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Introduction 
Anticipatory intelligence is the complex task of identifying 
and assessing new, emerging trends, changing conditions, 
and underappreciated developments to challenge long-
standing assumptions, encourage new perspectives, identify 
new opportunities, and provide warning of threats to 
national interests, based on current information of all kinds 
that come from a variety of different sources (ODNI, 2019). 
It is aimed at potential events, including low-probability 
high threat events and includes active attention 
management, focusing attention on likely sources of critical 
information (Klein et al., 2007). 
 The prevailing approach to anticipatory intelligence 
analysis, and intelligence analysis in general, is a holistic 
one where the analysts, after reviewing large amounts of 
information and mentally processing the data, reach a 
conclusion (Marrin, 2011). Consequently, there is very 
limited transparency on how exactly the conclusion has 
been reached from evidence, what assumptions have been 
made, and how exactly the probability of the conclusion and 
the confidence in this probability have been assessed. 
 Complementary to the holistic approach is the structured 
analysis approach, but the current practice relies on very 
simple analytic techniques, such as those described by 
Heuer and Pherson (2011). The highly acclaimed book 
“Critical Thinking for Strategic Intelligence” (Pherson and 
Pherson, 2021) only presents general guidelines for good 
analysis, but there is no clear process on how to assess the 
probability of a hypothesis and the confidence in that 
probability. Much more advanced methods use Bayesian 
probabilistic inference networks but, despite their 
implementation in advanced analytical tools such as Netica 
(https://www.norsys.com/), developing a Bayesian network 
is a very difficult task for an intelligence analyst. 
 Advances in sensor technology have made it very easy to 
automatically collect massive amount of data, leading to the 
so-called “deluge of data.” This huge and growing gap 
between the ability to collect information and that of 
analyzing it, is making increasingly difficult to draw timely 
and accurate conclusions from these massive amounts of 
collected data, much of which is irrelevant to the analysis.  
 This paper presents a framework for anticipatory 
intelligence analysis to be implemented into an instructable 
agent that can be taught how to assist an analyst. It is based 
on a series of previously developed analytical tools that 
include Disciple-LTA (Tecuci et al., 2008; Schum et al., 
2009), TIACRITIS (Tecuci et al., 2011), Disciple-CD 
(Tecuci et al., 2016a) and Cogent (Tecuci et al., 2015; 2018). 

Deep Anticipatory Intelligence Analysis  
in the Framework of the Scientific Method 

An expert analyst directly teaches the instructable agent how 
to perform anticipatory analysis in a way that is similar to 
teaching a student. The analyst follows the systematic 
analysis process summarized in Figure 1 that is inspired by 
the scientific method of hypothesis generation and testing. 
This is a mixed-initiative process (Tecuci et al., 2007b) 
where the analyst and the instructable agent: (1) Use 
abductive reasoning that shows that something is possibly 
true to generate alternative anticipatory hypotheses that may 
explain an alert (an indicator of a situation of interest), or 
are the alternative answers of an intelligence question; (2) 
Use each hypothesis and deductive reasoning that shows 
that something is necessarily true to guide the discovery and 
collection of additional evidence; and (3) Use inductive 
reasoning that shows that something is probably true to 
assess the probabilities of the hypotheses and the confidence 
in these probabilities based on the collected evidence. As a 
result, the agent learns general rules to generate hypotheses, 
rules to search for evidence, and rules to assess the 
hypotheses that enable it to reason autonomously.  

Hypothesis Generation 

Figure 2 is an abstract representation of deep anticipatory 
analysis which is a multi-step iteration of the process from 
Figure 1. The generation of each hypothesis of interest (e.g., 
𝐻𝐻𝑜𝑜 and 𝐻𝐻𝑝𝑝 at the top of Figure 2) is done through a chain of 
abduction steps (i.e., 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 → 𝐹𝐹𝑖𝑖  → 𝐺𝐺𝑙𝑙  → 𝐻𝐻𝑜𝑜 and 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 → 𝐹𝐹𝑖𝑖  → 𝐺𝐺𝑛𝑛 → 𝐻𝐻𝑝𝑝) where each hypothesis in the 
chain is either at least barely likely (50-55%) or high risk 
(Peirce, 1955; Schum, 2001a). Notice that this process is 
much more efficient than that based on the single-step 
abduction 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴→ 𝐻𝐻𝑜𝑜 that would require the analysis of 𝐻𝐻𝑜𝑜 
and of all its many alternatives represented by the dots at the 
top of Figure 2. We call it deep anticipatory analysis because 
it involves the analysis of all the hypotheses in Figure 2.  

Figure 1. Model of the analysis process. 
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Evidence Discovery 

During the second phase, hypothesis-driven evidence 
discovery, one decomposes each of the generated 
hypotheses to discover new evidence, as illustrated with 
hypothesis 𝐻𝐻 in Figure 3. The guiding question is: What 
evidence would favor or disfavor 𝐻𝐻? To answer it, one 
develops a Wigmorean probabilistic inference network 
(Wigmore 1937; Schum, 2001b; Tecuci et al., 2016a), 
successively decomposing 𝐻𝐻 into simpler and simpler 
hypotheses by considering probabilistic favoring (under the 
left, green square) and disfavoring arguments (under the 
right, pink square). For example, 𝐻𝐻1&𝐻𝐻2 is a probabilistic 
favoring argument for 𝐻𝐻 (if 𝐻𝐻1 is true and 𝐻𝐻2 is true, then it 
is likely that 𝐻𝐻 is true). 𝐻𝐻3 is a probabilistic disfavoring 
argument (if 𝐻𝐻3 is true, then it is very likely that 𝐻𝐻 is false). 
Similarly, 𝐻𝐻1𝑎𝑎 and 𝐻𝐻1𝑏𝑏  are two probabilistic favoring 
arguments for 𝐻𝐻1. Such successive decompositions, through 
favoring and disfavoring arguments, continue until the 
resulting leaf hypotheses are simple enough to point to what 
evidence would favor or disfavor them (e.g., Collect 

evidence to determine whether 𝐻𝐻1𝑎𝑎). We use a refinement 
of the ICD 203 (2015) probability scale where we have split 
ICD-likely (55-80%) into likely (55-70%) and more than 
likely (70-80%), in order to enable more precise 
assessments. 

Hypothesis Testing   

Finally, one fuses the 
discovered evidence to 
assess the probability of 
each hypothesis and the 
confidence in this 
probability. First, one 
assesses the probabilities 
of the bottom-level 
hypotheses and the 
confidence in these 
probabilities based on the 
discovered evidence, as illustrated in Figure 4. In this case 
there is a single item of evidence E favoring the hypothesis 
H. One can assess the probability of hypothesis H based on 
E by assessing the three credentials of evidence -- 
credibility, relevance, and inferential force. The credibility 
of evidence answers the question: What is the probability 
that the evidence is true? The relevance of evidence answers 
the question: What would be the probability of the 
hypothesis if the evidence were true? The inferential force 
of evidence answers the question: What would be the 
probability of the hypothesis based only on this evidence? 
Each probability assessment is paired with an assessment of 
the confidence in that probability. Table 1 presents the 
definition of the confidence levels, which are based on the 
definitions from (Joint Chiefs of Staff, 2013; DIA, 2015; 
NIC, 2017) where we introduced two additional values, very 
low confidence and very high confidence. Then, the 
probability and confidence of each upper-level hypothesis is 
computed based on the logical structure of the 
argumentation (conjunctions and disjunctions of 
hypotheses), using the min-max probability combination 
rules common to the Baconian probability view (Cohen, 
1977) and the Fuzzy view (Zadeh, 1983). On-balance 
judgements are made for the favoring and disfavoring 
arguments of a hypothesis. The min-max rules are simpler 
and more intuitive than the Bayes rule used in the Bayesian 
probabilities view, or the Dempster-Shafer rule used in the 
Belief Functions view (Tecuci et al., 2016a, pp.177-196). 

From the literature on intelligence analysis, as well as the 
intelligence and defense organizations posited guidelines for 
expressing uncertainty (DIA, 2015; JCS, 2013; NIC, 2017), 
we have identified the following criteria for the confidence 
in a probabilistic assessment: (1) The reliability/credibility 
of the sources used -- acknowledged by everyone; (2) The 
degree of corroboration of the evidence -- widely 
acknowledged; (3) The number of assumptions made and 
their influence on the analytic conclusion (DIA, JCS); (4) 
The intelligence gaps remaining (DIA, JCS,  NIC); (5) 

 
Figure 4: Evidence credentials. 
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Figure 3. Evidence discovery. 

 

 
Figure 2: Deep anticipatory analysis. 



 

 
 

Potential for deception (DIA); (6) Responsiveness to new 
information -- the less the analysts expect subsequent 
evidence and analysis to change their judgments the more 
confident they are in the current analysis and (7) Range of 
reasonable opinion -- the narrower the set of plausible 
viewpoints analysts have the more confident they are in their 
assessments (Friedman and Zeckhauser, 2015); (8) Time 
pressure and task complexity and (9) Level of analyst 
collaboration (Peterson, 2008); (10) Reasoning / Strength of 
analytic inferences / Quality of logical inferences and 
analytic methods used (Peterson; DIA, JCS, NIC). 
 We are investigating a method to assess the confidence in 
probability by taking into account all these criteria. 

Agent Architecture  

Figure 5 shows the envisioned 
architecture of the instructable 
agent for anticipatory analysis. 
The analyst demonstrates to the 
Mixed-Initiative Learning and 
Reasoning Assistant how to 
perform a specific anticipatory 
analysis by following the 
process in Figure 1. Then an 
ontology of the entities referred 
in the analysis is defined 
(Allemang et al., 2020; W3C, 
2004). After that the agent learns 
reasoning rules as ontology-
based generalizations of the 
individual reasoning steps from 
the analysis, as illustrated in 
Figure 6. Ontology development 
and rule learning are based on 
the Disciple multistrategy 
apprenticeship learning 
approach (Boicu et al., 2001; 

Tecuci, 1988; 1998; Tecuci and Hieb, 1996; Tecuci et al., 
2000; 2002; 2005; 2007a; 2016b; 2019; Huang et al., 2020). 
 Notice that the reasoning step in the upper-left side of 
Figure 6 is an illustration of the leaf steps in Figure 3. The 
ontology fragment is an ontology of collection agents and 
their functions.  
 A collection agent uses a convolutional neural network 
(CNN) that needs to be trained to perform its function. For 
example, with input from an optical imagery sensor a CNN 
can detect whether there are plumes of smoke over an entity 
plant (Ba et al., 2019). The output from the collection agent 
will be an item of evidence detected with an accuracy 
characteristic to the trained CNN, for example, 92.75% (i.e., 
very likely):  

E1 Plumes of smoke (optical imagery sensor detected 
plumes of smoke over the Tanan plant as of 
6/15/2021) with accuracy very likely (92.755%) and 
confidence very high. 

The ontology and the learned rules are stored in the 
Knowledge Base which is shared with the Autonomous 
Multi-Agent System, enabling it to automatically respond to 
alerts by performing anticipatory analysis and presenting the 
conclusions to an on-the-loop analyst. 

Table 1. Confidence levels. 
Total confidence: Known true reasoning. 
Very High: Very high quality and very well corroborated 
information from proven sources, no potential for deception, no 
assumptions or gaps, sound reasoning. 
High: High quality and well corroborated information from 
proven sources, low potential for deception, non-critical 
assumptions and/or gaps, undisputed reasoning. 
Moderate: Partially corroborated information from good 
sources, moderate potential for deception, potentially critical 
assumptions used to fill gaps, or a mix of inferences. 
Low: Uncorroborated information from good or marginal 
sources, high potential for deception, key assumptions used to 
fill critical gaps, or mostly weak inferences. 
Very Low: Uncorroborated information from marginal sources, 
very high potential for deception, key assumptions used to fill 
critical gaps, and weak inferences. 
No confidence: Known false reasoning. 

 
Figure 6. Ontology-based rule learning. 
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Figure 5. Agent architecture. 
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