
1

In Proceedings of the AAAI-91 Workshop
Knowledge Acquisition: From Science to Technology to Tools, Anaheim, CA, 1991

Steps Toward Automating Knowledge Acquisition
for Expert Systems

Gheorghe Tecuci*

Center for Artificial Intelligence, Department of Computer Science
George Mason University, 4400 University Drive, Fairfax, VA 22030-4444

email: tecuci@aic.gmu.edu

Abstract

This paper presents a learning-based approach to the automation of knowledge acquisition for
expert systems. An expert system is viewed as an explicit model of a human expert's
competence and performance. We distinguish three phases in the development of such a model.
The first one consists of defining a framework for the model, in terms of a knowledge
representation formalism and an associated problem solving method. The second phase consists
of defining a preliminary model that describes the basic concepts of the expertise domain. The
last phase consists of incrementally extending and improving the domain model through
learning from the human expert. The paper describes the learning system NeoDISCIPLE which
illustrates the usefulness of six principles for automating the knowledge acquisition process:
expert system building as a three-phase modeling of human expertise, understanding-based
knowledge extension, knowledge acquisition through multistrategy learning, consistency-driven
concept formation and refinement, closed-loop learning, and cooperation between the human
expert and the learning system.

1 Introduction

 Recently there was a growing interest in devising methods, techniques and systems for
automating knowledge acquisition for expert systems. On one side, the knowledge acquisition
community tries to automate the existing techniques for knowledge elicitation and domain
modeling (Marcus, 1988; Boose et al., 1989). On the other side, the machine learning
community tries to apply the learning methods and techniques to the knowledge acquisition task
(Wilkins et al., 1986; Morik, 1989; Bareiss et al., 1990).
 One approach to the automation of knowledge acquisition is to build tools that make a strong
assumption about the problem solving method used by the expert systems they create (Marcus,
1988; Klinker, 1988). In this paper we present a complementary approach that exploits several
general principles emerging from the field of machine learning. These principles form the basis
of a general learning system shell called NeoDISCIPLE, which is an extension and a
generalization of the DISCIPLE system (Tecuci, 1988; Tecuci and Kodratoff, 1990). We present
these principles and their implementation into NeoDISCIPLE.

2 Principles for automating the knowledge acquisition process

2.1 Expert system building as a three-phase modeling of human expertise

* Joint appointment with the Research Institute for Informatics, 71316, Bd.Miciurin 8-10, Bucharest 1, Romania

2

 An expert system may be viewed as an explicit model of a human expert's competence and
performance (Morik, 1989). We distinguish three phases in the development of such a model.
The first one consists of defining a suitable framework for the model, in terms of a knowledge
representation formalism and an associated problem solving method. The second phase consists
of defining a preliminary model that describes the basic concepts of the expertise domain. The
last phase consists of incrementally extending and improving the domain model through
learning.
 A domain model to be built with the help of NeoDISCIPLE consists of two basic kinds of
knowledge. The first one is a hierarchical semantic network, describing explicitly the object
concepts in the world, together with their properties and relationships. These object concepts are
hierarchically organized according to the "more-general-than" (or "isa") relationship which
states that all the instances of a concept C are also instances of any concept that is more general
than C. The second kind of knowledge consists of general rules. The meaning of these rules
depends of the application domain. They may be inference rules for inferring new properties and
relations of objects from other properties and relations, general problem solving rules as, for
instance, rules that indicate the decomposition of complex problems into simpler subproblems,
or even action models that describe the actions that could be performed by an agent (for
instance, a robot), in terms of their preconditions, effects and involved objects. The important
feature of these rules is that they refer to the objects and relations from the hierarchical semantic
network, and their generality depends of the generality of the involved object concepts.
 To build a model of an application domain one has first to define the problem solving method
and the corresponding types of the problem solving rules. These, together with the hierarchical
semantic network of object concepts, will represent the framework of the domain model.
 Next one has to define a preliminary domain model. The goal of this phase is to extract from
a human expert whatever knowledge he/she may describe easily and correctly. In general, this
knowledge will consist of incomplete descriptions of some basic object concepts from the
expertise domain, object concepts that define the initial hierarchical semantic network.
 The third phase, which is actually supported by NeoDISCIPLE, consists of incrementally
extending and improving the domain model through learning from examples provided by the
human expert. During this phase, the expert shows NeoDISCIPLE new facts or specific problem
solving episodes (represented by problems and their solutions). From each such input,
NeoDISCIPLE may learn an inference rule or a problem solving rule that is a generalization of
the input. As a side effect of this learning process, NeoDISCIPLE may develop the hierarchical
semantic network by defining new properties, new relationships or even new object concepts.

problem solving episode

NeoDISCIPLE

new domain model

refinement of the
previous domain model

+
general rulenew fact or

domain model

Figure 1: Incremental development of the domain model

2.2 Understanding-based knowledge extension

 The initial model provided by the human expert allows NeoDISCIPLE to react to new inputs
with the goal of developing and updating the model so as to consistently integrate them. The
general strategy is to try to "understand" (explain to itself) the input in terms of the current
domain model. By this we mean that NeoDISCIPLE will try to build a plausible proof which

3

demonstrates that the input is a consequence of the knowledge it already has. For instance, if the
input is a new fact then the system will try to prove that this fact derives from other facts which
are explicitly represented into the domain model. Or, if the input is an example of a problem
solving episode, then the system will try to prove that the episode is correct, by using the facts
from the domain model. If successful, the understanding process will determine the facts from
the domain model from which the input can be derived. These facts represent the explanation of
the input (Mitchell et al., 1986; Tecuci and Kodratoff, 1990).
 This "understanding" process depends of the inferential capabilities of the system with
respect to the input. We distinguish between three types of such capabilities:
• Poor knowledge about the input
The system has no knowledge to build any plausible proof of the input. In such a case,
NeoDISCIPLE uses heuristics to propose facts as plausible pieces of explanations, to be
validated by the user who may himself indicate additional pieces of explanation or even the
entire explanation (which becomes new knowledge to be included into the domain model).
• Incomplete knowledge about the input
The system has knowledge allowing it to build a plausible (incomplete) proof of the input. In
this case, the building of the proof tree requires the abduction of explanatory facts or inference
steps which represent new knowledge to be added to the domain model.
• Complete knowledge about the input
The system has knowledge allowing it to build a complete deductive proof of the input.
 If an explanation of the input is found, then the system will learn from it a general rule (see
next section). This rule will allow it to directly derive, not only the input from which it was
learned, but also similar knowledge. However, if no explanation is found, then the input is
considered to represent entirely new knowledge that is added as such into the current domain
model.
 As a result of the understanding process, the input will become (explicit or implicit) part of
the domain model. Moreover, as a result of rule learning, other similar knowledge (facts or
problem solving episodes) will become implicit part of the domain model.
 It is hoped that, through successive learning steps, the domain model of the system will
evolve from poor (i.e. without inferential capabilities) to incomplete (i.e. with incomplete
inferential capabilities), and from incomplete to complete (i.e. with complete inferential
capabilities).

2.3 Knowledge acquisition through multistrategy learning

 From each received input NeoDISCIPLE is trying to learn a general rule. This may be a
general inference rule, if the input is a specific fact, or it may be a general problem solving rule,
if the input is a specific problem solving episode. The learning method of the system integrates
synergistically a whole range of learning strategies (explanation-based learning, learning by
analogy, empirical inductive learning, learning by asking questions and by being told, abduction
and conceptual clustering) and consists of the following steps:

• Understand the input and find an explanation of it
NeoDISCIPLE starts learning by trying to understand the input. This process depends of the
inferential capabilities of the system with respect to the input and may involve induction,
deduction and/or analogy. If successful, the understanding process will determine the facts from
the domain model from which the input can be derived. These facts represents the explanation
of the input.
• Generalize the found explanation to an analogy criterion

4

Next the system generalizes the explanation to an analogy criterion that would allow the
recognition of similar explanation structures in the domain model, and the generation of new
knowledge pieces analogous with the input. Depending of the system knowledge, the analogy
criterion is obtained by an inductive and/or deductive generalization of the explanation.
• Apply the analogy criterion to the domain model to generate examples analogous with the
input
The instances of the analogy criterion in the current domain model represent explanations
similar with the explanation of the input. From each such explanation the system may generate a
fact (or problem solving episode) analogous with the input. The generated knowledge is shown
to the human expert which has to characterize it as true or false (see Figure 2).

explanation explanation-j

fact-j

explanation-k

fact-k

explanation-q

fact-q

...

+ - +

of the input

input fact
(or pb.sol.episode) (or pb.sol.ep.j) (or pb.sol.ep.k) (or pb.sol.ep.q)

...

similar explanations
from the current
domain model

new pieces of

generated by
knowledge

the system

justifies justifies ? justifies ?justifies ?

analogy criterion

generalization instantiation

Figure 2: Generation of examples analogous with the input
• Learn from the generated examples
The generated facts (or problem solving episodes) that have been characterized as true by the
human expert represent positive examples of the rule to be learned. The others represent
negative examples. From these examples, NeoDISCIPLE learns a general rule that covers as
many of the positive examples as possible and as few of the negative examples as possible.
• Improve the current domain model as a by product of rule learning
During rule learning, the current domain model may be improved by adding new properties,
relationships or concepts into the hierarchical semantic network and/or by improving some of
the inference rules used in the learning process.

2.4 Consistency-driven concept formation and refinement

 NeoDISCIPLE starts learning with a preliminary model which usually consists of incomplete
descriptions of some basic object concepts that define an initial language for representing and
learning new object concepts, facts, rules etc. Because of this incompleteness, the general
knowledge pieces learned by NeoDISCIPLE may have exceptions. For instance, a learned rule
may cover invalid problem solving episodes. In order to eliminate these exceptions, new
concepts have to be defined, or the definitions of the existing concepts have to be refined. For
instance, one may eliminate the negative exceptions of a rule by defining a new concept
discriminating between the positive examples and the negative exceptions, and by introducing it
into the applicability condition of the rule (Wrobel, 1989; Tecuci, 1991). Alternatively, one may
refine the definition of a concept with a new feature or relationship shared only by the positive
examples of the rule (Tecuci, 1991). In this way, the hierarchical semantic network of object
concepts is iteratively developed with the goal of improving the consistency of the learned rules.

2.5 Closed-loop learning

5

 As shown in Figure 1, the knowledge learned from an input become background knowledge
which is used in the subsequent learning process, increasing the quality of learning. Therefore,
NeoDISCIPLE illustrates a general case of closed-loop learning (Michalski, 1990a).

2.6 Cooperation between the human expert and the learning system

 The knowledge acquisition method of NeoDISCIPLE is based on a cooperation between the
human expert and the learner which exploits their complementary abilities. That is, each part
contributes to the knowledge acquisition process with what he (it) can do better than the other.
 The human expert, for instance, provides an initial imperfect elementary description of his
domain. He is particularly good at providing suitable solutions to problems. He may judge if a
solution to a problem is good or not, or if a fact is true or false. He is less good at providing an
explanation of why a particular solution to a problem is good or not, but can easily accept or
reject tentative explanations proposed by the system. What is particularly difficult for the human
expert is to provide general pieces of information and to maintain the consistency of the domain
model. On the other hand, NeoDISCIPLE suggests justifications of the observed facts or
examples of problem solving episodes, generalizes them, and iteratively develops and updates
the model of the expertise domain, so that to consistently integrate the learned knowledge.

3 Intuitive illustration of the knowledge acquisition methodology

3.1 Question-answering in geography

 We shall illustrate our approach to the automation of knowledge acquisition by considering
the building an expert system able to answer questions about geography. A possible framework
for the domain model consists of an expert system shell that implements a backward chaining
theorem prover. The knowledge base consists of a hierarchical semantic network (describing
explicitly properties and relations of the geographical objects) and of inference rules (for
inferring new properties and relations). To answer a question of the form "Does (corn GROWS-IN
Romania) ?", the system will first look into the semantic network. If the above fact is not
explicitly represented, then the system will try to infer it from the explicitly represented facts.
 Once the framework has been defined, the human expert has to provide whatever domain
knowledge he may easily express. In general, this will consist of incomplete descriptions of
some basic geographical objects, represented in the form of a hierarchical semantic network like
the one from the top of Figure 3. These object concepts constitute a preliminary domain model
used to learn new geographical concepts and inference rules. Although we plan to investigate
the automation of definition of this preliminary domain model, the current version of
NeoDISCIPLE does not support the human expert more than accepting any model, as
incomplete as it may be.

6

Cambodia

TERRAIN

subtropical

high

flat

plant

Florida

corn

IS-A

IS-A

IS-A

IS-A
rice

CLIMATE

COLOR

white

NEEDS

food

IS-A

IS

poor

NEEDS-
WATER-
SUPPLY

WATER-
SUPPLYTERRAIN

CLIMATE

WATER-
SUPPLY

NEEDS-
TERRAIN

NEEDS-
CLIMATE

Romania

temperate

little

flat

place

NEEDS-
CLIMATECLIMATE

IS-A

NEEDS-
WATER-
SUPPLY

WATER-
SUPPLY

TERRAIN NEEDS-
TERRAIN

France

cereal

plum

fruit IS-A
IS-A

IS-A

NEEDS-
TERRAIN

IS-A CLIMATE

hill

TERRAIN

WATER-
SUPPLY

R1: IF
 (y HAS-METEO-COND-FOR x)&(y HAS-TERRAIN-COND-FOR x) ; if y has meteorological
 THEN ; and terrain conditions for x
 (x GROWS-IN y) ; then x grows in y

R2: IF
 upper bound
 (x IS-A something)&(y IS-A something)& ; the water supply of y
 (t IS-A something)&(u IS-A something)& ; is that needed by x,
 (y WATER-SUPPLY t)&(x NEEDS-WATER-SUPPLY t)& ; and the climate of y
 (y CLIMATE u)&(x NEEDS-CLIMATE u) ; is that needed by x

 lower-bound
 (x IS-A fruit)&(y IS-A place)& ; the water supply of the place y
 (t IS-A little)&(u IS-A temperate)& ; is little, as needed by the fruit x,
 (y WATER-SUPPLY t)&(x NEEDS-WATER-SUPPLY t)& ; and the climate of y is temperate,
 (y CLIMATE u)&(x NEEDS-CLIMATE u) ; as needed by x
 THEN
 (y HAS-METEO-COND-FOR x) ; y has meteorological cond for x
 with the positive examples
 (x<-plum, y<-Romania, t<-little, u<-temperate)&(x<-grape, y<-France, t<-little, u<-temperate)

R3: IF
 upper bound
 (x IS-A something)&(y IS-A something)&(z IS-A something)& ; the terrain of y
 (y TERRAIN z)&(x NEEDS-TERRAIN z) ; is that needed by x

 lower-bound
 (x IS-A fruit)&(y IS-A place)&(z IS-A hill)& ; the terrain of a place y is hill,
 (y TERRAIN z)&(x NEEDS-TERRAIN z) ; as needed by the fruit y
 THEN
 (y HAS-TERRAIN-COND-FOR x) ; y has terrain conditions for x
 with the positive examples
 (x<-plum, y<-Romania, z<-hill)&(x<-grape,y<-France,z<-hill)

Figure 3: A sample domain model
 The preliminary domain model is extended and improved by NeoDISCIPLE through
successive interactions with the human expert. During these interactions, the human expert
provides new geographical facts, and the system learns inference rules and develops the
hierarchical semantic network. Some of the rules may be incompletely learned as, for instance,
the rules R2 and R3 in Figure 3. Instead of an exact condition they specify a version space
(Mitchell, 1978) for the condition, represented by a conjunctive expression that is more general

7

than the exact condition (the upper bound), and a conjunctive expression that is less general
than the exact condition (the lower bound).
 For instance, from the input fact
 (rice GROWS-IN Cambodia) (1)
the system learned the following inference rule:

 IF (2)
 (x IS-A plant)&(y IS-A place)&(z IS-A terrain-type)& ; If
 (t IS-A quantity)&(u IS-A climate-type)&(v IS-A soil-type)& ; the water supply of the place y
 (y WATER-SUPPLY t)&(x NEEDS-WATER-SUPPLY t)& ; is that needed by the plant x, and
 (y CLIMATE u)&(x NEEDS-CLIMATE u)& ; the climate of y is that needed by x, and
 (y TERRAIN z)&(x NEEDS-TERRAIN z)& ; the terrain of y is that needed by x, and
 (y SOIL v)&(x NEEDS-SOIL v) ; the soil of y is that needed by y
 THEN ; then
 (x GROWS-IN y) ; x grows in y

 Such a rule allows the system to derive the original input fact, but also other related facts as,
for instance, "(rice GROWS-IN Tunisia)" or "(corn GROWS-IN Romania)".
 As a by product of rule learning, the system has also learned new relevant geographical
relationships, like "SOIL" and "NEEDS-SOIL", as well as new basic geographical facts like
"(Cambodia SOIL fertile)" and "(rice NEEDS-SOIL fertile)".
 It has also improved the rule R3 in Figure 3 by adding necessary predicates to both bounds of
the condition:

R3': IF (3)
 upper bound
 (x IS-A something)&(y IS-A something)&(z IS-A something)& ; the terrain of y
 (y TERRAIN z)&(x NEEDS-TERRAIN z)& ; is that needed by x and
 (v IS-A something)&(y SOIL v)&(x NEEDS-SOIL v) ; the soil of y is that needed by x

 lower-bound
 (x IS-A plant)&(y IS-A place)&(z IS-A terrain-type)& ; the terrain of a place y is the terrain-
 (y TERRAIN z)&(x NEEDS-TERRAIN z)& ; type needed by the plant y, and the
 (v IS-A soil-type)&(y SOIL v)&(x NEEDS-SOIL v) ; soil of y is the soil-type needed by x
 THEN
 (y HAS-TERRAIN-COND-FOR x) ; y has terrain conditions for x
 with the positive examples
 (x<-plum, y<-Romania, z<-hill, v<-normal)&(x<-grape,y<-France,z<-hill, v<-normal)&
 (x<-rice, y<-Cambodia, z<-flat, v<-fertile)
 with the negative example
 (x<-rice, y<-Florida, z<-flat, v<-normal)

 The next section illustrates how this learning process took place.

3.2 Illustration of the rule learning method

 Once the system has received the input fact "(rice GROWS-IN Cambodia)" it tried to understand it
by showing that it is a consequence of the knowledge explicitly represented into the domain
model. This "understanding" process depends of the inferential capabilities of the system with
respect to the input fact: poor, incomplete, or complete. We shall illustrate all these three cases.
 Let us first suppose that the current domain model is the one from Figure 3. In this case the
system has incomplete knowledge about the input "(rice GROWS-IN Cambodia)" because it is able
to build the plausible proof tree from the top of Figure 4. We called this tree "plausible" because
it was built by using the upper bound conditions of the rules R2 and R3. Therefore, the

8

inferences made are only plausible and should be validated by the expert. In general, to build a
plausible proof tree, the system may need to abduce new facts or even new inference steps. The
leaves of the plausible tree represent the facts from the knowledge base that imply the input, i.e.
the explanation of the input. The next step is to generalize the explanation to an analogy
criterion. To this purpose, the system generalizes the plausible proof tree as much as allowed by
the inference rules used. The generalization technique is similar to that of (Mooney and Benett,
1986). NeoDISCIPLE first replaces each instantiated inference rule with its general pattern (by
using the upper bound of the rule's condition if the rule has not an exact condition), and then
unifies these patterns. In this way the system builds the generalized tree from the bottom of
Figure 4, the leaves of which represent the analogy criterion.

(rice

Cambodia)

(Cambodia

(Cambodia

rice) rice)

(rice

(Cambodia

(Cambodia HAS-METEO-COND-FOR HAS-TERRAIN-COND-FOR

WATER-SUPPLY NEEDS-WATER-SUPPLY NEEDS-CLIMATE TERRAIN NEEDS-TERRAIN
high) high) subtropical) flat)flat)

(rice(rice(Cambodia
CLIMATE
subtropical)

GROWS-IN

(x

y)

(y

(y

x) x)

(x

(y

(y HAS-METEO-COND-FOR HAS-TERRAIN-COND-FOR

WATER-SUPPLY NEEDS-WATER-SUPPLY NEEDS-CLIMATE TERRAIN NEEDS-TERRAIN
t) t) u) z)z)

(x(x(y
CLIMATE

u)

GROWS-IN

Figure 4: Finding an explanation of the input and
generalizing it to an analogy criterion, in the case of incomplete knowledge

 Let us now suppose that the current domain model consists of only the semantic network
from the top of Figure 3. This represents an example of poor knowledge about the input "(rice
GROWS-IN Cambodia)" because this knowledge is not enough for inferring anything about the
validity of the input. However, the system makes the hypothesis that the input fact is a direct
consequence of other facts that are explicitly represented into the semantic network. It therefore
uses heuristics to select such facts, and to propose them as partial explanations to be validated
by the user, who may himself indicate other pieces of explanations. One used heuristic is to
propose as plausible explanations the relations between the objects from the input (rice and
Cambodia):

 Are the following relations explanations for '(rice GROWS-IN Cambodia)':
 (rice NEEDS-TERRAIN flat) & (Cambodia TERRAIN flat) ?Yes
 (rice IS-A food) & (Cambodia NEEDS food) ? No
 (rice NEEDS-WATER-SUPPLY high) & (Cambodia WATER-SUPPLY high) ? Yes
 (rice NEEDS-CLIMATE subtropical) & (Cambodia CLIMATE subtropical) ?Yes

 All the pieces of explanations marked by a user's yes form the explanation of the input. In the
case of poor knowledge, this explanation is inductively generalized to an analogy criterion by
simply transforming the objects into variables. As one may notice, the system has found the
same explanation and the same analogy criterion as in the case of incomplete knowledge.

9

 Let us finally suppose that the semantic network in Figure 3 has been augmented with the
relations "(rice NEEDS-SOIL fertile)" and "(Cambodia SOIL fertile)", and that the rules R2 and R3 have
been completely learned. The resulting domain model is "complete" with respect to the input
fact "(rice GROWS-IN Cambodia)" because it allows the system to build a deductive proof of the
input. In such a case, the learning method reduces to pure explanation-based learning (Mitchell
et al., 1986; DeJong and Mooney, 1986). Indeed, NeoDISCIPLE builds a tree similar to the one
from the top of Figure 4, except that each inference step is a deduction, and the tree is a logical
proof. Then, by using the general form of the inference rules R1, R2, and R3, it builds a
generalized proof tree, similar to the one from the bottom of Figure 4. Because this generalized
tree is a logical proof, its leaves imply the input and represent the exact condition of the rule to
be learned. Therefore NeoDISCIPLE learned at once the rule shown in (2). The other steps of
the method are no longer necessary.
 In the following, we shall show how learning proceeds when the system does not have
"complete" knowledge about the input fact "(rice GROWS-IN Cambodia)". NeoDISCIPLE has found
an explanation of the input and has generalized it to an analogy criterion (see Figure 5). The
instances of the analogy criterion in the domain model represent explanations similar with the
explanation of the input. Each such explanation may account for a fact analogous with the input
one. Because analogy is a weak inference, these facts could be, however, true or false. The goal
of the system is to learn a general rule that covers the true facts and rejects the false ones.

Cambodia
TERRAIN

subtropical

high

flat

Florida
cornrice

CLIMATE

NEEDS-
WATER-
SUPPLY

WATER-
SUPPLY

NEEDS-

TERRAIN
NEEDS-

CLIMATE

Romania

temperate

little

flat

TERRAIN

subtropical

high

flat

rice

CLIMATE

NEEDS-
WATER-
SUPPLY

WATER-
SUPPLY

NEEDS-
TERRAIN
NEEDS-

CLIMATE

TERRAIN

CLIMATE

NEEDS-
WATER-
SUPPLY

WATER-
SUPPLY

NEEDS-
TERRAIN
NEEDS-

CLIMATE

TERRAIN

CLIMATE

NEEDS-
WATER-
SUPPLY

WATER-
SUPPLY

NEEDS-

TERRAIN
NEEDS-

CLIMATE

u

t

z

. . .
GENERALIZATION

INSTANTIATIONS

GROWS-IN GROWS-INGROWS-IN

JUSTIFY JUSTIFY ?JUSTIFY ?

x y

input fact -+

analogy
criterion

instances
of the
analogy
criterion
from the
semantic
network in
Figure 3

facts
generated
by the
system

(rice Cambodia) (rice Florida)(corn Romania)

Figure 5: Generation of facts analogous with the input one

 First of all, from the input fact, its explanation and the analogy criterion, the system builds an
initial version space for the rule to be learned. This version space is shown in Figure 6. Its lower

10

bound covers only the input fact and its upper bound covers all the facts that may be generated
(Tecuci and Kodratoff, 1990).
 Then, the system applies the analogy criterion to the semantic network in Figure 3 and
generates, one after the other, the facts from Figure 5, asking the expert to validate them:

Does (corn GROWS-IN Romania)? Yes

 The validated facts represent positive examples of the rule to be learned and the rejected ones
represent negative examples.
 IF
 upper-bound(analogy criterion)
 (x IS-A something)&(y IS-A something)&(z IS-A something)&(t IS-A something)&(u IS-A something)&
 (y WATER-SUPPLY t)&(x NEEDS-WATER-SUPPLY t)&(y CLIMATE u)&(x NEEDS-CLIMATE u)&
 (y TERRAIN z)&(x NEEDS-TERRAIN z)

 lower-bound(explanation)
 (x IS-A rice)&(y IS-A Cambodia)&(z IS-A flat)&(t IS-A high)&(u IS-A subtropical)&
 (y WATER-SUPPLY t)&(x NEEDS-WATER-SUPPLY t)&(y CLIMATE u)&(x NEEDS-CLIMATE u)&
 (y TERRAIN z)&(x NEEDS-TERRAIN z)
 THEN
 (x GROWS-IN y)
 with the positive example
 (x<-rice, y<-Cambodia, z<-flat, t<-high, u<-subtropical)

Figure 6: The initial version space for the rule to be learned

 The generated facts from Figure 5 are used to shrink the version space from Figure 6, by
using the method presented in (Tecuci and Kodratoff, 1990).
 For each positive example as, for instance, "(corn GROWS-IN Romania)", the system generalizes
the lower bound of the version space (see Figure 6) to the most specific generalization that
covers the explanation of the example (see (4) below), and is less general then the upper bound.

 Explanation i (4)
 (x IS-A corn)&(y IS-A Romania)&(z IS-A flat)&(t IS-A little)&(u IS-A temperate)
 (y WATER-SUPPLY t)&(x NEEDS-WATER-SUPPLY t)&(y CLIMATE u)&(x NEEDS-CLIMATE u)&
 (y TERRAIN z)&(x NEEDS-TERRAIN z)

 For each negative example as, for instance, "(rice GROWS-IN Florida)", the system and the
expert determines the explanation of the failure:

 Failure explanation j
 Not(rice GROWS-IN Florida) because (Florida SOIL normal)&(rice NEEDS-SOIL fertile) (5)

and the corresponding piece of explanation of the initial input:

 Explanation j
 (rice GROWS-IN Cambodia) because (Cambodia SOIL fertile)&(rice NEEDS-SOIL fertile)
 (6)

 This last explanation is added to both bounds of the version space of the rule to be learned as
if it were found during the initial understanding of the input fact.
 As a consequence of the above two examples, the version space in Figure 6 becomes:

 IF
 upper-bound
 (x IS-A something)&(y IS-A something)&(z IS-A something)&(t IS-A something)&(u IS-A something)&
 (y WATER-SUPPLY t)&(x NEEDS-WATER-SUPPLY t)&(y CLIMATE u)&(x NEEDS-CLIMATE u)&
 (y TERRAIN z)&(x NEEDS-TERRAIN z)&(v IS-A something)&(y SOIL v)&(x NEEDS-SOIL v)

11

 lower-bound
 (x IS-A cereal)&(y IS-A place)&(z IS-A flat)&(t IS-A quantity)&(u IS-A climate-type)&
 (y WATER-SUPPLY t)&(x NEEDS-WATER-SUPPLY t)&(y CLIMATE u)&(x NEEDS-CLIMATE u)&
 (y TERRAIN z)&(x NEEDS-TERRAIN z)&(v IS-A soil-type)&(y SOIL v)&(x NEEDS-SOIL v)
 THEN
 (x GROWS-IN y)
 with the positive examples
 (x<-rice, y<-Cambodia, z<-flat, t<-high, u<-subtropical v<- fertile)
 (x<-corn,y<-Romania,z<-flat,t<-little,u<-temperate,v<-normal)
 with the negative example
 (x<-rice, y<-Florida, z<-flat,t<-high, u<-subtropical, v<-normal)

Figure 7: The new version space of the rule to be learned
 The learning process decreases the distance between the two bounds of the version space. It
continues until the bounds become identical or all the generated examples have been used.

3.3 Improving the current domain model

 As a result of learning from the input "(rice GROWS-IN Cambodia)", the domain model is
developed in several respects by:
 - the addition of the learned rule;
 - the addition of new facts or even of new concepts, in the semantic network;
 - the improvement of the rules used in the "understanding" of the input.
 The important outcome of this learning process is that it may change the nature of the
system's knowledge, with respect to other inputs, from poor to incomplete, or even to complete.
 For instance, Failure explanation j and Explanation j (see (5) and (6) above), are added to
the semantic network as new basic geographical knowledge.
 Also, forcing the new lower bound of the rule in Figure 7 (which now includes Explanation
j) to cover the previously encountered positive example "(corn GROWS-IN Romania)", the system
acquired new basic knowledge about the soil of Romania and the soil needed by corn:

(Romania SOIL normal) & (corn NEEDS-SOIL normal)

 When the system had incomplete knowledge about the input it also improved the rules used
in the understanding process. The guidance for such an improvement is provided by the
generalized plausible proof from the bottom of Figure 4. Indeed, to each new fact generated by
the system corresponds an instance of this tree, as shown in Figure 8.

(corn

Romania)

(Romania

(Romania

corn) corn)

(corn

(Romania

(Romania HAS-METEO-COND-FOR HAS-TERRAIN-COND-FOR

WATER-SUPPLY NEEDS-WATER-SUPPLY NEEDS-CLIMATE TERRAIN NEEDS-TERRAIN
little) little) temperate) flat)flat)

(corn(corn(Romania
CLIMATE

temperate)

GROWS-IN

12

(rice

Florida)

(Florida

(Florida

rice) rice)

(rice

(Florida

(Florida HAS-METEO-COND-FOR HAS-TERRAIN-COND-FOR

WATER-SUPPLY NEEDS-WATER-SUPPLY NEEDS-CLIMATE TERRAIN NEEDS-TERRAIN
high) high) subtropical) flat)flat)

(rice(rice(Florida
CLIMATE
subtropical)

GROWS-IN

false

false

true

Figure 8: Instances of the generalized tree in Figure 4, corresponding
to the true fact "(corn GROWS-IN Romania)" and to the false fact "(rice GROWS-IN Florida)"

 The tree corresponding to the true fact "(corn GROWS-IN Romania)" is a correct proof tree that
shows new positive instances of the rules R2 and R3 in Figure 3. Therefore, the lower bounds of
these rules are generalized to cover the corresponding instances.
 The tree corresponding to the false fact "(rice GROWS-IN Florida)" is a wrong proof tree (the leaf
predicates are true but the top predicate is not). This means that some of the inferences made are
incorrect. To detect them, the system and the user follow the proof tree from bottom up. If the
user states that the consequent of a certain inference step is not true, then the corresponding
inference rule may be the faulty one. In this case, the wrong inference step is:

(Florida TERRAIN flat)&(rice NEEDS-TERRAIN flat) --> (Florida HAS-TERRAIN-COND-FOR rice)

 The detection of this wrong inference step allowed the user and the system to discover
the
failure explanation in (5) above. It has also provided a negative example for the rule R3 in
Figure 3. As a consequence, the system transformed the rule R3 from Figure 3 into the rule R3'
(see (3)). It is important to notice that the positive examples and the negative examples of the
rules R2 and R3 are used to improve these rules in the same way as the positive and the negative
examples of the rule to be learned.

4 Discussion and conclusions

 NeoDISCIPLE is implemented in Common Lisp and runs on Macintosh. Until now it was
used to build small knowledge bases for the following types of expertise domains: planning (in
robotics), planning combined with design (in manufacturing), prediction (in chemistry), and
question-answering (in geography). From these experiments, we have concluded that it is not
very difficult to build a small knowledge base with NeoDISCIPLE.
 The dialogue with the user is based on "intelligent", specific, and easy to answer questions.
Also, NeoDISCIPLE minimizes the number of questions asked by carefully generating only
those facts or problem solving episodes that are most likely to advance the learning process. In
the experiments performed, NeoDISCIPLE usually needed to generate less than 10 examples
(see Figure 2) for learning a rule. However, the knowledge base may sometimes allow the
generation of thousands of such examples. If, in a certain critical application, all these examples
need to be tested, then this may require a lot of time from the human expert. Therefore, new
methods have to be devised to test the examples independently of the expert (for instance, by
comparing them with a database of cases), or to select for testing only the examples that have
the highest likelihood of contradicting the rule being learned.
 A basic source of knowledge for learning is the hierarchical semantic network which
provides the generalization language. Therefore, an application domain for which one cannot
define a "rich enough" semantic network is not suitable for NeoDISCIPLE.

13

 The integrated learning method of NeoDISCIPLE outperforms any of the constituent single-
strategy methods in that it is able to learn in situations in which they were insufficient.
However, NeoDISCIPLE still suffers from the basic limitation of the learning systems: if the
bias built into the system is incorrect, the system will fail to learn properly. In the current
version of NeoDISCIPLE, the initial semantic network (which contributes significantly to the
system's learning bias) is supposed to be incomplete but correct. During learning, the definition
of the object concepts may be refined and even new concepts may be defined (Tecuci, 1991).
While this may improve the initial bias, it will not modify it drastically. A better way to
surmount this limitation is to perform not only additions to the semantic network, but also
deletions. We therefore plan to develop the learning method of NeoDISCIPLE so that to start
with an imperfect domain model (which is not only incomplete, but also partially incorrect), and
to gradually improve it.
 The presented methodology divides the process of building an expert system (viewed as a
model of an expertise domain) into three phases: defining a framework for the domain model,
providing a preliminary domain model, and incrementally improving the domain model. Only
the third phase is automated by the present version of NeoDISCIPLE. In the future, we plan to
evolve NeoDISCIPLE into a system that will assist an expert user during all the three phases.
 For the automation of the first phase, we plan to identify suitable expert system shells (i.e.
systems the knowledge base of which could be learned by NeoDISCIPLE) and to couple each of
them with a customized version of NeoDISCIPLE.
 The definition of the preliminary domain model could be automated by using an approach
similar to that of the BLIP and MOBAL systems (Morik, 1989; Wrobel, 1989). These systems
are able to build such an initial model from user provided facts.
 NeoDISCIPLE itself could be further improved by improving the existent learning strategies
and by adding new ones, in order to increase the learning capabilities of the system. This
research direction is closely related to an on going effort at the Center for Artificial Intelligence
to define a unifying theory of machine learning and a general multistrategy task-adaptive
learning methodology based on this theory (Michalski, 1990a,b; Tecuci and Michalski, 1991).

Acknowledgements

The author thanks Yves Kodratoff and Ryszard Michalski for interesting and useful discussions
that influenced this work, and an anonymous referee for useful comments. This research was
done in the Artificial Intelligence Center of George Mason University. Research activities of the
Center are supported in part by the Defence Advanced Research Projects Agency under grant
No. N00014-87-K-0874, administrated by the Office of Naval Research, and in part by the
Office of Naval Research under grants No. N00014-88-K-0226 and No. N00014-88-K-0397.

References
Bareiss, R., Porter B., and Wier C., PROTOS: An Exemplar-based Learning Apprentice, in
Kodratoff Y., and Michalski R.S. (eds), Machine Learning: An Artificial Intelligence Approach,
vol. III, Morgan Kaufmann, 1990.

Boose, J.H., Gaines, B.R., and Ganascia, J.G.(eds), Proceedings of the Third European
Workshop on Knowledge Acquisition for Knowledge-based Systems, Paris, July, 1989.

DeJong G., and Mooney R., Explanation-Based Learning: An Alternative View, in Machine
Learning, vol.1, no. 2, pp. 145-176, 1986.

14

Klinker G., KNACK: Sample-Driven Knowledge Acquisition for Reporting Systems, in S.
Marcus (ed), Automating Knowledge Acquisition for Expert Systems, Kluwer Publishers, 1988.

Kodratoff, Y., and Michalski, R.S. (eds), Machine Learning: An Artificial Intelligence
Approach, Morgan Kaufmann, vol.III, 1990.

Marcus S.(ed), Automating Knowledge Acquisition for Expert Systems, Kluwer, 1988.

Michalski R. S., Toward a Unified Theory of Learning: Multistrategy Task-adaptive Learning,
Research Report MLI 90-1, Artificial Intelligence Center, George Mason University, 1990a.

Michalski R. S., A Methodological Framework for Multistrategy Task-adaptive Learning, in
Ras Z., Zemankova M. (eds), Methodologies for Intelligent Systems, North Holland, 1990b.

Mitchell, T. M., Version Spaces: An Approach to Concept Learning, Doctoral dissertation,
Stanford University, 1978.

Mitchell T.M., Keller R.M., and Kedar-Cabelli S.T., Explanation-Based Generalization: A
Unifying View, Machine Learning, vol.1, no.1, pp. 47-80, 1986.

Mooney R., Bennet S., A Domain Independent Explanation Based Generalizer, in Proceedings
AAAI-86, Philadelphia, 1986.

Morik K., Sloppy modeling, in Morik K. (ed), Knowledge Representation and Organization in
Machine Learning, Springer Verlag, 1989.

Tecuci G., DISCIPLE: A Theory, Methodology, and System for Learning Expert Knowledge,
Ph.D. Thesis, University of Paris-South, 1988.

Tecuci, G. and Kodratoff Y., Apprenticeship Learning in Imperfect Theory Domains, in
Kodratoff Y., and Michalski R.S. (eds), Machine Learning, vol. III, Morgan Kaufmann, 1990.

Tecuci G., A Multistrategy Learning Approach to Domain Modeling and Knowledge
Acquisition, in Proc. of the European Conference on Machine Learning, Porto, Springer-
Verlag, 1991.

Tecuci, G. and Michalski R., A Method for Multistrategy Task-adaptive Learning Based on
Plausible Justifications, Proceedings of the Eight International Workshop on Machine Learning,
Chicago, Morgan Kaufmann, 1991.

Wilkins, D.C., Clancey, W.J., and Buchanan, B.G., An Overview of the Odysseus Learning
Apprentice, Kluwer Academic Press, 1986.

Wrobel S., Demand-Driven Concept Formation, in Morik K.(ed), Knowledge Representation
and Organization in Machine Learning, Springer Verlag, 1989.

