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Abstract 
This paper presents a novel approach to knowledge 
discovery. As opposed to the vast majority of existing 
approaches that use statistical machine learning to discover 
knowledge from data, we synergistically integrate ideas from 
artificial intelligence, machine learning, science of evidence, 
logic and probabilities to use both existing incomplete 
domain knowledge and imperfect data to discover new 
knowledge. We illustrate this approach in the precision 
agriculture domain considering the practices associated with 
cover crops, and learning how abiotic and biotic factors and 
cover crops management practices (planting and termination 
dates and methods) influence cereal cover crop biomass 
accumulation across corn-growing, soybean-growing, and 
cotton-growing regions of the U.S. 

Introduction 
Knowledge discovery from data (KDD) is a very active area 
of research that is concerned with the development and 
application of methods, such as classification, clustering, 
and association rule mining, to discover useful and 
interesting information from large collections of data (Tan 
et al., 2019).  
 We present research on the development of a novel 
approach that enables the discovery of new knowledge from 
existing data and prior knowledge, by synergistically 
integrating the scientific method of hypothesis  generation 
and testing (Tecuci et al., 2016a), evidence-based reasoning 
(Schum et al., 2009; Tecuci et al., 2016b), multistrategy 
machine learning (Boicu et al., 2001; Tecuci, 1988; 1998), 
instructable agents (Tecuci and Hieb, 
1996; Tecuci et al., 2000; 2002; 2005; 
2007b; 2008; Huang et al., 2020), 
automated search, and mixed-initiative 
interaction (Tecuci et al., 2007a). 
 Section 2 presents the addressed 
discovery problem and method. Section 
3 presents the domain used to illustrate 
them. Section 4 presents the method in 
detail. Finally Section 5 presents the 
current status and future work.  

Knowledge Discovery Problem and Method 
Given 
• Incomplete knowledge about a domain (e.g., Biomass 

Accumulation of Cover Crops).  
• Imperfect data on specific combinations of values of 

domain variables, data that may be incomplete, 
inconclusive, ambiguous, dissonant, and/or with various 
degrees of accuracy. For example, data obtained from 
field trials and previously collected farm data. 

Discover New knowledge relevant to biomass accumulation 
of cover crops.  
Method (summarized in Figure 1). We want to improve our 
partial understanding of how some domain variables 
influence other domain variables. We start by selecting a 
reference case for which actual data about these variables 
exist. We then use our current knowledge to develop a 
predictive model in the form of a probabilistic inference 
network that explains how the values of some variables from 
the reference case determine the values of other variables. 
Next, we iteratively and automatically apply the predictive 
model to other cases for which individual data exist, to 
identify cases where the predicted results differed from the 
actual results. Explanation of the differences between the 
reference case and these cases leads to the discovery of new 
knowledge and the iterative improvement of the predictive 
model. 
We claim, but still need to experimentally prove, that the 
proposed approach has several advantages over the existing 

 
Figure 1. Overview of the knowledge discovery approach. 
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KDD approaches: 
• Unlike the existing KDD approaches that rely on large 

amounts of data to draw conclusions, our approach can 
work with a few studies to formulate hypotheses that 
could explain the observed phenomenon and then test 
these hypotheses on the remaining studies. But this 
approach enables us to efficiently work with massive 
amounts of data as well.  

• The individual study data do not need to be complete 
or uniform because they are treated as evidence on the 
considered hypotheses, evidence that can be 
incomplete, inconclusive, ambiguous, dissonant, or 
have various degrees of accuracy. 

• We do not need to perform new experiments (that may 
be expensive and may require significant time and 
effort) because the formulated hypotheses can be 
tested on existing data. 

Biomass Accumulation of Cover Crops  
Cover crops (CC) are non-marketed crops that are planted 
between periods of cash crop production to provide a diverse 
array of ecosystem services including increased water and 
nutrient retention and availability, pest management, and 
greater soil health. As a result, CCs could also increase crop 
yield stability and resilience in a changing climate (Villamil 
et al., 2006; Kaspar et al., 2001; Meisinger et al., 1991; 
Ruffo et al., 2004; Shipley et al., 1992). Figure 2 
summarizes our current partial knowledge on the main 
factors influencing CC biomass (Thapa et al., 2018). To reap 
various ecosystem services (reduced soil erosion, improved 
nutrient cycling, etc.), substantial CC biomass production is 
required. Extrinsic and intrinsic factors affect biomass 
production. We need to discover knowledge of how abiotic 
and biotic factors, and management practices (planting and 
termination dates, and methods) influence biomass 
accumulation across corn-, soybean-, and cotton- growing 
U.S. regions.  
 We start by selecting a reference farm case for which 
actual data exists. We then use our current knowledge on CC 
management to develop a predictive model in the form of a 
Wigmorean argumentation (Wigmore, 1913; 1937; Schum, 
1987; 2001; Tecuci et al., 2016a) that explains how various 

intrinsic and extrinsic factors from the reference case 
support the production of high biomass. Next, we iteratively 
and automatically apply the predictive model to other farm 
cases for which individual data exist, to identify cases where 
the predicted results differed from the actual results. 
Explanation of the differences between the reference case 
and these farm cases leads to the discovery of new 
knowledge and the iterative improvement of the predictive 
model. 

Illustration of the Discovery Method 
 Step 1: Selection of a Reference Farm Case 𝐅𝐅𝐫𝐫𝐫𝐫𝐫𝐫  
As shown in Figure 3, the first step of the investigation and 
discovery process is to select a reference farm case Fref that 
will guide the discovery of knowledge applicable to the class 
of cases similar to it. In this illustration, Fref is Maryland 
Farm1 during the 2018-2019 cover crop season, a past case 
in which the cover crops produced high biomass. 

Step 2: Argumentation that Explains the 
Phenomenon on 𝑭𝑭𝒓𝒓𝒓𝒓𝒓𝒓 
In this step the current cover crops knowledge is used to 
develop a predictive model (in the form of a Wigmorean 
argumentation) that explains how the various intrinsic and 
extrinsic factors supported the production of high CC 
biomass in case Fref.  

Wigmorean Argumentation for Evidence-based 
Hypothesis Assessment 
Figure 4 shows an abstract example of a Wigmorean 
argumentation structure used to assess a hypothesis based 
on evidence.  

The hypothesis 𝑯𝑯 to be assessed is decomposed into 
simpler hypotheses by considering both favoring arguments 
(supporting the truthfulness of 𝑯𝑯), under the left (green) 
square, and disfavoring arguments (supporting the 
falsehood of 𝑯𝑯), under the right (pink) square. Each 
argument is an independent strategy of showing that 𝑯𝑯 is 
true or false, and is characterized by a specific relevance or 
strength. The argument consists either of a single sub-
hypothesis (e.g., 𝑯𝑯𝟑𝟑) or a conjunction of sub-hypotheses 
(e.g., 𝑯𝑯𝟏𝟏 & 𝑯𝑯𝟐𝟐). The sub-hypotheses from these arguments 
are further decomposed through other arguments, leading to 
simpler and simpler (sub-sub-)hypotheses that can be more 
accurately assessed based on evidence. Evidence is any 
observable sign, datum, or item of information that is 
relevant in deciding whether a statement or hypothesis (e.g., 
a scientific claim) is true or false (Schum, 2001). 

Consider, for example, sub-sub-hypothesis 𝑯𝑯𝟐𝟐𝟐𝟐. There 
are two items of evidence relevant to this hypothesis, the 
favoring evidence item 𝑬𝑬𝟏𝟏, and the disfavoring evidence 
item 𝑬𝑬𝟐𝟐. Each item of evidence has three credentials that 
need to be assessed: accuracy, relevance, and inferential  

Figure 2. Cover crop knowledge. 
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force. The accuracy of evidence answers the question: 
“What is the probability that the evidence is true?” The 
relevance of evidence to a hypothesis answers the question: 
“What would the probability of the hypothesis be if the 
evidence were true?” These two credentials are used to 
compute the inferential force or weight of the evidence on 
the hypothesis, which answers the question: “What is the 
probability of the hypothesis, based only on this evidence?” 
This is computed as the minimum between the accuracy and 
relevance. For example, the inferential force of 𝑬𝑬𝟏𝟏 is almost 
certain, that of 𝑬𝑬𝟐𝟐 is barely likely. 

The probability of sub-sub-hypothesis 𝑯𝑯𝟐𝟐𝟐𝟐 is determined 
by balancing the inferential force of the favoring evidence 
with that of the disfavoring evidence. Once the probabilities 
of the bottom-level hypotheses have been computed based 
on evidence, the probabilities of the upper level hypotheses 
are computed based on the logical structure of the 
Wigmorean argumentation (conjunctions and disjunctions 
of hypotheses), using min-max probability combination 
rules common to the Fuzzy probability view (Zadeh, 1983; 

Negoita and Ralescu, 1975; Schum 2001) and the Baconian 
probability view (Cohen, 1977; 1989; Schum, 2001). These 
rules are much simpler than the Bayes rule used in the 
Bayesian probability view (Schum, 2001), or the Dempster-
Shafer rule in the Belief Functions probability view (Shafer, 
1976).  

Such Wigmorean argumentations are easy to develop and 
understand, and can be learned by an intelligent software 
agent, such as the proposed KDA. 

Thus, the specific Wigmorean argumentation for our 
example of biomass production of cover crops (Figure 5) 
shows how the factors in Figure 2 (e.g., climate, soil) 
supported the production of high biomass (top hypothesis) 
in the case of Maryland Farm1 during the 2018-2019 cover 
crop season (Fref). There are two arguments favoring the top 
hypothesis. The left argument, based on the current cover 
crop knowledge, consists of three sub-hypotheses and states 
that favorable environmental, management, and genetic 
factors led to high biomass. Each of these factors has its own 
argument. For example, favorable environmental conditions 
were determined by favorable soil and climate conditions. 
Favorable soil conditions, in turn, were determined by high 
residual Nitrogen and excess drainage. These lower level 
conditions are supported by actual evidence (that is, data 
from the case study), E1: Maryland Farm1 2018-19 has high 
residual N and E2: Maryland Farm1 2018-19 has excess 
drainage. Now, following the inference steps from bottom-
up, from these evidence items to the top hypothesis, one 
concludes high biomass on Maryland Farm1. The right 
argument of the top hypothesis is the direct evidence from 
the case data, that the biomass produced was high, E7: 
Maryland Farm1 2018-19 has high biomass.  

Thus, in this example, the argument based on knowledge 
correctly predicted the actual biomass produced. The 
question is: How can we determine whether this is true for 
all the recorded cases? That is, how can we determine 

 
Figure 3. The envisioned approach to knowledge discovery from data. 
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whether, in all the recorded cases, the result predicted using 
the current cover crop knowledge is consistent with what 
was actually produced? Any discovered inconsistency is an 
indication of an imperfect Wigmorean prediction model and 
thus of imperfect knowledge. We will now discuss how 
these inconsistencies can be used to correct or extend this 
knowledge. 

Step 3: Knowledge-Based Generalization of the 
Argumentation 
Ontology Development. Based on the argumentation from 
Figure 5 we develop the ontology (bottom right-hand Figure 
5) to represent the entities from the argumentation, as well 
as similar ones. The ontology contains concepts from the 

application domain, such as farm, plot, plant and soil 
characteristic, which define the hierarchical types 
(taxonomies) for the entities in the argumentation. For 
example, Maryland Farm1 is a Maryland farm, which is a 
farm, while Plot1 is a plot. The ontology also represents the 
relationships between entities, for example, that Plot1 has 
high residual Nitrogen and excessive soil drainage. 

Teaching the Discovery Assistant. We need to teach the 
KDA to automatically develop argumentations like the one 
from Figure 5 based on farm data from other cases. As 
illustrated in Figure 6, the KDA learns a general hypothesis 
analysis rule from each specific argument that decomposes 
a hypothesis into sub-hypotheses. For example, from the 
top-left argument in Figure 6 the assistant learns the 

 
Figure 5. Wigmorean argumentation (left) and corresponding ontology fragment (bottom right). 
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hypothesis analysis rule A1 shown at the bottom right of that 
figure.  

The learned rule consists of the argument pattern obtained 
by replacing the entities from the top-left argument in Figure 
6 (cereal rye P1, October 2018, Maryland Farm1, April 
2019, …) with corresponding variables (i.e., ?O1, ?O2, etc.). 
The rule also has an applicability condition that indicates the 
possible values of these variables for which the reasoning 
pattern is likely to be correct, based on the hierarchy of 
concepts from the ontology in Figure 5. Notice however 
that, instead of a single applicability condition, the KDA 
learns a lower bound and an upper bound for this condition, 
using two complementary learning strategies: 

The lower bound of the condition is generated by 
employing the strategy of a cautious learner that wants to 
minimize the chances of making mistakes when employing 
the learned pattern. This strategy increases the confidence of 
the KDA in the correctness of its reasoning. However, the 
KDA may fail to apply the reasoning pattern in situations 
where, in fact, it is applicable. 

The upper bound of the condition is generated by 
employing the strategy of an aggressive learner that wants 
to maximize the opportunities of employing the learned 
pattern. This strategy increases the number of situations 
where the rule can be applied, although in some of these 
situations the reasoning may not be correct. 

The two bounds may be refined, and may even become 
identical, based on additional example arguments 
encountered by the KDA. 

The KDA also learns an evidence collection rule for each 
argument that reduces a hypothesis to an evidence item. A 
specialized collection agent can then search the data 
repository of recorded cases for the evidence item. The 
design and management of specialized collection agents are 
critical for the automatic extraction of evidence from 
existing farm data. 

The vast majority of the current machine learning 
approaches rely heavily on statistics and learn single 
functions from a large number of examples. Such 

 
Figure 6. Rules learned from the argumentation in Figure 5. 
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approaches are not applicable for our learning problem 
because sets of examples to learn from (i.e., arguments) do 
not exist and would require a significant effort to create. 
Instead, an agricultural scientist explains to the KDA the 
individual arguments from Figure 5 by selecting the 
corresponding relations from the ontology or by defining 
them, and the agent learns rules as ontology-based 
generalizations of these arguments, as discussed above 
(Figure 6). The explanations provided by the agricultural 
scientist to the KDA point directly to the relevant features 
of the individual arguments, enabling rapid learning. Thus, 
these features do not need to be discovered through the 
statistical comparison of a large number of positive and 
negative argument examples (that are often not available), 
as current (statistics-based) inductive learning methods do 
(Witten et al. 2011; Flach, 2012; Alpaydyn, 2020). 

Step 4: Discovery of Favoring and Disfavoring 
Cases 
This step involves a process of knowledge-based search and 

classification. The generalized argumentation is 
automatically applied to cases that are similar to the 
reference case Fref. The cases are split into favoring cases 
(high biomass) and disfavoring cases (low or medium 
biomass). 

Step 5: Selection of Most Similar Disfavoring Case 
Since there are disfavoring cases, the argumentation from 
Figure 6 is incomplete and/or partially incorrect. We thus 
have to discover what factors were not taken into account, 
and improve this argumentation. To facilitate this complex 
knowledge discovery process, the KDA selects a new case 
Fs from the set of disfavoring ones that is most similar to the 
reference farm case Fref (i.e., Maryland Farm1).  Since there 
will be very fewer factors that are different, some may be 
responsible for the difference in cover crop biomass. This 
farm case Fs might be, for example, Virginia Farm3 during 
the 2017-2018 cover crop season. The corresponding 
instantiation of the generalized argumentation from Figure 
6 is shown in Figure 7. Notice that, in this case, the direct 
evidence E37 disfavors the top hypothesis because the 
actual cover crop biomass produced was medium. 

Step 6: Hypothesis-Driven Explanation Discovery 
Now the agricultural scientist has to hypothesize an 
explanation for the difference in cover crop biomass 
between the two very similar cases Fref (Maryland Farm1) 
and Fs (Virginia Farm3). After comparing data from these 
two farms, the agricultural scientist hypothesizes that the 
cause of medium biomass at Virginia Farm3 is the soil pH 
during the 2017-2018 season, which is too low. Since the 
soil pH at the Maryland Farm1 during the 2018-2019 season 
was neutral, the agricultural scientist hypothesizes that an 
additional relevant soil condition for high biomass (besides 
high residual Nitrogen and excessive drainage shown in 
Figure 5) is neutral pH.  

Step 7: Explanation-Based Refinement of the 
Argumentation 
As a result, the argumentation from Figure 5 inferring high 
biomass for the reference case Fref is extended (Figure 8) 
with the additional soil pH condition generalized as 
discussed in Step 3, validated on Virginia Farm3 during the 
2017-2018 season, and automatically applied to all similar 
cases in Step 4. If the total number of favoring cases is not 
increased (or, equivalently, the total number of disfavoring 
cases not decreased), the hypothesis formulated in Step 6 is 
rejected and a new explanation has to be hypothesized. If, 
however, the total number of favoring cases is increased, the 
hypothesis is accepted and represents new discovered 
knowledge.  

Loop 5-6-7-3-4: Learning Argumentation-Based 
Explanation Models 
The 5-6-7-3-4 loop (Figure 3) is repeated, leading to new 

 
Figure 7. Automatically generated argumentation 

that is inconsistent with the evidence. 
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discovered knowledge, until all cases similar to Fref are 
correctly predicted, with the possible exception of a few 
anomalous cases. The result of this process is the discovery 
of new knowledge and a generalized argumentation that 
correctly infers and explains cover crop biomass for the 
class of cases similar to Fref.  

Then, the process restarts with Step 1, in which a new 
reference farm case is selected from the remaining data (if 
any). The entire process is repeated along the steps from 
Figure 3 as discussed so far, until all available farm cases 
are correctly predicted, with the possible exception of a few 
anomalous cases (including those for which the data may be 
incorrect or incomplete). 

Current Status and Future Research 
We are currently developing an intelligent system, called the 
Knowledge Discovery Assistant (KDA) that implements the 
presented approach. Many of the modules of the KDA are 
customizations of modules of Cogent, a cognitive assistant 
for intelligence analysis (Tecuci et al., 2018) and of 
Disciple-EBR, a tool set for developing agents for evidence-
based reasoning tasks (Tecuci et al. 2016b).  
 Once the prototype of the KDA is developed, it will be 
used by agricultural scientists to discover knowledge in 
three areas, one being the biomass accumulation of CC 
discussed above. The other two are briefly presented below. 

Role of Cover Crops in Weed Suppression. The role of 
CCs in weed suppression is complex and dependent on 
many factors, including geographical region, climate, and 
soil. Past research has shown that CC mulch levels are 
highly correlated with suppression of summer annual weeds. 
However, this relationship varies considerably with climate 
and soil type and other plant-soil interactions. To date, there 
has not been an integration of these factors to elucidate how 

climate, soil, and management intersect to drive weed 
suppression. Our incomplete understanding of the factors 
influencing weed growth stymies our ability to parameterize 
models that capture the complexity of cover crop-weed 
interactions. We plan to apply the KDA to improve our 
current understanding of how climate, soil, and weed 
seedbank size interact with CC biomass to drive weed 
suppression. 
 Foliar Fungicide Applications to Field Crops. In the past 
two decades, fungicide use on field crops has increased 
considerably (Mueller et al., 2021). Several factors have 
been suggested for this growth in fungicide use including 
increased commodity prices, more fungicide products 
registered for use on field crops, greater disease prevalence, 
and marketing (Wise and Mueller, 2011). Fungicides have 
traditionally been applied to reduce disease, however, in 
more recent years they have been applied for their 
physiological plant effects that may contribute to yield 
increases. Research in soybean and other crops, however, 
indicates these physiological effects are inconsistent, or do 
not always result in a measurable yield increase (Bertelsen 
et al., 2001; Khan and Carlson, 2009; Robertson et al., 
2020). We need to understand the abiotic and biotic, 
management, and environmental factors that contribute to 
greater yields in field crops to identify situations where an 
application of a fungicide could result in greater yields and 
a return on investment. 
 The KDA will be freely available to scientists of any ilk 
and we will support its use. 
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