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Abstract 
We propose an architecture for a pedagogical agent (or 
learning tutor) that can learn from human tutors and then 
tutor human learners. In addition to its direct practical 
significance, the endeavor of designing and building such 
agents provides a conceptual framework for integrating the 
fields of intelligent tutoring-learning environments (ITLE) 
and machine learning-based knowledge acquisition (MLKA). 

An Approach to Unification 
Machine Learning-based Knowledge Acquisition (MLKA) 
systems and Intelligent Tutoring-Learning Environments 
(ITLE) are engaged in the same activity except for a role 
reversal: one system learns from humans and the other 
helps humans learn.  Nevertheless, the two kinds of 
systems, as well as the fields of Machine Learning and 
Intelligent Tutoring Systems, have grown up separately 
and remain largely independent (but see Aimeur and 
Frasson, 1995). 
 We have begun to investigate, elucidate and integrate 
the areas of potential symbiosis of MLKA and ITLE, with a 
view to facilitating the transfer of knowledge from one 
field to the other.  Our interest is partly at the knowledge 
level, but we are at least equally concerned with the 
concrete goal of implementing a unified system with 
practical benefits.  One of us has built a large system, 
DISCIPLE, that learns (Tecuci and Kodratoff, 1990; Tecuci 
and Keeling, 1998; Tecuci, 1998).  The other of us has 
built one, FLUENT, that tutors (Hamburger, 1995; 
Schoelles and Hamburger, 1996).  That experience and the 
actual software produced are contributing to the current 
work described here.  Both projects have put considerable 
effort into tool-building.  In the present work, we continue 
to build development tools usable by teachers as well as by 
researchers, enabling teacher-experts to be directly 
involved in improving educational software. 
 Our central integrative concept and implementation 
project is the Learning Tutor (LT), defined as an intelligent 
agent that can be directly taught by a human and can then 
tutor human students.  Such an agent can serve as an 
asynchronous communication channel between a human 
tutor and an unlimited number of human students, one at a 

time.  In the first phase of communication, the agent 
behaves as an interactive MLKA system, learning directly 
from a human tutor the domain knowledge and the tutorial 
knowledge.  Then, using the domain and tutorial 
knowledge, the agent assumes the opposite role, 
functioning as an ITLE. 
 A key desideratum for an LT is natural communication. 
The communication in each of the two phases is natural to 
the extent that it resembles human tutorial communication.  
Thus an LT needs natural language processing and a highly 
flexible two-way graphics communication capability, both 
functioning under the guidance of a tutorial discourse 
framework. 
 The actual construction of an LT drives our comparative 
study of communication and representation strategies in 
MLKA and ITLE systems.  Both fields provide insights into 
the appropriate characteristics for a shared internal 
knowledge representation that serves the operations of 
learning, tutoring and communicating meaningfully with 
both human parties, in both linguistic and graphical media.  
For the representation to be appropriate for 
communication, it must support the elementary teaching 
moves of both the human teacher and the agent teacher.  
Results in human learning and human-computer interaction 
complement ITLE work as guidance for communication.  
Results in MLKA are enabling us to overcome the 
knowledge acquisition bottleneck in the construction of 
domains, curricula and examples for systems that support 
human learning. 
 The next section presents the architecture of the learning 
tutor.  After that we elaborate on the communication 
issues.  The final section is a discussion of our choices of 
software and chemistry as domains in which the LT 
operates.  We also present a graphical tool, developed by 
one of us, that enables a non-programmer to build concept-
based animations, which are seen to have the potential for 
a key role in the LT’s communicative capabilities. 



The Unified Architecture of  
the Learning Tutor 

A key aspect of our strategy of unification is to specify the 
different kinds of knowledge required in the various 

components of an ITLE and then to arrange for that 
knowledge to be directly acquired from a human tutor by 
MLKA methods. This approach leads to the LT architecture 
shown here as Figure 1. 
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Figure 1 An architecture for the Learning Tutor. Lines indicate two-way flow of information, arrows one way.  
*The MLKA Engine has submodules for its various responsibilities as outlined in the text. 

 
 
 Various components of the typical MLKA and ITLE are 
shared inside the LT as follows.  The MLKA Engine, the 
Domain Knowledge and the Inference Engine constitute a 
multistrategy apprenticeship learning system, the role of 
which is to learn the expertise knowledge from the human 
tutor.  Of these three parts, the latter two constitute what is 
known as the expertise module of an ITLE.  Domain 
knowledge must go beyond performance adequacy; it must 
be pedagogically appropriate.  This is a new demand for 
LT construction, not previously faced by the independent 
field of Knowledge Acquisition.  Thus our strategy for the 
problem of obtaining pedagogically appropriate domain 
knowledge can involve altering the human’s stance.  The 
human in this interaction must now be both a tutor and an 
expert at the same time.  This tutor-expert must interact 
with a view to getting things not only correct but also 
comprehensible.  Just as one communicates knowledge 
differently to a beginning student than to a colleague, so 
must the tutor-expert interact differently with an LT than 
an expert does when imparting a domain to an expert 
system.  During the agent’s learning process, the MLKA 
Engine continuously extends and improves the Domain 
Knowledge until its domain quality and pedagogical form 
are both good enough to serve as the expertise for tutoring. 
 In addition to this more extensive domain knowledge, 
the system also must acquire explicitly pedagogical 
knowledge (as opposed to pedagogically appropriate 
domain knowledge) for the tutorial component.  In 
FLUENT such knowledge takes the form of tutorial 
schemas provided directly by a teacher-expert working 
with a tool.  In the DISCIPLE approach, the MLKA Engine, 
the Tutoring Knowledge and the Tutoring Engine in Figure 
1 are viewed as a multistrategy apprenticeship learning 

system the role of which is to acquire tutoring knowledge.  
The tutor has two top-level subcomponents, one involving 
curriculum (choosing problems to pose to the student) and 
one to communicate assistance in ways that are responsive 
to both the problem state and the student (as represented in 
the student model).  Curriculum knowledge includes such 
aspects as degrees of difficulty and the prerequisite 
relationships among the various concepts and problems.  It 
is straightforward to acquire this kind of information.  As 
for communication, the approach is to call upon the tutor-
expert for the rationale behind choosing a particular form 
of communication in a particular situation, by asking, in 
effect, “explain why you have just given a hint” or 
“explain why you have just given an explanation.”  This 
“why” is not an invitation to a free-form paragraph but is 
part of a structured dialog using the LT’s communication 
language.  Such a scenario involves alternation, within a 
MLKA session, between acquiring domain knowledge and 
acquiring pedagogical knowledge. 
 Yet a third relationship between the two agent roles 
concerns both domain and tutorial modules, as follows.  
Each concept or rule from the Domain Knowledge is 
annotated with information indicating how it has been 
learned from the human’s tutoring moves.  The annotations 
include examples from which the rule or concept has been 
learned, as well as the various explanations or hints 
provided by the human tutor.  The resulting material then 
becomes an augmentation to the Tutoring Knowledge of 
the ITLE. The LT attempts to teach the human learner 
similarly to the way it was taught by the human tutor, by 
using these knowledge annotations from the human tutor. 
 A fourth and final connection is that deploying MLKA 
techniques within the ITLE not only promotes learning but 



also supports the important ITLE function of  student 
modeling.  Just as MLKA can build knowledge according 
to an expert, so too it can build knowledge according to a 
student, i.e., build a student model. Inferring an accurate 
student model has long been a main and difficult research 
goal in Intelligent Tutoring Systems.  Our approach of 
using MLKA to evolve the student model renders this task 
much more manageable. Indeed, it allows the LT to verify 
or extend the student model by engaging in a dialog with 
the student and asking the student what it needs to know, 
when trying to infer such knowledge would be too 
difficult.  This approach thus stakes out a position that 
takes into account Self’s (1990) maxim - not to guess what 
the student knows but let her tell you - yet remains 
responsive to the individual student. 

 
Communication 

In order to create natural and compatible communication 
links among the human tutor, the LT and the human 
student, all the interactions are based on a common 
communication repertoire that expresses various types of 
teaching moves.  In DISCIPLE these include providing 
examples, hints, explanations, problems, definitions, 
taxonomic and other facts, corrections, and confirmation of 
partial corrections.  These various forms of communication 
have a spatial as well as a verbal component, notably the 
diagrams that are so essential to  technical communication.  
In our work, the problem-solving communication between 
the human tutor or student, on one side, and the LT on the 
other side, involves knowledge-based, interactive, 
animated diagrams in addition to textual and symbolic 
interaction. 

Since FLUENT is a conversational system, it too has 
contributions to make to communication in the LT.  
Specifically, we are incorporating the notions of views, 
interaction types and tutorial schemas, described at some 
length in the work cited above.  An interaction type is a 
short sequence of specified types of linguistic and spatial 
moves by specified parties.  In the Movecaster interaction 
type, the student makes an action occur and the system 
describes it.  In a Commander interaction the system says 
what to do, the student tries to do it and the system 
comments on its comparison of the requested and actual 
actions. 

Linguistic move types within an interaction type include 
DISCIPLE’s communication repertoire mentioned above as 
well as FLUENT’s questions, command and statements.  
The latter are elaborated by linguistic viewpoints or views, 
which enable the natural language generation system to 
take account of some discourse phenomena.  They 
distinguish, for example, between actions and the results of 
those actions, as in “You picked up the box.” vs. “You are 
(now) holding the box.” 

Tutorial schemas allow a teacher-expert to organize 
interaction types including Movecaster, Commander and 
some others into a coherent educational session, 

coordinated with meaningful, visible ongoing changes in 
the underlying microworld situation.  The situation is 
coherent because its activities are guided by plans that 
make sense in the particular domain.  Technically a plan is 
a flexible tree of subplans and ultimately actions, with 
constraints on time-sequence where appropriate.  The roles 
in a plan are class-constrained variables, analogous to 
function arguments.  Execution of plans skips any subplans 
or actions whose goals are currently met.  The simplest 
tutorial schema is just a plan and an interaction type.  More 
generally it can be a sequence of pairs, each consisting of a 
plan and a regular expression of interaction types.   
 

Two Domains 
We have begun to develop the Learning Tutor to learn and 
teach material in two domains.  The first domain is the use 
of a software tool.  The particular software is our own tool 
for creating concept-based diagrams and animations.  
Besides providing a domain, this software also supports 
the learning of other domains, especially technical ones 
like our second domain, chemistry.  Both of these topics 
are useful, well-understood and problem-oriented.  
Moreover, the two are distinct enough to push the work 
toward general applicability. 

ITLEs have been most successful in technical education, 
and we see our work as building on that success.  Rapid 
technology-driven changes in the subject matter of many 
fields have created a need for educational systems that are 
rapidly produced and easily updated, yet retain the high 
pedagogical quality of the best ITLEs.  The unified LT 
approach can provide precisely such a capacity by 
permitting collaboration with humans in both the learning 
and the teaching phases.  In the long term, we see the 
evolution of a new generation of educational software, 
centered around both students and teachers and integrated 
in its interactions with the two. 

Learning to Use Concept-Based Animation 
Developed in the context of the FLUENT project, our 
concept-based graphics and animation tool provides some 
100 operations for creating sketches and incorporating 
them into animations.  Even a non-programmer can create 
animations, define classes and create class instances that 
inherit the animations of its class.  It is also straightforward 
to specify that certain animated events occur when objects 
of two particular classes come into contact.  A teacher can 
thus establish an entire microworld that then permits a 
student to control the combination of events to produce 
meaningful, continuing situations. 
 The role of diagram software in a presentation is 
analogous to that of a human language in an ordinary 
conversation.  To converse meaningfully, you need 
something to say and a language to say it in.  Similarly, to 
make a presentation with diagrams, including animated 
ones, you need both domain knowledge and diagram 



ability.  These two kinds of knowledge are thus 
complementary.  Since it is easier to learn one thing at a 
time, the learning and teaching by machine and human 
should proceed counter-clockwise through Figure 2, from 
the upper left.  The left side of the figure has the machine 
(M) learning a domain from a human teacher-expert (T) in 
the usual MLKA manner.  M’s learning to diagram can then 

be grounded in this new knowledge.  Proceeding in a 
complementary manner, the human student (S) can then 
acquire diagram skill from the agent in a simple, familiar 
domain.  That knowledge can then support a partly 
graphical communication in which the human learner 
acquires new domain knowledge. 
 

H as domain expert
M learning  domain
primitives & relations

H as  expert
in everything

M with  domain knowledge,
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in everything

 
 

Figure 2  Four kinds of knowledge communication between human (H, in ovals) and machine (M, in boxes) 
 
 

The following are the key properties of our concept based 
animation tool: 

• There are many operations on points, segments, parts 
and figures.  

• There is symbolic as well as visual control of the 
graphics. 

• Animations include symbolic information along with 
key frames. 

• The graphics and animation are linked to a conceptual 
representation. 

• A builder-user can build animations, classes, objects, 
concepts and linkages. 

• An end user or the system can activate the currently 
meaningful animations. 

Figure 3 shows the major kinds of graphical and 
conceptual entities that have been implemented and the 
important relationships between them.  As an example of 
how to interpret the linkages in figure 3, the arrow from 
FIGURE on the graphical side to OBJECT on the conceptual 
side means that an object corresponds to the figures that 
depict it in various states. 
 The linkage to underlying conceptual representation is 
crucial to meaningful manipulation of the animated figures 
and to reasoning about their actions.  Together the 
graphics, animations, knowledge, reasoning and their 
mutual relationship support the acquisition and 
communication of knowledge.  As an example of the 
conceptual-graphical link, teachers and learners can: (i) 
associate graphical constructions to classes, (ii) 
parameterize the properties of classes, and (iii) create 
instances of those classes, having particular values for 
selected parameters. 
 

 

object figure/diagram

point

graphical partconceptual part trigger

actionplan animation

class

Conceptual

Gr aphical

 
 

Figure 3  Graphical and conceptual aspects of representation.  An arrow means that several instances of the type at its tail 
may correspond to a head instance.  The two-way arrow is a many-many mapping, and the line a one-one mapping. 

 
 

Chemistry 
Chemistry suits our purposes because it has rich, precise 
knowledge structures involving both symbolic and 

numerical computation, that are well suited to learning via 
our knowledge-based, interactive, animated diagrams, 
which are jointly manipulable by a person and a machine.  
Some of the Chemistry topics have the additional desirable 



property of having two or more different visual 
representations.  There are alternative visualizations for 
such concepts as element categories and molecule 
geometry and for various categories of chemical and 
physical processes.  The geometry of molecules, for 
example, can be represented and communicated as 
wireframe, ball and stick, or spacefilling models, each with 
its own advantages for manipulation, envisioning and 
problem-solving. 

Our full-length paper submitted to this conference 
(Hamburger and Tecuci, 1998) illustrates the use of the LT 
in the chemistry domain, showing how a chemistry teacher 
could teach the agent, through examples and explanations, 
and how the agent could then teach a student, imitating the 
way in which it was taught by the teacher.  We assume that 
the agent already has some knowledge about chemistry.   
 To teach the agent how various substances react, the 
teacher provides a specific example of a chemical reaction 
(such as NaOH + HCl → H2O +NaCl), informing the 
system about the reaction in several different ways.  One 
way is to interact with the explanation interface of 
Disciple, explaining to the agent the result of the reaction 
in terms that are known to the agent, that is, in terms of the 
concepts and the features from the semantic network. The 
teacher can also use the drawing tool presented in the 
preceding section to create a concept-based diagram and to 
annotate it using free text.  That tool can also produce 
animations. 
 

Goals 
Both MLKA and ITLE can benefit from the attempt to 
transfer knowledge between them.  Our strategy is to 
design a general theoretical framework for the learning and 
tutoring processes and to refine it as we implement a 
system that can support learning and tutoring in disparate 
domains.  We aspire to a more comprehensive and 
unifying view that can contribute to the development of 
new educational techniques and insight. 
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