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Abstract 
 
This paper presents an approach to domain modeling and knowledge acquisition that consists of a 
gradual and goal-driven improvement of an incomplete domain model provided by a human expert. Our 
approach is based on a multistrategy learning method that allows a system with incomplete knowledge 
to learn general inference or problem solving rules from specific facts or problem solving episodes 
received from the human expert. The system will learn the general knowledge pieces by considering all 
their possible instances in the current domain model, trying to learn complete and consistent 
descriptions. Because of the incompleteness of the domain model the learned rules will have exceptions 
that are eliminated by refining the definitions of the existing concepts or by defining new concepts. 
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1. Motivation and related work 
 
 
 The behavior of an expert system is based on an internal model of a real world domain. The model is 
composed of representations of different entities from the real world, as well as of procedures for 
manipulating these representations. In order to solve a real world problem, the user has to represent it 
into the language of the domain model. Then the system will look for a solution by using the model and 
will show the found solution to the user which will interpret it in the real world. The better this model 
approximates the real world domain, the more adequate is the system's behavior. Traditionally, such a 
domain model is built by the knowledge engineer and the human expert. With few exceptions (Morik, 
1989), the current knowledge acquisition tools support the modeling task only by helping the human 
expert to express his knowledge (Boose, Gains and Ganascia, 1989). The built domain model is often 
only a crude approximation of the represented domain: it incorporates defaults, omits details, and 
abstracts the represented entities. The causes for this situation are multiple: the representation language 
is inherently imprecise, the information from the human expert is incomplete, the represented domain 
has not a well defined theory (Bhatnagar and Kanal, 1986). To cope with these problems, the human 
expert is often asked to express his knowledge in the form of uncertain knowledge pieces, for instance, 
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in the form of uncertain rules characterized by certainty factors which are more or less justified. This, 
however, results in a degradation of the knowledge provided by the human expert because he is asked 
questions to which he does not know precise answers. Moreover, because the resulting expert system 
lacks the capability of self-improving its knowledge through experience, the domain model has to be, 
from the very beginning, complete enough and correct enough for determining reasonable functioning 
of the system. All of these make the current approaches to building expert systems complex, time-
consuming and error-prone. 
 We believe that the methods and the techniques developed in the field of machine learning (e.g., 
Michalski, Carbonell and Mitchell, 1983, 1986; Segre, 1989; Kodratoff and Michalski, 1990; Porter and 
Mooney, 1990) are applicable for partially automating the domain modeling and knowledge acquisition 
process (Morik, 1989; Wrobel, 1989). For instance, by using empirical induction, a system can learn 
general concepts or rules characterizing a set of examples. By applying analogical learning, a system 
may acquire knowledge about an unknown entity by transferring and modifying prior knowledge about 
a similar entity. By using explanation-based learning, a system may transform inefficient knowledge 
into efficient rules or concepts. Until now, however, these single-strategy learning methods did not have 
a significant impact on the field of knowledge acquisition because each strategy requires specific 
conditions in order to be applicable. For instance, empirical learning typically needs many input 
examples, though it does not need much background knowledge. Explanation-based learning needs only 
one example, but requires complete background knowledge. Learning by analogy needs background 
knowledge analogous with the input. Real-world applications rarely satisfy the requirements of single-
strategy learning methods. This explains an increasing interest in building systems that integrate 
different learning strategies (e.g., Lebowitz, 1986; Wilkins et al., 1986; Tecuci et al., 1987; Minton et 
al., 1987; Danyluk, 1987; Pazzani, 1988; Dietterich and Flann, 1988). 
 In this paper we propose an approach to domain modeling and knowledge acquisition based on a 
synergistic integration of different learning strategies: explanation-based learning, learning by analogy, 
empirical inductive learning, learning by asking questions and by being told, abduction and conceptual 
clustering. 
 
 
 

2. Toward a methodology for domain modeling and knowledge acquisition 
 
 
 One may distinguish two phases in the development of a domain model. The first one consists of 
defining a suitable framework for modeling the domain, by choosing a knowledge representation 
formalism and an associated problem solving method. The second one consists of effectively building 
the model by representing the entities of the application domain, in the defined framework. 
 An expert system shell, like EMYCIN (van Melle et al., 1981) for instance, is a framework for 
representing diagnostic models. Research in expert systems has elaborated different frameworks for 
different expertise domains like planning, design, diagnosis, monitoring, prediction, interpretation, and 
expert system shells for such expertise domains have been built. 
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 Choosing (or building) a suitable expert system shell solves the first part of building the model of an 
application domain. Effectively building the model with the expert system shell represents the second 
and the much more difficult part of modeling. 
 The methodology we are presenting is concerned with the automation of the second part of 
modeling. This methodology is a development of our previous work on learning expert knowledge 
(Tecuci, 1988; Tecuci and Kodratoff, 1990) and is experimentally implemented in a learning system 
that may be associated with an expert system shell. The goal of the learning system is to learn directly 
from the human expert. In other words, the traditional role of the knowledge engineer is taken by the 
system itself that is building and improving the domain model through successive interactions with the 
expert. A direct consequence of this goal is that the interaction with the human expert should be as 
natural for the human expert as possible. A human expert may provide an elementary description of his 
domain. He is particularly good at providing solutions to problems and to judge if a solution to a 
problem is good or not. He is less good at providing explanations of why the solutions are good or not 
but can easily accept or reject tentative explanations. What is particularly difficult for the human expert 
is to provide general pieces of information as, for instance, general problem solving rules. It is, 
therefore, the task of the learner to learn such general pieces of information and to iteratively develop 
and update the world model. Such an update is done through an interaction with the expert in which the 
expert is asked only the types of questions he is expected to answer correctly. 
 The scenario for building the domain model is the following one. First, the human expert will define 
(within the chosen framework) an initial model of his domain. Because he is requested to define only 
that knowledge which he may easily express, we assume that this initial world model is incomplete. In 
general, it will consist of incomplete descriptions of some basic object concepts from the domain to be 
modeled, object concepts that define an initial language for representing new object concepts, facts, 
rules etc. This initial model will allow the system to learn new knowledge from the expert and thus to 
develop its model. The validity of the learned knowledge strongly depends of the validity of the initial 
knowledge. Therefore it is preferable to start with few and valid knowledge than to start with much and 
imperfect knowledge. 
 Once an initial model has been defined, the system may react to new inputs from the expert (or, in 
general, from the real world) with the goal of developing and updating the model so that to become 
consistent with the inputs. Whenever the system receives an input, it will try to understand and 
assimilate it into the world model. For instance, if the input is a new fact, the system will try to justify 
that it is a consequence of the knowledge explicitly represented into the model. To this purpose, it may 
need to update the model (by abducting new facts or rules, or by explicitly storing the input). Based on 
the understanding of the input fact, the system may learn a general inference rule allowing the direct 
derivation of the input (as well as of other related facts). If the input is a problem solving episode, then 
the system will try to explain to itself the validity of this episode (by building a proof or at least a 
justification of it) and based on this understanding it may learn a general problem solving rule. If the 
input consists of several examples of a concept, the system will try to understand the commonalties of 
these examples in the context of its background knowledge, thus learning the definition of the concept. 
In order to improve the consistency of the domain model, the system will learn the general knowledge 
pieces by considering all their possible instances in the current domain model, trying to learn complete 
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and consistent descriptions. However, because of the incompleteness of the domain model (that, for 
instance, does not contain some necessary concepts), the learned rules will have exceptions. For 
instance, they may cover invalid problem solving episodes. Therefore, in order to eliminate the 
exceptions of the learned rules, new concepts have to be defined, or the definitions of the existing 
concepts have to be refined. In this way, the domain model is iteratively developed in a goal-driven 
manner. 
 The next sections illustrate this methodology with a very simple example from robotics. 
 
 
 

3. Modeling the world of a simple robot 
 
 
 We shall briefly illustrate the model building methodology with a very simple example of a robot 
able to perform simple domestic tasks. The robot receives commands from its master and executes 
them. A command is executed by performing a single robot action or a sequence of such actions. 

 
 
3.1 The framework for the domain model 
 
 
 One may model the world of such a robot in terms of object-concepts, states, action-concepts, and 
problem solving rules. 
 An object-concept represents a set of objects having similar properties and relations to other object-
concepts. The object-concepts may be of different degrees of generality. 
 An instance of an object-concept represents a specific object from the real world, together with its 
properties and relations to other objects. One may assimilate an instance with a very specific concept 
representing only one element. 
 A specification of all the objects in the world, together with their current properties and relations, 
represents the current state of the world. 
 The action-concepts are representations of the actions by which the robot can change the state of the 
real world. Such an action-concept is represented by the following elements: 
- the name of the action and the object-concepts that may have certain roles in the action (the object on 
which the action is performed, the instrument used, etc.); 
- the preconditions: the set of states in which the action may be applied; 
- the effects: the state resulted after the execution of the action. 
 We distinguish between elementary actions and complex actions. An elementary action is directly 
executable by the robot. A complex action is one that is executed by a sequence of elementary actions. 
 A problem solving rule is a kind of schemata that indicates a decomposition of a complex action into 
simpler actions. 
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 The robot receives commands for executing actions. If such an action is an elementary one then the 
robot is executing it. If the action is a complex one, then the robot has to first decompose it into a 
sequence of elementary actions. 
 All these elements constitute the framework for representing the model of the robot world. To build 
the model, one has to effectively define the object-concepts, the action-concepts, and the problem 
solving rules. 
 In the following sections we shall show how such a model is incrementally developed by the human 
trainer and the learning system. 
 
 

3.2 Providing an initial domain model 
 
 
 First, the human expert defines the initial model of the domain. This model may be, for instance, the 
one represented in figure 1. 
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Figure 1. The initial domain model. 

 
 This initial model is composed of incomplete descriptions of concepts representing some of the 
objects from the robot world. 
 
 

3.3 Incremental development of the model 
 
 
 Once the expert has provided the system with an initial model, he will start teaching it to solve 
problems by presenting examples of problem solving episodes like the one in figure 2. From such a 
problem solving episode the system will try to learn a general problem solving rule of the form 
presented in figure 3. 
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   Example1: 
   The problem     ; to take clean-cup1 
    TAKE clean-cup1   ; the robot has to 
   has the solution    ; open the cabinet 
    OPEN cabinet   ; and to take the cup 
    TAKE clean-cup1 FROM cabinet ; from it 
 

Figure 2. An example of problem solving episode. 
 
 
   IF      ; If x and y are two 
    x and y satisfy certain constraints ; objects satisfying  
    THEN     ; certain constraints 
   the problem     ; then to TAKE x  
    TAKE x    ; the robot has to  
    has the solution    ; OPEN y and to 
    OPEN y    ; TAKE x FROM y 
    TAKE x FROM y 
 

Figure 3. The general rule to be learned from Example 1. 
 
 As a by-product of learning such a rule the domain model may be improved by: 
- completing the definitions of the object-concepts that cover positive or negative instances of the rule's 
variables (as shown in section 3.5.1); 
- defining new object-concepts that cover positive instances of the rule's variables (as shown in section 
3.5.2); 
- improving the models of the actions from the rule (as shown in section 3.6). 
 Therefore, rule learning is in fact an opportunity for a goal-driven improvement of the domain 
model. 
 
 

3.4 Learning problem solving rules 
 
 
 Table 1 presents the method of learning a general problem solving rule starting from one example. A 
detailed description of this learning method is given in (Tecuci and Kodratoff, 1990). Therefore here we 
shall only briefly illustrate it. 
 As mentioned in Table 1, the learning steps depend of the system's current knowledge. In this section 
we shall  suppose that all system's knowledge is the one from figure 1. In section 3.6, however, we shall 
show how learning proceeds when the domain model contains also (incomplete) descriptions of the 
actions "TAKE x", "OPEN y", and "TAKE x FROM y". 
 First the system will try to understand the problem solving episode received from the expert 
(Example1), where by understanding we mean proving (or at least justifying) its correctness. It uses 
heuristics to propose plausible pieces of explanations in terms of the features and the relationships 
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between the objects from the problem solving episode (Tecuci and Kodratoff, 1990), pieces of 
explanations requiring the user's validation, as shown in figure 4. 
 
 

Table 1. The rule learning method. 
 

• Find an explanation of the validity of the input 

Depending of the system's knowledge, the process of finding the explanation may involve deduction, 
induction and/or analogy. 

• Generalize the found explanation to an analogy criterion 

Depending of the system's knowledge, the analogy criterion is an inductive, a deductive or an 
inductive and deductive generalization of the explanation. 

• Use the analogy criterion to generate examples analogous with the input 

The instances of the analogy criterion in the domain model represent explanations similar with the 
explanation of the input. From each such explanation the system may generate a problem solving 
episode analogous with the input. These episodes represent positive examples (if they are correct) or 
negative examples (if they are not correct) of the rule to be learned. 

• Learn from the generated examples 

Learn a general rule that covers as many of the positive examples as possible and as few of the 
negative examples as possible. 

 
 
 

   The problem solving episode is correct because: 
   (clean-cup1 IS-IN cabinet) ? Yes 
   (clean-cup1 COLOR white) & (cabinet COLOR white) ? No 

Figure 4. Finding a justification of Example1. 
 
 
 The found piece of explanation is (clean-cup1 IS-IN cabinet). This explanation is inductively 
generalized by turning all the contained objects into variables and this generalization is taken as an 
analogy criterion. The instances of this analogy criterion in the domain model are similar explanations 
that may account for problem solving episodes similar with Example1. Because analogy is a weak 
inference, these problem solving episodes could be, however, correct or incorrect (see figure 5). The 
goal of the system is to learn a general rule that covers the correct problem solving episodes and rejects 
the incorrect ones. 
 First of all, from the initial problem solving episode, its explanation and the analogy criterion, the 
system builds an initial version space for the rule to be learned. This version space is shown in figure 6. 
As may be noticed, this representation keeps all the knowledge that may be useful for learning the rule: 
the initial example, the explanation, and the features of the covered objects that are not relevant for the 
rule learning (and should not be used in the condition of the rule). 
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Figure 5. Generation of problem solving episodes analogous with the input one. 

 
 
 IF 
  upper bound 
  (x IS-A something) & (y IS-A something) & (x IS-IN y) ; the analogy criterion 
  lower bound 
  (x IS-A clean-cup1) & (y IS-A cabinet) & (x IS-IN y) ; the explanation 
  THEN 
 the problem 
  TAKE x 
  has the solution 
  OPEN y 
  TAKE x FROM y 
 with the positive example: 
  (x IS-A clean-cup1) & (y IS-A cabinet) 
 with the irrelevant features: 
  (x COLOR z) & (y COLOR z) 

 
Figure 6. The initial version space for the rule to be learned. 

 

 Next the system applies the analogy criterion to the domain model in figure 1 and generates, one 
after the other, the problem solving episodes from figure 5, asking the expert to validate them: 
 
    Let us consider the problem 
     TAKE sugar 
     Is the following a correct solution 
     OPEN sugar-box 
     TAKE sugar FROM sugar-box ? Yes 

Figure 7. A problem solving episode generated by the system. 
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 Each such generated problem solving episode is used to shrink the version space from figure 6  
(Tecuci and Kodratoff, 1990). 
 For each positive example there are two possible cases: 
- if the current upper bound is more general than the positive example, then generalize the lower bound 
of the rule, as little as possible, so that to cover the example and to remain less general than the upper 
bound; 
- if the current upper bound does not cover the positive example then keep this example as a positive 
exception of the rule being learned. 
 For each negative example the system tries to find an explanation of the failure. If such an 
explanation is found then it is used to particularize both bounds of the current version space for no 
longer covering the negative example. If no explanation is found then two cases are possible: 
- if the current lower bound does not cover the negative example then particularize the upper bound as 
little as possible so that not to cover the negative example and to remain more general than the lower 
bound; 
- if the current lower bound covers the negative example then keep it as a negative exception of the rule 
being learned. 
 Let us suppose that the problem solving episodes from figure 5 are generated in the order from the 
left to the right. The first generated problem solving episode is accepted by the user and is therefore a 
new positive example for the rule to be learned. Its explanation (sugar IS-IN sugar-box) is expressed in 
terms of the variables 'x' and 'y' as 
    (x IS-A sugar) & (y IS-A sugar-box) & (x IS-IN y) 
and is used to generalize the lower bound in figure 6 to 
   new lower bound 
    (x IS-A something) & (y IS-A container) & (x IS-IN y) 
The next two problem solving episodes generated by the system are rejected by the user. However, their 
corresponding explanations 
    (x IS-A dirty-cup1) & (y IS-A sink) & (x IS-IN y) 
    (x IS-A freezer) & (y IS-A refrigerator) & (x IS-IN y) 
are covered by the new lower bound of the version space. Therefore these two instances represent 
negative exceptions for the rule being learned: 
 
   IF 
    upper bound 
    (x IS-A something) & (y IS-A something) & (x IS-IN y) 
    lower bound 
    (x IS-A something) & (y IS-A container) & (x IS-IN y) 
    THEN 
   the problem 
    TAKE x 
    has the solution 
    OPEN y 
    TAKE x FROM y 
   with the positive examples: 
    (x IS-A clean-cup1) & (y IS-A cabinet) 
    (x IS-A sugar) & (y IS-A sugar-box) 
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   with the negative exceptions: 
    (x IS-A dirty-cup1) & (y IS-A sink) 
    (x IS-A freezer) & (y IS-A refrigerator) 
   with the irrelevant features: 
    (x COLOR z) & (y COLOR z) 
 
   Figure 8. Version space with negative exceptions. 
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3.5 Improving the domain model 
 
 
 The existence of the rule's exceptions is due to the incompleteness of the domain model the language 
of which does not contain the expression distinguishing between the positive examples and the negative 
examples of the rule. But this is an excellent opportunity to develop the domain model by completing 
the descriptions of the existing concepts or even by defining new concepts. The definition of new 
concepts for the elimination of the rule's exceptions was called demand-driven concept formation by 
(Wrobel, 1989). In the following, we shall present two methods for the elimination of the negative 
exceptions of the rules. In what regards the positive exceptions, they are treated as positive examples of 
new rules to be learned. 
 
 

3.5.1 Turning negative exceptions into negative examples by refining the descriptions of the 
known concepts 
 
 
 A negative exception of a rule may be transformed into a negative example by identifying (or 
defining) a new object feature that discriminates between the positive examples and the negative 
exception, as it is presented in Table 2. 
 

Table 2. Refining object descriptions. 

• Find a feature F of an object Oij from one positive example Ej such that: 
 - F may be a feature of the corresponding objects Oi1,...,Oin, from ALL the positive examples; 
 - F is not a feature of the corresponding objects O'ik,...,O'il from SOME of the negative exceptions 
Nk,...,Nl. 

• Refine the descriptions of the objects Oi1,..., Oin by adding the feature F. 

• Refine the descriptions of O'ik ,..., O'il by adding the feature NOT-F. 

• Particularize the lower bound of the rule by adding the feature F (which is now shared by all the  
current positive examples) 

• Remove Nk,...,Nl from the list of negative exceptions and add them to the list of negative examples. 

• Repeat this procedure as long as such features could be found or could be defined by the user. 

 
 Let us consider the following negative exception from the version space in figure 8 
      (x IS-A dirty-cup1) & (y IS-A sink) 
together with the positive examples 
      (x IS-A clean-cup1) & (y IS-A cabinet) 
      (x IS-A sugar) & (y IS-A sugar-box) 
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 To transform this negative exception into a negative example, the system may analyze all the 
features of clean-cup1 in order to find one that may be a feature of sugar without being a feature of 
dirty-cup1. Or, it  may analyze all the features of sugar in order to find one that may be a feature of 
clean-cup1 without being a feature of dirty-cup1. It may also look for a feature of cabinet or for a 
feature of sugar-box that is not a feature of sink. 
 In the domain model from figure 1 sugar-box has the feature (sugar-box IS closed), which is not a 
feature of cabinet and sink. Therefore, the system makes the hypothesis 
      (cabinet IS closed) 
      NOT(sink IS closed), rewritten as (sink IS opened) 
and asks the user to validate them. 
 Let us suppose that the user validates these hypothesis. This means that (y IS closed) is a feature that 
discriminates between the known positive examples and the analyzed negative exception. By 
introducing the discriminating feature into the rule's conditions, the considered negative exception 
becomes a negative example (see figure 13). 
 Also, the descriptions of the sink and the cabinet are refined by adding the discovered properties: 
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Figure 9. Goal-driven transfer of the property IS from sugar-box to cabinet and sink. 
 
 
 This is a case of goal-driven property transfer from one concept to another. It is quite often for an 
expert to define a feature of a concept but to forget to specify it when describing another concept. With 
the above presented method, the learner may discover and remove such an incompleteness. 
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3.5.2 Turning negative exceptions into negative examples by defining new concepts 
 
 
 Another method of transforming a negative exception of a rule into a negative example consists of 
defining a new concept that discriminates between the positive examples and the negative exception, as 
shown in Table 3. 
 

Table 3. Definition of new concepts. 

• Define a new concept C that 
 - covers corresponding objects Oi1,...,Oin from ALL the positive examples; 
 - does not cover the corresponding objects O'ik,...,O'il from SOME of the negative exceptions 
Nk,...,Nl; 
 - is less general than the concept from the lower bound that covers Oi1,...,Oin; 
 - may be given a meaningful name by the user. 

• Replace with C the concepts from the upper bound and the lower bound that cover Oi1,...,Oin. 

• Remove Nk,...,Nl from the list of the negative exceptions and add them to the list of the negative  
examples. 

• Repeat this procedure as long as there are negative exceptions and meaningful concepts can be  
defined. 

 
 Let us consider the second negative exception from the version space in figure 8 
      (x IS-A freezer) & (y IS-A refrigerator) 
together with the positive examples 
      (x IS-A clean-cup1) & (y IS-A cabinet) 
      (x IS-A sugar) & (y IS-A sugar-box) 
 One may define a concept covering clean-cup1 and sugar, not covering freezer, and being less 
general than something: 
 

something

food container

sugar cup

clean-cup1

IS-A IS-A

IS-A
IS-A

IS-A

freezer

IS-A

+

+-

?

 
Figure 10. An object concept that would eliminate a negative exception. 
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 One may also define a concept covering cabinet and sugar-box, not covering refrigerator, and being 
less general than container: 
 

something

container place

sugar-box
cabinet

IS-A IS-A

IS-AIS-A
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Figure 11. Another object concept that would eliminate a negative exception. 

 
 Analyzing the features of the covered and the uncovered objects (in the context of the problem 
solving episode from figure 2) the expert may realize, for instance, that sugar and clean-cup1 are objects 
that could be moved by the robot while freezer is not such an object. Therefore, he may name the 
corresponding intermediate concept movable-obj (i.e. object that could be moved by the robot) and may 
approve its introduction into the domain model. In such a case, however, the expert should also analyze 
the other concepts from the model in order to find the correct place for the new concept: 
 

movable-obj

something

food container place

sinksugar
sugar-box

cabinet

cup

clean-cup1 dirty-cup1

refrigerator

freezer  
Figure 12. Definition of the concept movable-obj. 

 
 One may notice that this is a case of goal-driven conceptual clustering in which known concepts are 
clustered under newly defined ones, in order to improve the consistency of the learned rules. 
 By defining the 'movable-obj' concept the version space of the rule to be learned becomes the one 
shown in figure 13. 
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  IF 
   upper bound 
   (x IS-A movable-obj) & (y IS-A something) & (x IS-IN y) & (y IS closed) 
   lower bound 
   (x IS-A movable-obj) & (y IS-A container) & (x IS-IN y) & (y IS closed) 
   THEN 
  the problem 
   TAKE x 
   has the solution 
   OPEN y 
   TAKE x FROM y 
  with the positive examples: 
   (x IS-A clean-cup1) & (y IS-A cabinet) 
   (x IS-A sugar) & (y IS-A sugar-box) 
  with the negative examples: 
   (x IS-A dirty-cup1) & (y IS-A sink) 
   (x IS-A freezer) & (y IS-A refrigerator) 
  with the irrelevant features: 
   (x COLOR z) & (y COLOR z) 
 
 Figure 13. The version space after turning the negative exceptions into negative examples. 
 
 A similar method is used by BLIP (Wrobel, 1989). The main difference is that  BLIP always defines 
only one concept that discriminates between the objects from the positive examples and the 
corresponding objects from the exceptions of a rule. Our method may define several concepts, each 
eliminating at least one exception, if they are meaningful concepts in the modelled domain. If we want 
the domain model to approximate the real world as close as possible, there is no reason to believe that 
one has always to define only one concept for eliminating all the exceptions. Moreover, it may not be 
always desirable to eliminate all the exceptions because this may result in a complicated domain model. 
 
 

3.6 The use of the action models 
 
 
 In the above sections we have supposed that the system does not have any models of the actions 
involved in the initial problem solving episode. However, if the system has even incompletely learned 
action models then the learning of the new rule is speeded up and at the same time with learning the rule 
the system is also improving the action models. 
 Let us suppose, for instance, that the system disposes of the incompletely learned action models from 
figure 14. By using these action models the system may build the tree in figure 15 which "proves" that 
the sequence of actions 
 OPEN cabinet, TAKE clean-cup1 FROM cabinet 
achieves the goal of the action  
 TAKE clean-cup1. 
 The tree in figure 15 is, however, only a plausible proof. Indeed, to build this tree, the system used 
the upper bounds of the applicability conditions of the action models from figure 14, upper bounds that 
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may cover situations in which the corresponding actions are not applicable. Also, the system had to 
abduct the fact (cabinet IS closed), which is not present in the domain model from figure 1. Therefore 
this tree has to be validated by the user.  
 
 
    IF 
     upper bound 
     (x IS-A something) 
     lower bound 
     (x IS-A bottle) 
    THEN 
    the action 
     TAKE x 
     has the effect 
     (Roby HAS x) 
    with the positive examples 
     (x IS-A wine-bottle1) 
     (x IS-A whisky-bottle1)  
 
 
    IF 
     upper bound 
     (x IS-A something) &(y IS-A something) & 
     (x IS-IN y) & (y IS opened) 
     lower bound 
     (x IS-A fruit) & (y IS-A fruit-basket) & 
     (x IS-IN y) & (y IS opened) 
    THEN 
    the action 
     TAKE x FROM y 
     has the effects 
     (Roby HAS x) 
     NOT(x IS-IN y) 
    with the positive examples 
     (x IS-A apple) & (y IS-A fruit-basket) 
     (x IS-A banana) & (y IS-A fruit-basket) 
 
 
    IF 
     upper bound 
     (x IS-A something) & (x IS closed) 
     lower bound 
     (x IS-A bottle) & (x IS closed) 
    THEN 
    the action 
     OPEN x 
    has the effects 
     (x IS opened) 
     NOT(x IS closed) 
    with the positive example 
     (x IS-A wine-bottle1) 
     (x IS-A whisky-bottle1) 
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Figure 14. Incompletely learned action models. 
 
 

(Roby HAS clean-cup1)

TAKE clean-cup1 FROM cabinet

(cabinet IS opened) (clean-cup1 IS-IN cabinet)

OPEN cabinet

(cabinet IS closed)  

Figure 15. A plausible proof of the correctness of Example1 in figure 2. 
 
The validation of the plausible proof from figure 15 has the following important consequences: 
- the leaves of the tree represent the explanation of the problem solving episode in figure 2 
     (cabinet IS closed) & (clean-cup1 IS-IN cabinet) 
- the abducted fact (cabinet IS closed) is introduced into the domain model; 
- each action instance from the tree represents a new positive example for the corresponding action 
model that could be generalized to cover it. For instance, the lower bound of the precondition of 'OPEN 
x' is generalized to cover (x IS-A cabinet) & (x IS closed): 
 
    IF 
     upper bound 
     (x IS-A something) & (x IS closed) 
     lower bound 
     (x IS-A container) & (x IS closed) 
    THEN 
    the action   
     OPEN x 
    has the effects 
     (x IS opened) 
     NOT(x IS closed) 
    with the positive examples 
     (x IS-A wine-bottle1) 
     (x IS-A whisky-bottle1) 
     (x IS-A cabinet)  

Figure 16. Improving the model of the action OPEN. 
 
 The action models may also be used to generalize the plausible proof in figure 15 (Tecuci and 
Kodratoff, 1990): 
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(Roby HAS x)

TAKE x FROM y

(y IS opened) (x IS-IN y)

OPEN y

(y IS closed)  
Figure 17. Generalization of the plausible proof in figure 15. 
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 The leaves of this tree represent the analogy criterion to be used for generating new problem solving 
episodes: (y IS closed) & (x IS-IN y). 
 Therefore, the system is able to define the initial version space shown in figure 18 and may search 
the rule in this space by following the steps indicated in Table 1. 
 
   IF 
    upper bound 
    (x IS-A something) & (y IS-A something) & 
    (x IS-IN y) & (y IS closed) 
    lower bound 
    (x IS-A clean-cup1) & (y IS-A cabinet) & 
    (x IS-IN y) & (y IS closed) 
    THEN 
   the problem 
    TAKE x 
    has the solution 
    OPEN y 
    TAKE x FROM y 
   with the positive example: 
    (x IS-A clean-cup1) & (y IS-A cabinet) 

Figure 18. A version space defined with the help of incomplete action models. 
 
 If the domain model contains complete action models then the method presented in Table 1 becomes 
explanation based learning. In such a case, the generalized tree from figure 17 would be a logical proof 
and the leaves of this tree would be the condition of the rule in figure 3 (Tecuci and Kodratoff, 1990). 
 
 
 

4. Conclusions 
 

 

 We have presented a methodology for domain modeling and knowledge acquisition that involves a 
synergistic combination of different learning strategies. This methodology was implemented in 
Common Lisp on Macintosh. After using it to build experimental domain models in several domains 
(manufacturing, geography, chemistry, etc.) we have concluded that it has a high potential for partially 
automating the process of building expert systems. 
 There are several directions of improvement and development of this methodology. One direction 
consists of developing methods for automating the construction of the initial domain model. A 
interesting approach is provided by the BLIP and MOBAL systems (Morik, 1989; Wrobel, 1989) which 
are able to build such an initial domain model from user provided facts. Another direction of research 
concerns the development of methods for restructuring the domain model. The system should be able 
not only to define new concepts and to add new features at the known concepts but also to delete 
concepts or to remove features from the known concepts, managing all the consequences of such 
changes in the domain model. Also the multistrategy rule learning method may be improved by better 
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integrating the existent learning strategies and by adding new ones, in order to increase the learning 
capabilities of the system. This research direction is closely related to an on going effort at the Center 
for Artificial Intelligence to define a unifying theory of machine learning and a general multistrategy 
task-adaptive learning methodology based on this theory (Michalski, 1990; Tecuci and Michalski, 
1990). 
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