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Abstract 
Weed management is a major challenge in conventional and 
organic production systems, amplified by the increasing 
resistance of weeds to herbicides. Cover crops offer a 
particularly promising strategy for management, as they 
minimize selection pressure by herbicides and synergistically 
improve weed control with existing herbicides, but the 
precise mechanisms through which cover crops provide weed 
suppression are not well-understood. Current approaches to 
scientific investigation use statistical machine learning to 
discover knowledge from data. This paper proposes a 
different artificial intelligence approach that synergistically 
integrates evidence-based reasoning, argumentation-based 
explanations, multi-strategy learning, and hypothesis-guided 
search in farm data to discover knowledge on how climate, 
soil, and weed seedbank size interact with cover crop biomass 
to drive weed suppression. The presented approach works 
with both large and small amounts of farm data, and is also 
applicable to other agricultural and food production domains. 

Introduction 
Weed management is a major challenge in field crop 
production systems. Overreliance on herbicides has led to 
the proliferation of herbicide-resistant weed biotypes at an 
alarming rate (Heap, 2020). Integrated weed management 
(IWM), which calls for the use of a combination of weed 
control tools, is touted as an effective strategy for improving 
weed control and reducing selection pressure exerted by 

individual weed control tools (Mortensen et al., 2012; 
Bagavathiannan and Davis, 2018).  
 Cover crops (CCs) are non-marketed crops that are 
planted between periods of cash crop production to provide 
a diverse array of ecosystem services including increased 
water and nutrient retention and availability, pest 
management, and greater soil health. 
 CCs offer a particularly promising strategy for IWM, as 
they minimize selection pressure by herbicides and 
synergistically improve weed control with existing 
herbicides (Mirsky et al., 2010; Norsworthy et al., 2012). 
For example, late season herbicide-resistant waterhemp 
emergence was reduced up to 40% when CCs were used 
(Cornelius and Bradley, 2017). In another study, Wiggins et 
al. (2017) showed CCs with pre-plant residual herbicides 
significantly improved control of herbicide-resistant Palmer 
amaranth compared to no CC.  
 CCs outcompete weeds for resources while living, thus 
dominating the field and preventing weeds from growing 
(Osipitan et al., 2018) (Figure 1). Once terminated, they 
provide physical and chemical suppression which lowers 
weed germination, growth, and development, and reduces 
weed vigor and competition with cash crops (Wells et al., 
2013; Palhano et al., 2018). Terminated CC mulches 
suppress weeds physically by impeding emergence or 
attenuating environmental cues that otherwise break weed 
seed dormancy (i.e., light and temperature) (Teasdale and 

 
Figure 1. Weed suppression by a grass CC compared to no CC when the cover is alive (left in panel ‘a’) and after 

termination (top in panel ‘b’). The weedy no-cover fallow is shown in the right (a) and bottom (b) sections. 
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Mohler, 1993; Teasdale and Mohler, 2000), by 
releasing phytotoxic compounds (i.e., 
allelopathy) (Creamer et al., 1996; Teasdale et al., 
2012), and/or bio-geochemically by 
immobilizing soil nitrogen (another weed seed 
germination cue) in the case of high 
carbon/nitrogen (C:N) ratio grass CC mulches 
(Wells et al., 2013). 
 To provide sufficient season-long physical 
suppression of annual weeds, it has long been 
suggested that CC residues must be present in 
high amounts. In the mid-Atlantic region, 
Teasdale and Mohler (2000) showed that greater 
than 75% inhibition of weed emergence is 
consistently achieved only when CC mulch 
biomass exceeds 8,000 kg ha-1 and mulch 
thickness exceeds 10 cm. In environments with 
considerably lower biomass production potential, 
however, Teasdale and Mohler (1993) showed 
intermediate residue levels can still be sufficient 
to limit light and temperature fluctuation cues that weed 
species often require for germination. More recent evidence 
suggests that even low (~2,500 kg ha-1) to moderate (5,000 
kg ha-1) levels of CC biomass can have significant impacts 
on weed growth (Mirsky et al., unpublished) (Figure 2), 
through other mechanisms. These mixed results are 
speculated to be due to differences in climate, soil moisture 
and nutrient dynamics, and weed population densities 
(Mirsky et al., unpublished). CCs are clearly not a one-size-
fits-all weed control tool because CC effects on weeds are 
highly variable across environments (Pittman et al., 2020). 
Farms differ in climate, soil, and management practices, all 
of which have been identified as primary factors influencing 
CC performance and subsequent impact 
on weed suppression. However, we 
have a severely limited understanding 
of how climate, soil, and weed density 
interact with CC performance (biomass 
production and C:N ratio) and their 
subsequent impact on weed suppression 
(Figure 3). This undermines our ability 
to integrate CCs into overall weed 
management programs in a meaningful 
way. Addressing this knowledge gap is 
critical for providing farmers with 
economically attractive and practically 
viable agronomic solutions that address 
the herbicide-resistant weed epidemic. 
Moreover, ecologically-based weed 
management strategies sought by 
stakeholder groups require site-specific 
knowledge to develop locally-adapted 
management strategies that consider the 
impacts of cropping system diversity, 
production practices, and 
environmental factors on the assembled 

weed community (Mortensen et al., 2012; Liebman et al., 
2016). There is a critical need to consolidate findings and 
thereby derive a comprehensive understanding of factors 
controlling the effectiveness of CCs to suppress weeds and 
build this into decision support systems for growers. 
 Cereal rye (Secale cereale L.) is the most-used CC in the 
U.S. (CTIC and NCR SARE, 2016) due to low seed cost, 
broad geographic adaptability, and winter hardiness. In a 
recent farmer survey (n=1375), 59% of respondents reported 
having herbicide-resistant weeds (n=736), 25% reported 
that cereal rye ‘always improved’ weed control, and another 
44% reported that cereal rye ‘improved’ control (CTIC, 
2017). Cereal rye can produce biomass levels (without 
supplemental fertilization) of 5,000 to 7,000 kg ha-1 at 

 
Figure 2. Weed suppression by a terminated cereal rye CC even under low 

(~2,600 kg ha-1) biomass production in a South Texas environment, suggesting 
potential interaction with other factors in driving weed suppression by the CC. 

 

 
Figure 3. Causal relationships among different factors affecting weed germination, 

emergence and growth as affected by soil, climate, seedbank density, and CC biomass. 



 

3 
 

maturity, which may not completely eliminate weed 
emergence but can lower weed germination, emergence, 
growth rate, and biomass accumulation. Therefore, we will 
use cereal rye CC in field crop production systems (corn, 
soybean, and cotton) to illustrate our approach. 

Current empirical and process-based models are 
inadequate at predicting weed suppression by CCs, therefore 
making reliable site-specific recommendations very 
challenging. On the other hand, there are large amounts of 
already-collected farm data on weeds and CCs. The question 
is: How can we discover new knowledge on weed 
suppression by CCs from existing data that are not uniform, 
are incomplete, and possibly partially incorrect?  
 This type of question is addressed by the emerging 
Science of Evidence (Schum, 2009). Evidence is any 
observable sign, datum, or item of information that is 
relevant in deciding whether a statement or hypothesis (e.g., 
a scientific claim) is true or false (Schum, 2001). Evidence 
is always incomplete, usually inconclusive (consistent with 
the truth of more than one hypothesis), frequently 
ambiguous (we cannot always determine exactly what the 
evidence is telling us), commonly dissonant (some evidence 
favors one hypothesis but other evidence favors other 
hypotheses), and has various degrees of credibility (Schum, 
2001; Tecuci et al., 2016a).  

Our previous research on intelligent knowledge-based 
agents has led to the development of the Disciple 
multistrategy apprenticeship learning approach to teaching 
agents rather than programming them (Tecuci, 1988; 1998; 
Boicu et al., 2001), and the demonstration of such agents in 
a variety of domains, including military planning (Tecuci 
and Hieb, 1996), course of action critiquing (Tecuci et al., 
2000), military center of gravity determination (Tecuci et 
al., 2002; 2005), intelligence analysis (Tecuci et al., 2007; 
2008), and cybersecurity (Huang et al., 2020). 

Research on helping human analysts to perform evidence-
based reasoning tasks has led to a computational theory of 
evidence-based reasoning (Tecuci et al., 2011; 2016a) and 
the development of cognitive assistants for analysis, such as 
Disciple-LTA (Tecuci et al., 2008; Schum et al., 2009), 

TIACRITIS (Tecuci et al., 2011), Disciple-CD (Tecuci et 
al., 2016a) and Cogent (Tecuci et al., 2018).  

More recent work focuses on the ability of such agents to 
learn from their users how to assess the probability of 
hypotheses based on the available evidence by employing 
augmented Wigmorean argumentations (Tecuci et al., 2019; 
2020). Wigmorean argumentations were initially introduced 
a century ago by Henry John Wigmore, a famous American 
jurist, as a graphical representation of how evidence 
supports or refutes claims in a court of law (Wigmore, 1913; 
1937). They were resurrected by David Schum, who 
promoted their application both in law and in intelligence 
analysis (Schum, 1987; 2001). Their logical structure was 
augmented with Baconian probability (Cohen, 1977) and 
Fuzzy qualifiers (Zadeh, 1983), such as ‘likely’ or ‘almost 
certain’ (Tecuci et al., 2016a, pp. 159-172). These 
augmented Wigmorean networks use minimum/maximum 
probability combination rules common to the Baconian and 
Fuzzy probability views. These rules are much simpler than 
the Bayesian probability combination rule, which is 
important for the human understandability of the analysis. 
 The availability of data collected from previous farm 
experiences across wide regions in the U.S., together with 
the above developments in evidence-based reasoning and 
learning, provide an unprecedented opportunity to develop 
an AI approach to facilitate critical insights on the 
mechanisms and interactions of climate, soil, and weed 
density with CC biomass to suppress weeds in cropping 
systems. We present this approach in the next section. 

Illustration of the Discovery Approach 
Figure 4 presents the proposed sequence of steps to uncover 
the role of CCs for weed suppression as influenced by soil, 
climate, and cover crop performance.  The Knowledge 
Base contains our incomplete understanding of the factors 
influencing weed growth.  The Case Data Base contains 
recorded data from a variety of past weed/CC experiences 
(called “cases”). Each case consists of evidence obtained 
from a specific farm in a specific year, such as CC biomass, 
weed biomass, and environmental factors (e.g., light, 

 
Figure 4. The envisioned approach to knowledge discovery from data. 
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temperature, precipitation). 
The role of CCs in weed 
suppression appears to be 
complex and dependent on 
many factors, including 
geographical region, 
climate, and soil. On some 
farms CC resulted in small 
weed biomass, while on 
others CC had little effect 
and large weed biomass 
was observed. Even on the 
same farm, weed biomass 
following a CC can be 
different in different years. 

Step 1: Selection of a Reference Farm Case 
As shown in Figure 4, the first step of the investigation and 
knowledge discovery process is to select a reference farm 
case Fref that will guide the uncovering of knowledge 
applicable to the class of cases similar to it. In this 
illustration, Fref is the specific summer annual weed 
biomass experience on our reference farm case, Texas 
Farm1 in 2019. Low biomass of summer annual broadleaf 
weeds was attributed to a cereal rye CC. 
 The description of Fref consists of all the characteristics 
of Fref that may potentially relate to the resultant low 
biomass of summer annual broadleaf weeds, including light, 
temperature, precipitation, oxygen, soil moisture, soil N, 
C:N ratio of the residue, and allelopathic potential. Its 
ontological representation is illustrated in Figure 5.  Notice 
that Texas Farm1 2019 had Plot1 planted with corn 
following a cereal rye CC with high CC biomass. It had low 
weed biomass of summer annual broadleaf weeds. As 
discussed later, the ontology plays a major role in our 
approach as the generalization hierarchy for learning.  
Step 2: Argumentation Explaining Weed Biomass  
In Step 2 (Figure 4) we use our current understanding of the 
factors influencing weed growth to explain the resulting low 
weed biomass on Texas Farm1 in 2019. We use 
Wigmorean argumentations to represent such 
explanations using the Cogent cognitive assistant. 
Figure 6, for example, shows a simple Wigmorean 
argumentation that explains the resultant low weed 
biomass on Texas Farm1 in 2019. It shows how the 
evidence E1 of high CC biomass on Texas Farm1 in 
2019 favors the hypothesis H1 (The cover crop of 
cereal rye in Texas Farm1 2019 has high CC biomass), 
and how H1 favors our main hypothesis H (The 
summer annual broadleaf weeds in Texas Farm1 2019 
with cover crop of cereal rye have low weed biomass). 

First, one directly assesses the probability of 
hypothesis H1 based on the item of evidence E1 by 
assessing the three credentials of evidence: credibility, 
relevance, and inferential force, as shown in Figure 6.  

The credibility of evidence answers the question: What is 
the probability that the evidence is true? As shown in the 
left-hand side of Figure 6, Cogent employs a system of 
symbolic probabilities with Fuzzy qualifiers, such as BL 
(barely likely, 50 to 55% probability of being true), VL 
(very likely, 80 to 95% true) or C (certain, 100%). In this 
case the credibility of E1 was assessed as C (certain) 
because CC biomass was reliably measured as high (over 
5,000 kg ha-1). The relevance of evidence to a hypothesis 
answers the question: What would be the probability of the 
hypothesis if the evidence were true? In this case, if E1 is 
true then H1 is true, and therefore the relevance of E1 is C 
(certain). The inferential force or weight of the evidence on 
the hypothesis answers the question: What is the probability 
of the hypothesis, based only on this evidence? Obviously, 
an irrelevant item of evidence will have no inferential force, 
and will not convince us that the hypothesis is true. An item 
of evidence that is not credible will have no inferential force 
either. Only an item of evidence that is both relevant and 
credible may convince us that the hypothesis is true. 
Consistent with both the Baconian and the Fuzzy min/max 
probability combination rules, the inferential force of an 
item of evidence on a hypothesis is determined as the 
minimum between its credibility and its relevance which, in 
this illustration, is C (certain). Because in the situation from 
Figure 6 we have only one item of favoring evidence, its 

 
Figure 6. The initial probabilistic explanation of 

low weed biomass on Texas Farm1 in 2019. 

 
Figure 5. Ontological representation of cover crop experiences in different study cases (i.e. farms). 
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inferential force on the hypothesis is also the probability of 
the hypothesis. In general, however, the probability of the 
hypothesis would be the result of the balance of probabilities 
between the combined inferential force (maximum) of the 
favoring evidence items (under the left green square) and the 
combined inferential force of the disfavoring items 
(represented under the right pink square). The probability of 
the main hypothesis H is assessed in a similar way as VL 
(very likely), based on the probability of its sub-hypothesis 
H1 (C) and the relevance (VL) of H1 to H. 
 We say that H1 represents a favoring argument for the 
truthfulness of H. Another favoring argument is represented 
by the direct evidence E2 (the actual measurement of the 
weed biomass), as shown in Figure 7. Therefore, for our 
reference farm, Texas Farm1 in 2019, the explanation is 
consistent with the direct evidence. 

Step 3: Generalization of the Argumentation 
Next, we determine to what extent the developed 
argumentation shown in Figure 6 also explains weed 
biomass produced in other cases similar to that of Fref. This 
involves a process of knowledge-based learning and 
evidence-based reasoning where the specific argumentation 
is automatically generalized to an argumentation pattern and 
an associated applicability condition, shown in Figure 8. For 
example, the specific argumentation in Figure 7 will be 
generalized to the argumentation pattern from the right-hand 
side of Figure 8 by: 
• Replacing each instance (e.g., Texas Farm1 2019) with 

a variable (i.e., ?O1); 
• Replacing each evidence item (e.g., E1 High CC 

biomass in Texas Farm1 2019) with an evidence 
collection request. This evidence collection request will 
call a specialized collection agent that will 
automatically search the Case Data Base for the 
evidence specified in an instantiated request. 

Additionally, the learning process will generate two bounds 
for the variables used in the pattern, indicating the possible 
values of these variables. These bounds will be obtained as 
minimal and maximal ontology-based generalizations, 
respectively, of the corresponding instances from the 
argumentation. For example, the minimal generalization of 
Texas Farm1 2019 would be the concept Texas Farm1 in 
Figure 5 (i.e., the generalized argumentation is expected to 
be applicable for any weed 
suppression experience on this 
farm), while the maximum 
generalization would be any farm 
(i.e., the generalized argumentation 
might also be applicable for any 
weed suppression experience on any 
farm including, for example, 
Maryland Farm4 2019 in Figure 5). 
The two bounds will converge 
toward one another based on 

additional argumentations developed during the discovery 
process. 

Step 4: Discovery of Favoring and Disfavoring Cases 
This step involves a process of knowledge-based search and 
classification where the generalized argumentation is 
automatically applied to cases similar to the reference case 
Fref, splitting these cases into a set of favoring cases and a 
set of disfavoring cases.  

Step 5: Selection of the Most Similar Disfavoring Case 
The existence of disfavoring cases shows that the 
argumentation from Figure 6 is incomplete or partially 
incorrect. We have to discover what factors were not taken 
into account, and improve this argumentation. To facilitate 
this complex knowledge discovery process, we select a new 
case Fs from the set of disfavoring ones that is most similar 
to our reference farm case Fref (i.e., Texas Farm1 2019) 
because there will be very few factors that are different, 
some of which are responsible for the difference in weed 
biomass. This farm case Fs might be, for example, the CC 
experience on the same Texas farm in the previous year (i.e., 
Texas Farm1 2018). The corresponding instantiation of the 
generalized argumentation from Figure 8 is shown in Figure 
9. Notice that, in this case, the direct evidence E4 disfavors 
the top hypothesis because the actual weed biomass 

 
Figure 8. A generalized description of the argumentation presented in Figure 7. 

 
Figure 7. Refinement of the argumentation shown in Figure 6. 
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produced was high. 

Step 6: Hypothesis-Driven Explanation Discovery 
Now we have to hypothesize an explanation for the 
difference in weed biomass between the two very similar 
cases Fref and Fs. In this instance the hypothesized 
explanation is that Spring 2018 in Texas was wet, while 
Spring 2019 was dry. The wet Spring 2018 resulted in high 
soil moisture that led to high weed seedling density and high 
weed biomass. In contrast, the dry Spring 2019 led to low 
weed seedling density and low weed biomass. 

Step 7: Refinement of the Argumentation 
Based on the discovered explanation (Spring moisture) the 
argumentation in Figure 7 is refined as shown in Figure 10, 
generalized as discussed in Step 3, and automatically 
applied to all similar cases in Step 4. If the total number of 
favoring cases is not increased (or, equivalently, the total 
number of disfavoring cases not decreased), the explanation 
formulated in Step 6 is rejected and we have to hypothesize 
a new explanation. If, however, the total number of favoring 
cases is increased, the explanation is accepted and 
represents new discovered knowledge. 

Loop 5-6-7-3-4: Learning Explanation Models 
The 5-6-7-3-4 loop (Figure 4) is repeated, leading to new 
discovered knowledge, until all cases similar to Fref are 
correctly classified, with the possible exception of a few 
anomalous cases. The result of this process is the discovery 
of new knowledge and a generalized argumentation that 
correctly infers and explains weed biomass for the class of 
cases similar to Fref.  
 The entire process is then repeated for other classes of 
cases from the Case Data Base, leading to the discovery of 
additional knowledge about weed biomass suppression and 
the development of additional argumentations.  

Discussion 
How much data is needed? The more data the better, but 
the proposed approach works with both large and small 

amounts of data. Assume, for example, the most extreme 
case when only two cases are available. In this situation, one 
can still follow the steps in Figure 4. In Step 1, one of these 
two cases will be selected as Fref. In Step 2, the 
argumentation that explains the phenomenon on Fref is 
developed, and in Step 3 it is generalized, so that it can be 
applied to the second case. If this case is classified as 
disfavoring (Step 4), then it will be selected as the most 
similar case Fs (Step 5), an explanation of the differences is 
discovered (Step 6), and the argumentation (prediction 
model) is refined (Step 7). The explanation of the 
differences between these two cases is the discovered new 
knowledge. Of course, the generality of this new knowledge 
is minimal because it is based on only two farm cases. 
However, it will increase in the future when new cases 
become available. If the second case is classified as favoring 
(Step 4), the two cases are consistent with respect to the 
prediction model and there is nothing to discover. 
 Does the data need to be complete and uniform? No. Our 
approach treats data as evidence on the considered 
hypotheses. It employs Wigmorean argumentations 
integrating Baconian and Fuzzy probabilities that cope with 
evidence that is incomplete, inconclusive, ambiguous, 
dissonant, and with various degrees of accuracy. 

Do we need to perform actual farm experiments? No 
because we can test the formulated hypotheses on 
previously collected data. Scientists might wish, however, 
to perform additional experiments.  

 
Figure 9. Development of the argumentation for the new case 𝐹𝐹𝑠𝑠. 

 
Figure 10. Explanation-based refinement of 

the Wigmorean argumentation from Figure 7. 
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Current Status and Future Research 
We are currently developing an intelligent system, called the 
Knowledge Discovery Assistant (KDA) that implements the 
presented approach. Many of the modules of the KDA are 
customizations of modules of Cogent, a cognitive assistant 
for intelligence analysis (Tecuci et al., 2018) and of 
Disciple-EBR, a tool set for developing agents for evidence-
based reasoning tasks (Tecuci et al. 2016b). Once the 
prototype of the KDA is developed, it will be used by 
agricultural scientists to discover knowledge in three areas, 
one being the use of CCs for weed suppression (discussed 
above). The other two are briefly presented below. 
 Biomass Accumulation of Cover Crops. As previously 
mentioned, CCs are non-marketed crops that are planted 
between periods of cash crop production to provide a diverse 
array of ecosystem services including increased water and 
nutrient retention and availability, pest management, and 
greater soil health. As a result, CCs could also increase crop 
yield stability and resilience in a changing climate (Villamil 
et al., 2006; Kaspar et al., 2001; Meisinger et al., 1991; 
Ruffo et al., 2004; Shipley et al., 1992). To reap various 
ecosystem services (reduced soil erosion, improved nutrient 
cycling, etc.), substantial CC biomass production is 
required. Extrinsic and intrinsic factors affect biomass 
production. We need to discover knowledge of how abiotic 
and biotic factors, and management practices (planting and 
termination dates, and methods) influence biomass 
accumulation across corn-, soybean-, and cotton- growing 
U.S. regions. 
 Foliar Fungicide Applications to Field Crops. In the past 
two decades, fungicide use on field crops has increased 
considerably (Mueller et al., 2021). Several factors have 
been suggested for this growth in fungicide use including 
increased commodity prices, more fungicide products 
registered for use on field crops, greater disease prevalence, 
and marketing (Wise and Mueller, 2011). Fungicides have 
traditionally been applied to reduce disease, however, in 
more recent years they have been applied for their 
physiological plant effects that may contribute to yield 
increases. Research in soybean and other crops, however, 
indicates these physiological effects are inconsistent, or do 
not always result in a measurable yield increase (Bertelsen 
et al., 2001; Khan and Carlson, 2009; Robertson et al., 
2020). We need to understand the abiotic and biotic, 
management, and environmental factors that contribute to 
greater yields in field crops to identify situations where an 
application of a fungicide could result in greater yields and 
a return on investment. 
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