general rules from examples of such alerts, alternative 
explanatory hypotheses and their analyses, that allow it to investigate similar alerts in a similar 
way. These rules are further improved based on such investigations and their critique by the ex-
pert, until the agent can accurately simulate the reasoning of the expert. 

We will overview and illustrate this approach, also providing information on the developed pro-
totype system. Then we will discuss the applicability of this approach to areas other than cyber-
security. 

COGNITIVE ASSISTANTS FOR APT DETECTION 
Figure 1 is an overview of the process of training and using the cognitive assistants for advanced 
persistent threat detection. An expert cyber analyst teaches a learning agent shell, through exam-
ples and explanations, how to generate and assess both APT intrusion hypotheses and false posi-
tive hypotheses.7 The trained learning agent is then customized into specialized autonomous 
collaborative agents for a specific CSOC.  
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Figure 1. Overview of evidence-based detection of advanced persistent threats.  

The left part of Figure 1 illustrates the process of teaching the learning agent shell. An expert an-
alyst teaches the agent how to detect a specific APT intrusion (e.g., by the Auriga malware of 
APT1)5, by illustrating all the associated reasoning steps. First, the expert analyst specifies an 
event of interest that may be caused by this APT1 intrusion. This event is called trigger and is 
the kind of alert generated by a network intrusion detection system (IDS), such as BRO.8 Then 
the expert defines alternative hypotheses that may explain this alert. Some of these hypotheses 
are APT1 intrusion hypotheses, but others are false positive hypotheses. Each of these hypothe-
ses has to be analyzed, based on evidence, to estimate its probability. Each hypothesis is decom-
posed into simpler hypotheses that more clearly point to the evidence that needs to be collected 
to assess them. Evidence is collected and used to assess the probabilities of the generated hy-
potheses. 

From the above reasoning steps the agent, with the help of the cyber expert, learns different 
types of rules, including: rules to generate hypotheses from triggers issued by IDS systems; rules 
to search for evidence that is relevant to the generated hypotheses; and rules to assess the proba-
bilities of the hypotheses based on the collected evidence. 

Once the learning agent shell has been taught to detect APT intrusions, it is used to generate sev-
eral autonomous agents, each specialized for a specific phase of APT intrusion detection in a 
CSOC, as illustrated in the right-hand side of Figure 1.  

The Alert Agent receives alerts from various sources, such as the network IDS BRO, creates a 
JSON representation of each alert, and sends it to the Trigger Agent. For each alert, the Trigger 
Agent creates a new knowledge base (stored on disk in XML) in which it represents the alert as 
an ontology fragment, instantiates the corresponding trigger hypothesis, and then places the new 
knowledge base in the hypothesis generation queue. The Hypothesis Generation Agent consumes 
knowledge bases from this queue. In each knowledge base it abductively generates hypotheses 
that connect the trigger hypothesis with intrusion hypotheses, and places these knowledge bases 
into the hypotheses analysis queue. Each of these knowledge bases is retrieved by an Automatic 
Analysis agent which decomposes the intrusion hypotheses as much as possible, generates evi-
dence collection requests and places the knowledge base into the evidence collection queue for 
the Collection Manager. The Collection Manager invokes Collection Agents, receives the evi-
dence found by them, represents it into the corresponding knowledge base and then places the 
knowledge base in the queue for Automatic Analysis Agents, to be used to further develop the 
analyses, in an “Analysis – Collection – Analysis” loop, until the analyses of all the intrusion hy-
potheses are completed. The cyber analyst (operator) is alerted when any intrusion hypothesis is 
likely and can investigate the analysis of that hypothesis by using the Mixed-initiative Analysis 
Assistant. All these agents are developed using Java and communicate between them through a 
Repository Server using custom Java RMI messages. 
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Our prototype system operates in a simulated network running inside of a VMWare vSphere sys-
tem.  For the system to work, it requires one virtual machine each to run Elasticsearch, Google 
Rapid Response, the Collection Manager, the Alert Agent, and the other reasoning agents. As the 
size of the protected network scales, additional servers can be added to support the additional 
volume. 

To be able to perform the learning and reasoning required by APT detection, the cognitive assis-
tants synergistically integrate several knowledge representation, reasoning, and learning meth-
ods. 

The hypothesis generation step in Figure 1 involves abductive reasoning that shows that some-
thing is possibly true. The hypothesis-driven evidence discovery involves deductive reasoning 
which shows that something is necessarily true, and the multi-INT fusion of evidence involves 
inductive inference which shows that something is probably true. 

The cognitive assistants are knowledge-based systems that reason using the knowledge learned 
from the expert cyber analysts. This knowledge is represented in an ontology and several types 
of rules. The ontology represents the concepts and instances from the cyber domain, together 
with their relationships.  

ILLUSTRATION OF APT DETECTION 
We will illustrate the evidence-based detection of APTs by following the three-phase process 
from Figure 1. 

Evidence in search of hypotheses 
Figure 2 illustrates the hypothesis generation process. The bottom left part shows an alert issued by the BRO 
intrusion detection system.8 The question is: What hypotheses may explain this alert? We call the process of 
answering this question, evidence in search of hypotheses.  

 
Figure 2. Automatic hypotheses generation from a BRO alert. 

First, the Alert Agent (shown in the middle right of Figure 1) generates a JSON representation of 
the alert (shown above the alert in Figure 2). This is a “trigger” for the Trigger Agent that uses a 

connection1 from 10.10.1.11 (port 75611) to 10.10.7.1
(port 53) at 12/23/2017 12:18:07 PM, using known APT1

domain a-jsm.infobusinessus.org, was generated by 
network security intelligence gathering

connection1 from 10.10.1.11 (port 75611) to 
10.10.7.1 (port 53) at 12/23/2017 12:18:07 PM, 

using known APT1 domain a-jsm.infobusinessus.org,
was generated by a known trusted application 

Question: What has generated connection1 from 10.10.1.11 (port 75611) to 10.10.7.1 (port 53) 
at 12/23/2017 12:18:07 PM, using known APT1 domain a-jsm.infobusinessus.org?

connection1 from 10.10.1.11 (port 75611) to 
10.10.7.1 (port 53) at 12/23/2017 12:18:07 PM, 

using known APT1 domain 
a-jsm.infobusinessus.org, is part of APT1 intrusion

Suspicious connection1 from 10.10.1.11 
(port 75611) to 10.10.7.1 (port 53) at 

12/23/2017 12:18:07 PM, using known 
APT1 domain a-jsm.infobusinessus.org

10.10.1.11source IP1 has as external name
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has as source IP

has as destination port
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{    "alertTime":"12\/23\/2017 12:18:07 PM",
"requestType":"IDSAlertTrigger",
"destinationIP":"10.10.7.1",
"destinationPort":{"number":53, "portType":"DNS port"},
"domain": “a-jsm.infobusinessus.org”,
"idsAlertType": “ThreatIntel”,
"sourceIP":"10.10.1.11",
"sourcePort":{"number":75611, "portType": None},
"threatGroup": "APT1“   }
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trigger rule to represent it into the agent’s ontology and generates a basic hypothesis, both shown 
in Figure 2. The basic hypothesis (shown above the JSON representation) is the following one: 

Suspicious connection1 from 10.10.1.11 (port 75611) to 10.10.7.1 (port 53) at 12/23/2017 
12:18:07 PM, using known APT1 domain a-jsm.infobusinessus.org 

 The Hypotheses Generation Agent employs an indicator rule to abductively generate the following intrusion 
hypothesis from the basic hypothesis:  

connection1 from 10.10.1.11 (port 75611) to 10.10.7.1 (port 53) at 12/23/2017 12:18:07 PM, using known 
APT1 domain a-jsm.infobusinessus.org, is part of APT1 intrusion 

Then it uses a question rule to generate the question which has the above hypothesis as a possible answer: 

What has generated connection1 from 10.10.1.11 (port 75611) to 10.10.7.1 (port 53) at 12/23/2017 
12:18:07 PM, using known APT1 domain a-jsm.infobusinessus.org? 

After that the agent uses two other question rules to generate the other possible answers of the above ques-
tion: 

connection1 from 10.10.1.11 (port 11234) to 8.8.8.8 (port 53) at 05/15/2017 16:23 GMT, using known 
APT1 domain a-jsm.infobusinessus.org, was generated by network security intelligence gathering 

connection1 from 10.10.1.11 (port 11234) to 8.8.8.8 (port 53) at 05/15/2017 16:23 GMT, using known 
APT1 domain a-jsm.infobusinessus.org, was generated by a known trusted application 

These are false positive hypotheses that also may explain the BRO alert.  

Hypotheses in search of evidence 
As illustrated in the previous section, three hypotheses may explain the alert generated by the 
BRO IDS, an intrusion hypothesis and two false positive hypotheses (representing legitimate ac-
tivities). One would need additional evidence to assess the probability of each of these hypothe-
ses, and thus determine whether there is an intrusion or not. The strategy is to put each of the 
generated alternative hypotheses to work guiding the collection of relevant evidence. The ques-
tion is: Assuming this hypothesis is true, what evidence should be observable? We call this pro-
cess, shown in the middle of Figure 1, hypothesis in search of evidence. 

The automatic Analysis Agent employs hypothesis analysis rules to decompose the three hypoth-
eses from the top part of Figure 2, as much as possible, down to the level of specific evidence 
collection requests. Figure 3 illustrates the decomposition of the first hypothesis which is the in-
trusion hypothesis. There are two main indicators of this hypothesis. The left branch investigates 
the first indicator, whether connection1 involves an APT1 command and control server. In order 
to make this determination, it needs more information about the APT1 domain a-jsm.infobusi-
nessus.org. Its information needs are expressed through specific search requests to be processed 
by the Collection Manager, such as the following one:  

Search for the IP address mapped to domain a-jsm.infobusinessus.org at time 12/23/2017 
12:18:07 PM   

The right branch of the decomposition in Figure 3 investigates the other indicator of the top hy-
pothesis, whether the program that made connection1 is an APT1 malware. To investigate this 
further, however, the agent needs to identify this program, and therefore it formulates another 
information request for the Collection Manager: 

Search the computer 10.10.1.11 for the program that made connection1 using port 75611 to 
communicate with 10.10.7.1 on port 53 at 12/23/2017 12:18:07 PM 
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Figure 3. Automatic hypothesis analysis and evidence search. 

The Collection Manager invokes specialized collection agents to search for this information on 
the network and on the host computer. 

The Collection Manager is the main integration point between the analysis agents and the CSOC 
infrastructure. The analysis agents know what information is needed to expand their analyses, 
but the search requests are in abstract form. They are not tied to specific data sources. The pri-
mary function of the Collection Manager is translating high-level (abstract) search requests into 
specific API calls to host and network agents, determining to which such agent to send the 
search request on behalf of the analysis agents, and wrapping calls to specific search agents with 
a JSON API. Results returned from a specific search agent to the Collection Manager are then 
converted into evidence and added to the knowledge bases of the analysis agents. 

To illustrate the Collection Manger’s operation, consider the Search from the bottom-left side of 
Figure 3. This is first translated into a JSON representation. Processing this representation leads 
to the invocation of the GetDomainIPResolutionRequest search function. This is processed by a 
collection agent that returns the result also as a JSON representation. This representation is trans-
lated into ontology fragments that are added to the system’s ontology. One fragment is the found 
evidence item, E1 evidence, with credibility L11 (certain). This replaces the search request in the 
analysis tree, confirming the hypothesis above it: 

It is certain (L11) that a-jsm.infobusinessus.org is an active domain at time 12/23/2017 
12:18:07 PM  

Evidence-based assessment of hypotheses 
Figure 4 shows how the analysis in Figure 3 was refined after the automatic analysis agent has 
received the results of the three search requests from the bottom of Figure 3. Notice that the two 
searches from the left branch of the tree returned evidence items that enabled the analysis agent 
to assess the probabilities of all the hypotheses on that branch. The search on the right branch 
returned the name of the program that made connection1. This enabled the analysis agent to fur-
ther decompose the hypothesis on that branch, leading to other evidence collection requests, in-
cluding the following one: 

Check whether Auriga Registry key HKEY_LOCAL_MACHINE\SOFTWARE\riodrv32\TEMP 
is present on the host computer 10.10.1.11 

connection1 from 10.10.1.11 (port 75611) to 10.10.7.1 (port 53) 
at 12/23/2017 12:18:07 PM, using known APT1 domain 

a-jsm.infobusinessus.org, is part of APT1 intrusion

Hypothesis 
analysis 

rule

The domain registrar for a-jsm.infobusinessus.org
is on a list of known dynamic DNS providers

*

The program that made connection1
from 10.10.1.11 (port 75611) to 

10.10.7.1 (port 53) at 12/23/2017 
12:18:07 PM is APT1 malware

a-jsm.infobusinessus.org is an active domain, mapped 
to a routable IP address and registered at a dynamic 

DNS provider, consistent with APT1 methodology

network-based indicators

connection1 involves an active APT1 C2 server

a-jsm.infobusinessus.org is registered 
at a dynamic DNS provider

a-jsm.infobusinessus.org
is an active domain at time 
12/23/2017 12:18:07 PM

*

Search for the domain registrar 
for a-jsm.infobusinessus.org

Search for the IP address mapped 
to domain a-jsm.infobusinessus.org 

at time 12/23/2017 12:18:07 PM

Collection
rule

Search the computer 
10.10.1.11 for the program 

that made connection1 using 
port 75611 to communicate 
with 10.10.7.1 on port 53 at 

12/23/2017 12:18:07 PM

Collection
rules
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Let us now briefly review the process of assessing a hypothesis based on evidence, by explaining 
the assessments made on the left branch of Figure 4. 

 
Figure 4. Integrated analysis, collection, and assessment. 

Notice that the two search nodes in Figure 3 were replaced with the evidence items E1 and E2 in 
Figure 4. Each of these evidence items favors the truthfulness of the corresponding hypothesis 
and therefore appears under the left (green) box. If an evidence item disfavors the truthfulness of 
the hypothesis it is relevant to, it is represented under the right (red) square. 

In general, an evidence item E is characterized by its credibility (i.e., the probability that E is 
true), and by its relevance to the corresponding hypothesis H (i.e., the probability that the hy-
pothesis H is true, assuming that the evidence E is true).6   

The agents employ an intuitive system of Baconian probabilities 6,9,10 with Fuzzy qualifiers 6,10,11 
that are shown in the table from the top-right of Figure 4. Notice that this is a symbolic probabil-
ity scale, from L00 (corresponding to the interval 0-50%) to L11 (corresponding to 100%). Each 
of the intermediary values corresponds to a 5-point interval, such as L02 that corresponds to the 
probability interval 55-60%. Notice also that some of the probability intervals are associated 
with familiar phrases, such as L03 (60-65% likely) and L10 (95-99% almost certain). 

Once the evidence items relevant to a hypothesis are found, the probability of the hypothesis is 
determined based on the credibility and relevance of these evidence items. Then the probability 
of each of the upper level hypothesis is determined based on the probabilities of its sub-hypothe-
ses, based on the structure of the argumentation: OR, AND, or * (combined indicator). In Figure 
4 there are only combined indicator structures. 

Let’s follow the assessment of the probabilities in the left branch of Figure 4, from bottom to 
top. The credibility of E1 is L11 (100%, certain) and its relevance is also L11. Therefore, the 
probability of the hypothesis above it is also L11 (the minimum of E1’s credibility and rele-
vance). Let’s now consider the hypothesis above this hypothesis: connection1 involves an active 
APT1 C2 server. The two sub-hypotheses of this hypothesis are indicators for it. According to 
the combined indicator (represented as two overlapping circles in the middle left of Figure 4), if 
only the left sub-hypothesis is true, the hypothesis above it is L05 (70-75% more than likely). 
Similarly, if only the right sub-hypothesis is true, the hypothesis above it is L03 (60-65% likely). 

The program that made connection1 from 
10.10.1.11 (port 75611) to 10.10.7.1 (port 53) 
at 12/23/2017 12:18:07 PM is APT1 malware

*

connection1
involves an active 

APT1 C2 server
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using known APT1 domain a-jsm.infobusinessus.org, is part of APT1 intrusion
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E1 evidence
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svchost.exe with process ID 176 that made connection1
from 10.10.1.11 (port 75611) to 10.10.7.1 (port 53) at 

12/23/2017 12:18:07 PM is APT1 malware

svchost.exe with process ID 
176 has Auriga features
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…

…
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In this example, however, both sub-hypotheses are true and therefore the hypothesis above them 
is L08 (85-90% very likely). 

Further up in the argumentation, the two sub-hypotheses of the top hypothesis are also indicators 
for it. In this case, however, it has only been determined that the probability of the left indicator 
is L08. The automatic analysis cannot infer the presence of the second indicator for the top-level 
hypothesis in Figure 4. Therefore, it has to determine the probability of this top hypothesis based 
only on the left indicator. The relevance of this indicator alone is L08 (see the description of the 
combined indicator in the top left of Figure 4). Therefore, at this point, the analysis agent as-
sesses the probability of the top hypothesis as L08 (the minimum between the probability of the 
left sub-hypothesis and its relevance). 

After the results of the new evidence collection requests are returned by the Collection Manager, 
the automatic analysis agent will refine the analysis, and so on, until no further refinements are 
possible. Based on further evidence collection and analysis, the analysis agent determines that 
the probability of the right indicator of the top hypothesis is L08. Now the relevance of the com-
bined indicator is L11 (certain). However, the probability of the top hypothesis is still L08 (the 
minimum between the relevance of the combined indicator and the probabilities of the two indi-
cators).   

Our prototype has been tested in a simple virtual network. The scale required to detect an APT is 
dependent on available threat intelligence.  For a well-known APT group such as APT1, with 17 
stage 1 malware programs, 27 stage 2, and small number of additional tools, it is estimated a rule 
set numbering less than 100 would be sufficient to detect all known APT1 malware as well as 
unknown but predictable variants of APT1 malware. 

ONTOLOGY FOR APT DETECTION 
The ontology is a main component of the knowledge representation of this system. During the 
process of teaching the learning agent shell, illustrated in Figure 1, the knowledge engineer and 
the cyber analyst need also to develop its ontology. When they model the detection process for a 
specific malware, they also identify the ontological knowledge needed by the agent to automati-
cally perform the same analysis. This results in an ontology specification. An initial ontology is 
then developed based on this ontology specification, existing cyber ontologies13, CSOC’s net-
work configuration, and threat intelligence. It will contain general network concepts, concepts 
and instances describing the local network, general threat knowledge, and alert knowledge. 

The ontology language is an extension of RDFS13,14 with additional features to facilitate learning 
and evidence representation.7 The bottom right part of Figure 2 shows the ontological representa-
tion of a trigger.  

The learning agent shell contains several tools for ontology development. For example, the bot-
tom left of figure 5 shows the interface of the Association Browser that displays an entity (the 
Auriga malware) and its features. At its right is the interface of the Object Browser that can be 
used to define concepts, instances, and their features. There is also a Feature Browser and a Hier-
archical Browser. The top part of Figure 5 shows the interfaces of two agents that have been pre-
sented previously, the Hypotheses Generation Agent and the Hypotheses Analysis Agent. 
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Figure 5. Sample interfaces of the system. 

MULTISTRATEGY RULE LEARNING 
A critical feature of the presented approach is the ability to rapidly acquire cybersecurity exper-
tise directly from subject matter experts.  

The learning agent shell is taught directly by a cybersecurity expert, with limited knowledge en-
gineering assistance, in a way that is similar to how one would teach a student or a novice cyber-
security analyst, through specific examples of reasoning and explanations, and through the 
supervision and correction of the agent’s reasoning, when it applies the learned rules for APT 
detection. The learning strategy is an extension and generalization of the Disciple multistrategy 
learning approach, which integrates learning from examples, learning from explanations, and 
learning by analogy and experimentation, in a mixed-initiative interaction with the analyst.7,15-20 

Consider the reasoning illustrated in Figure 3. This time, however, assume that we are in the 
phase of teaching the learning agent shell from Figure 1. The cyber security expert will show the 
agent the reasoning in Figure 3 and the agent will learn one hypothesis analysis rule and three 
collection rules from it. The learned hypothesis analysis rule is shown in Figure 6. 

Hypotheses Generation Agent

Association Browser

Object Browser

Hypotheses 
Analysis Agent
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Figure 6. Partially learned hypothesis analysis rule. 

The agent interacts with the expert to determine the important features of the instances from the 
argument fragment that assures this argumentation fragment is correct. These are called the ex-
planations of the example and happen to be the features appearing in the description of the trig-
ger shown in the bottom right of Figure 2. 

Next the agent automatically generates the tree pattern from the right-hand side of Figure 6. The 
tree pattern is obtained by replacing each instance from the decomposition tree (e.g., connec-
tion1) with a variable (i.e., V1). The values for the combined indicators are specified by the 
cyber analyst. The agent also automatically generates the applicability condition of the learned 
pattern, shown in left side of Figure 6. Notice however that instead of a single applicability con-
dition  there is a lower bound condition and an upper bound condition. The lower bound condi-
tion corresponds to the minimal generalization of the example and its explanation, in the context 
of the current APT ontology that is used as a generalization hierarchy. The upper bound condi-
tion corresponds to the maximal generalization. 

The learning agent uses the partially learned rules in reasoning. The reasoning fragments ac-
cepted by the expert as correct represent new positive examples of the rule. Those that are re-
jected represent negative examples. These examples and their explanations are used to refine the 
rule. In particular, positive examples lead to the generalization of the lower bound condition until 
it covers them. A negative example may either lead to the specialization of the upper bound con-
dition until it no longer covers it, or to the learning of an except when condition, also with an up-
per bound and a lower bound. The except when condition should not be satisfied for the rule to 
be applicable. In time, the lower bound and the upper bound conditions converge toward one an-
other and, possibly, to an exact applicability condition. The goal is to improve the applicability 
condition of the pattern so that it only generates correct argumentation fragments. 

It is expected such a mixed-initiative learning method will lead to learning patterns with complex 
applicability conditions that accurately represent the knowledge of the cybersecurity expert, 
through a natural interaction with the expert. 

At the same time with learning a hypothesis analysis rule, the agent may also extend the ontol-
ogy with new concepts and features. For example, to explain to the agent why a generated argu-
ment is wrong, the expert may use a new concept or feature. As a result, the agent will add the 
concept or the feature definition in its APT ontology. Ontology refinement requires an adaptation 
of the previously learned patterns since the generalization hierarchy used to learn them has 

Lower Bound Condition
V1 is outbound connection

has as source IP V9
has as source port V10
has as destination IP V11
has as destination port V12
has as start time V13
has as domain V14

V9 is IPv4 address
has as external name V2

V2 is ANY-STRING
V10 is port

has as external name V3
V3 is ANY-STRING
V11 is IPv4 address

has as external name V4
V4 is ANY-STRING
V12 is DNS port

has as external name V5
V5 is ANY-STRING
V13 is time

has as external name V6
V6 is ANY-STRING
V14 is domain

has as external name V8
V8 is ANY-STRING
V7 is APT1

uses as domain V14

Upper Bound Condition
V1 is outbound connection

has as source IP V9
has as source port V10
has as destination IP V11
has as destination port V12
has as start time V13
has as domain V14

V9 is IP address
has as external name V2

V2 is ANY-STRING
V10 is port

has as external name V3
V3 is ANY-STRING
V11 is IP address

has as external name V4
V4 is ANY-STRING
V12 is port

has as external name V5
V5 is ANY-STRING
V13 is time

has as external name V6
V6 is ANY-STRING
V14 is domain

has as external name V8
V8 is ANY-STRING
V7 is APT1

uses as domain V14

*

The program that made V1
from V2 (port V3) to V4

(port V5) at V6 is V7 malware

V8 is an active domain, mapped to a routable 
IP address and registered at a dynamic DNS 
provider, consistent with V7 methodology

network-based indicators

V1 involves an 
active V7 C2 server

V8 is registered at a 
dynamic DNS provider

The domain registrar for 
V8 is on a list of known 
dynamic DNS providers

V8 is an active 
domain at time V6

V1 from V2 (port V3) to V4 (port V5) at V6, using 
known V7 domain V8, is part of V7 intrusion on V2

*
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changed. To cope with this issue, the agent will automatically regenerate the patterns in the con-
text of the changed ontology. Notice that this is a powerful form of learning with an evolving 
representation language. 

The other types of rules (trigger, indicator, question, and collection) are learned in a similar way. 

The learning of the rules is much faster than their manual definition. Indeed, the cybersecurity 
expert only needs to provide an example of the rule (such as the one from the top part of Figure 
3, without the Search instructions), and to select the correct explanations from those proposed by 
the agent. Based on this example and the selected explanations the leaning agent will generate 
the rule from Figure 6, by automatically determining the maximal and the minimal generaliza-
tions of the example, using the ontology as the generalization language. Refinement of a learned 
rule is also easier than manual correction because the expert cyber analyst needs only to indicate 
that an example generated by the agent is correct or, if it is not correct, to select the right expla-
nation among those proposed by the agent.  

Learning the rules using classical methods (such as decision trees, neural networks, or support 
vector machines) is not possible because they require a large number of labelled examples. Since 
APT intrusions are rare compared to less-sophisticated attacks, a sufficient number of labeled 
examples does not exist to train a classifier.  

The manual definition of the rules is very complex, as the cybersecurity expert would need to 
identify both the applicability condition of the rule in terms of the concepts and features of the 
ontology (that is, the condition from the left hand side of Figure 6). 

AUTOMATED APT DETECTION 
Currently there is no automatic solution to the defense against APT threats. This is a complex 
and time consuming process performed by experienced analysts. However, given the large and 
increasing number of alerts to be investigated, this manual approach is non-sustainable.  

We have described an automated approach and its prototype implementation that is characterized 
by several innovations. 

One innovation is a systematic approach to APT detection based on the scientific method of hy-
potheses generation, evidence collection, and hypotheses testing. The corresponding workflow is 
a natural way for a cybersecurity analyst to conduct an investigation and teach a learning agent 
to automatically perform such an investigation.  

Another innovation is the learning of different types of APT detection rules (trigger rules, indica-
tor rules, question rules, collection rules, and analysis/synthesis rules), based on a single example 
of APT investigation, by adapting the Disciple approach to learning.7 A typical inductive learn-
ing from examples approach cannot be applied in this case because it would require a large num-
ber of labelled examples which are not available. 

Yet another innovation is the generation of specialized agents (trigger agent, hypotheses genera-
tion agent, hypotheses analysis agent) that can collaborate autonomously in performing an APT 
investigation of an alert, simulating the investigation that would have been performed by a cy-
bersecurity analyst. 

Also innovative is the employment of hypothesis-driven evidence collection performed by col-
lection agents that are invoked when evidence for a certain elementary hypothesis is needed. 
This is important because, in cybersecurity, capturing evidence all the time is not feasible, due to 
the available storage capacity.  

BEYOND APT DETECTION 
The presented approach to the automation of the Cybersecurity Operations Centers is, in fact, an 
example of a more general process, automated evidence-based reasoning that may be applied to 
other domains.  
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Consider, for example, the national security area of Intelligence, Surveillance and Reconnais-
sance (ISR) where one objective is to continuously monitor and understand the situation in a cer-
tain area, predict the behavior and intent of the entities of interest, and identify threats. As a 
concrete example, consider the continuous monitoring of the ships through the Automatic Identi-
fication System (AIS), a tracking system which is extensively used in the maritime world for the 
exchange of navigational information between AIS-equipped terminals. In such a case, losing the 
AIS coverage for a certain ship would be an event of interest, or trigger. A hypothesis generation 
agent, like the one described in this paper, may automatically generate explanatory hypotheses 
such as, the ship’s AIS equipment was turned-off intentionally to perform covert goods transfer 
with another ship, or to perform illegal phishing, or to avoid tracking by the pirates. Then, analy-
sis agents would analyze each hypothesis, with the help of automated collection agents. 

Another potential application of this approach would be for the automatic monitoring of the 
functioning of an industrial installation, such as a nuclear plant.  

One could even imagine the application of this approach to the monitoring of patients in a hospi-
tal, or even the monitoring of the health status of each person. 

What is common to all these potential applications is the need to automatically apply a scientific-
based approach to events of interest that may or may not be caused by significant threats to the 
monitored entity. 

CONCLUSION 
We have presented an approach to the automation of Cybersecurity Operations Centers with cog-
nitive assistants that capture and automatically apply the expertise employed by cybersecurity 
analysts when they investigate Advanced Persistent Threats. A first version of this approach is 
implemented and is under further development, particularly to improve its learning capabilities. 
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