

In Proceedings of the ITS-98 Workshop 2 - Pedagogical Agents, San Antonio, TX, 1998.

Architecture of a Pedagogical Agent
for Human-Computer Learning and Tutoring

Henry Hamburger and Gheorghe Tecuci

Department of Computer Science, George Mason University
MSN 4A5, 4400 University Dr., Fairfax, VA 22030-4444

{henryh, tecuci}@gmu.edu

Abstract
We propose an architecture for a pedagogical agent (or
learning tutor) that can learn from human tutors and then
tutor human learners. In addition to its direct practical
significance, the endeavor of designing and building such
agents provides a conceptual framework for integrating the
fields of intelligent tutoring-learning environments (ITLE)
and machine learning-based knowledge acquisition (MLKA).

An Approach to Unification
Machine Learning-based Knowledge Acquisition (MLKA)
systems and Intelligent Tutoring-Learning Environments
(ITLE) are engaged in the same activity except for a role
reversal: one system learns from humans and the other
helps humans learn. Nevertheless, the two kinds of
systems, as well as the fields of Machine Learning and
Intelligent Tutoring Systems, have grown up separately
and remain largely independent (but see Aimeur and
Frasson, 1995).
 We have begun to investigate, elucidate and integrate
the areas of potential symbiosis of MLKA and ITLE, with a
view to facilitating the transfer of knowledge from one
field to the other. Our interest is partly at the knowledge
level, but we are at least equally concerned with the
concrete goal of implementing a unified system with
practical benefits. One of us has built a large system,
DISCIPLE, that learns (Tecuci and Kodratoff, 1990; Tecuci
and Keeling, 1998; Tecuci, 1998). The other of us has
built one, FLUENT, that tutors (Hamburger, 1995;
Schoelles and Hamburger, 1996). That experience and the
actual software produced are contributing to the current
work described here. Both projects have put considerable
effort into tool-building. In the present work, we continue
to build development tools usable by teachers as well as by
researchers, enabling teacher-experts to be directly
involved in improving educational software.
 Our central integrative concept and implementation
project is the Learning Tutor (LT), defined as an intelligent
agent that can be directly taught by a human and can then
tutor human students. Such an agent can serve as an
asynchronous communication channel between a human
tutor and an unlimited number of human students, one at a

time. In the first phase of communication, the agent
behaves as an interactive MLKA system, learning directly
from a human tutor the domain knowledge and the tutorial
knowledge. Then, using the domain and tutorial
knowledge, the agent assumes the opposite role,
functioning as an ITLE.
 A key desideratum for an LT is natural communication.
The communication in each of the two phases is natural to
the extent that it resembles human tutorial communication.
Thus an LT needs natural language processing and a highly
flexible two-way graphics communication capability, both
functioning under the guidance of a tutorial discourse
framework.
 The actual construction of an LT drives our comparative
study of communication and representation strategies in
MLKA and ITLE systems. Both fields provide insights into
the appropriate characteristics for a shared internal
knowledge representation that serves the operations of
learning, tutoring and communicating meaningfully with
both human parties, in both linguistic and graphical media.
For the representation to be appropriate for
communication, it must support the elementary teaching
moves of both the human teacher and the agent teacher.
Results in human learning and human-computer interaction
complement ITLE work as guidance for communication.
Results in MLKA are enabling us to overcome the
knowledge acquisition bottleneck in the construction of
domains, curricula and examples for systems that support
human learning.
 The next section presents the architecture of the learning
tutor. After that we elaborate on the communication
issues. The final section is a discussion of our choices of
software and chemistry as domains in which the LT
operates. We also present a graphical tool, developed by
one of us, that enables a non-programmer to build concept-
based animations, which are seen to have the potential for
a key role in the LT’s communicative capabilities.

The Unified Architecture of
the Learning Tutor

A key aspect of our strategy of unification is to specify the
different kinds of knowledge required in the various

components of an ITLE and then to arrange for that
knowledge to be directly acquired from a human tutor by
MLKA methods. This approach leads to the LT architecture
shown here as Figure 1.

.

ITLE Engines

H
um

an
 T

ut
or

Tutoring Knowledge

Domain Knowledge

Student Model

MLKA Engine* Tutoring Engine

Inference Engine

E
nvironm

entE
nv

ir
on

m
en

t

In
te

rf
ac

e

H
um

an L
earner

Interface

Figure 1 An architecture for the Learning Tutor. Lines indicate two-way flow of information, arrows one way.
*The MLKA Engine has submodules for its various responsibilities as outlined in the text.

 Various components of the typical MLKA and ITLE are
shared inside the LT as follows. The MLKA Engine, the
Domain Knowledge and the Inference Engine constitute a
multistrategy apprenticeship learning system, the role of
which is to learn the expertise knowledge from the human
tutor. Of these three parts, the latter two constitute what is
known as the expertise module of an ITLE. Domain
knowledge must go beyond performance adequacy; it must
be pedagogically appropriate. This is a new demand for
LT construction, not previously faced by the independent
field of Knowledge Acquisition. Thus our strategy for the
problem of obtaining pedagogically appropriate domain
knowledge can involve altering the human’s stance. The
human in this interaction must now be both a tutor and an
expert at the same time. This tutor-expert must interact
with a view to getting things not only correct but also
comprehensible. Just as one communicates knowledge
differently to a beginning student than to a colleague, so
must the tutor-expert interact differently with an LT than
an expert does when imparting a domain to an expert
system. During the agent’s learning process, the MLKA
Engine continuously extends and improves the Domain
Knowledge until its domain quality and pedagogical form
are both good enough to serve as the expertise for tutoring.
 In addition to this more extensive domain knowledge,
the system also must acquire explicitly pedagogical
knowledge (as opposed to pedagogically appropriate
domain knowledge) for the tutorial component. In
FLUENT such knowledge takes the form of tutorial
schemas provided directly by a teacher-expert working
with a tool. In the DISCIPLE approach, the MLKA Engine,
the Tutoring Knowledge and the Tutoring Engine in Figure
1 are viewed as a multistrategy apprenticeship learning

system the role of which is to acquire tutoring knowledge.
The tutor has two top-level subcomponents, one involving
curriculum (choosing problems to pose to the student) and
one to communicate assistance in ways that are responsive
to both the problem state and the student (as represented in
the student model). Curriculum knowledge includes such
aspects as degrees of difficulty and the prerequisite
relationships among the various concepts and problems. It
is straightforward to acquire this kind of information. As
for communication, the approach is to call upon the tutor-
expert for the rationale behind choosing a particular form
of communication in a particular situation, by asking, in
effect, “explain why you have just given a hint” or
“explain why you have just given an explanation.” This
“why” is not an invitation to a free-form paragraph but is
part of a structured dialog using the LT’s communication
language. Such a scenario involves alternation, within a
MLKA session, between acquiring domain knowledge and
acquiring pedagogical knowledge.
 Yet a third relationship between the two agent roles
concerns both domain and tutorial modules, as follows.
Each concept or rule from the Domain Knowledge is
annotated with information indicating how it has been
learned from the human’s tutoring moves. The annotations
include examples from which the rule or concept has been
learned, as well as the various explanations or hints
provided by the human tutor. The resulting material then
becomes an augmentation to the Tutoring Knowledge of
the ITLE. The LT attempts to teach the human learner
similarly to the way it was taught by the human tutor, by
using these knowledge annotations from the human tutor.
 A fourth and final connection is that deploying MLKA
techniques within the ITLE not only promotes learning but

also supports the important ITLE function of student
modeling. Just as MLKA can build knowledge according
to an expert, so too it can build knowledge according to a
student, i.e., build a student model. Inferring an accurate
student model has long been a main and difficult research
goal in Intelligent Tutoring Systems. Our approach of
using MLKA to evolve the student model renders this task
much more manageable. Indeed, it allows the LT to verify
or extend the student model by engaging in a dialog with
the student and asking the student what it needs to know,
when trying to infer such knowledge would be too
difficult. This approach thus stakes out a position that
takes into account Self’s (1990) maxim - not to guess what
the student knows but let her tell you - yet remains
responsive to the individual student.

Communication

In order to create natural and compatible communication
links among the human tutor, the LT and the human
student, all the interactions are based on a common
communication repertoire that expresses various types of
teaching moves. In DISCIPLE these include providing
examples, hints, explanations, problems, definitions,
taxonomic and other facts, corrections, and confirmation of
partial corrections. These various forms of communication
have a spatial as well as a verbal component, notably the
diagrams that are so essential to technical communication.
In our work, the problem-solving communication between
the human tutor or student, on one side, and the LT on the
other side, involves knowledge-based, interactive,
animated diagrams in addition to textual and symbolic
interaction.

Since FLUENT is a conversational system, it too has
contributions to make to communication in the LT.
Specifically, we are incorporating the notions of views,
interaction types and tutorial schemas, described at some
length in the work cited above. An interaction type is a
short sequence of specified types of linguistic and spatial
moves by specified parties. In the Movecaster interaction
type, the student makes an action occur and the system
describes it. In a Commander interaction the system says
what to do, the student tries to do it and the system
comments on its comparison of the requested and actual
actions.

Linguistic move types within an interaction type include
DISCIPLE’s communication repertoire mentioned above as
well as FLUENT’s questions, command and statements.
The latter are elaborated by linguistic viewpoints or views,
which enable the natural language generation system to
take account of some discourse phenomena. They
distinguish, for example, between actions and the results of
those actions, as in “You picked up the box.” vs. “You are
(now) holding the box.”

Tutorial schemas allow a teacher-expert to organize
interaction types including Movecaster, Commander and
some others into a coherent educational session,

coordinated with meaningful, visible ongoing changes in
the underlying microworld situation. The situation is
coherent because its activities are guided by plans that
make sense in the particular domain. Technically a plan is
a flexible tree of subplans and ultimately actions, with
constraints on time-sequence where appropriate. The roles
in a plan are class-constrained variables, analogous to
function arguments. Execution of plans skips any subplans
or actions whose goals are currently met. The simplest
tutorial schema is just a plan and an interaction type. More
generally it can be a sequence of pairs, each consisting of a
plan and a regular expression of interaction types.

Two Domains
We have begun to develop the Learning Tutor to learn and
teach material in two domains. The first domain is the use
of a software tool. The particular software is our own tool
for creating concept-based diagrams and animations.
Besides providing a domain, this software also supports
the learning of other domains, especially technical ones
like our second domain, chemistry. Both of these topics
are useful, well-understood and problem-oriented.
Moreover, the two are distinct enough to push the work
toward general applicability.

ITLEs have been most successful in technical education,
and we see our work as building on that success. Rapid
technology-driven changes in the subject matter of many
fields have created a need for educational systems that are
rapidly produced and easily updated, yet retain the high
pedagogical quality of the best ITLEs. The unified LT
approach can provide precisely such a capacity by
permitting collaboration with humans in both the learning
and the teaching phases. In the long term, we see the
evolution of a new generation of educational software,
centered around both students and teachers and integrated
in its interactions with the two.

Learning to Use Concept-Based Animation
Developed in the context of the FLUENT project, our
concept-based graphics and animation tool provides some
100 operations for creating sketches and incorporating
them into animations. Even a non-programmer can create
animations, define classes and create class instances that
inherit the animations of its class. It is also straightforward
to specify that certain animated events occur when objects
of two particular classes come into contact. A teacher can
thus establish an entire microworld that then permits a
student to control the combination of events to produce
meaningful, continuing situations.
 The role of diagram software in a presentation is
analogous to that of a human language in an ordinary
conversation. To converse meaningfully, you need
something to say and a language to say it in. Similarly, to
make a presentation with diagrams, including animated
ones, you need both domain knowledge and diagram

ability. These two kinds of knowledge are thus
complementary. Since it is easier to learn one thing at a
time, the learning and teaching by machine and human
should proceed counter-clockwise through Figure 2, from
the upper left. The left side of the figure has the machine
(M) learning a domain from a human teacher-expert (T) in
the usual MLKA manner. M’s learning to diagram can then

be grounded in this new knowledge. Proceeding in a
complementary manner, the human student (S) can then
acquire diagram skill from the agent in a simple, familiar
domain. That knowledge can then support a partly
graphical communication in which the human learner
acquires new domain knowledge.

H as domain expert
M learning domain
primitives & relations

H as expert
in everything

M with domain knowledge,
learning to diagram it

H learning primitives &
relations of new domain

M as expert
in everything

H with domain knowledge,
learning to diagram it

M as expert
in everything

Figure 2 Four kinds of knowledge communication between human (H, in ovals) and machine (M, in boxes)

The following are the key properties of our concept based
animation tool:

• There are many operations on points, segments, parts
and figures.

• There is symbolic as well as visual control of the
graphics.

• Animations include symbolic information along with
key frames.

• The graphics and animation are linked to a conceptual
representation.

• A builder-user can build animations, classes, objects,
concepts and linkages.

• An end user or the system can activate the currently
meaningful animations.

Figure 3 shows the major kinds of graphical and
conceptual entities that have been implemented and the
important relationships between them. As an example of
how to interpret the linkages in figure 3, the arrow from
FIGURE on the graphical side to OBJECT on the conceptual
side means that an object corresponds to the figures that
depict it in various states.
 The linkage to underlying conceptual representation is
crucial to meaningful manipulation of the animated figures
and to reasoning about their actions. Together the
graphics, animations, knowledge, reasoning and their
mutual relationship support the acquisition and
communication of knowledge. As an example of the
conceptual-graphical link, teachers and learners can: (i)
associate graphical constructions to classes, (ii)
parameterize the properties of classes, and (iii) create
instances of those classes, having particular values for
selected parameters.

object figure/diagram

point

graphical partconceptual part trigger

actionplan animation

class

Conceptual

Gr aphical

Figure 3 Graphical and conceptual aspects of representation. An arrow means that several instances of the type at its tail
may correspond to a head instance. The two-way arrow is a many-many mapping, and the line a one-one mapping.

Chemistry
Chemistry suits our purposes because it has rich, precise
knowledge structures involving both symbolic and

numerical computation, that are well suited to learning via
our knowledge-based, interactive, animated diagrams,
which are jointly manipulable by a person and a machine.
Some of the Chemistry topics have the additional desirable

property of having two or more different visual
representations. There are alternative visualizations for
such concepts as element categories and molecule
geometry and for various categories of chemical and
physical processes. The geometry of molecules, for
example, can be represented and communicated as
wireframe, ball and stick, or spacefilling models, each with
its own advantages for manipulation, envisioning and
problem-solving.

Our full-length paper submitted to this conference
(Hamburger and Tecuci, 1998) illustrates the use of the LT
in the chemistry domain, showing how a chemistry teacher
could teach the agent, through examples and explanations,
and how the agent could then teach a student, imitating the
way in which it was taught by the teacher. We assume that
the agent already has some knowledge about chemistry.
 To teach the agent how various substances react, the
teacher provides a specific example of a chemical reaction
(such as NaOH + HCl → H2O +NaCl), informing the
system about the reaction in several different ways. One
way is to interact with the explanation interface of
Disciple, explaining to the agent the result of the reaction
in terms that are known to the agent, that is, in terms of the
concepts and the features from the semantic network. The
teacher can also use the drawing tool presented in the
preceding section to create a concept-based diagram and to
annotate it using free text. That tool can also produce
animations.

Goals
Both MLKA and ITLE can benefit from the attempt to
transfer knowledge between them. Our strategy is to
design a general theoretical framework for the learning and
tutoring processes and to refine it as we implement a
system that can support learning and tutoring in disparate
domains. We aspire to a more comprehensive and
unifying view that can contribute to the development of
new educational techniques and insight.

Acknowledgments. Part of this research was done in the
Learning Agents Laboratory. The research of the Learning
Agents Laboratory is supported by the AFOSR grant
F49620-97-1-0188, as part of the DARPA’s High
Performance Knowledge Bases Program, by the DARPA
contract N66001-95-D-8653, as part of the Computer-
Aided Education and Training Initiative, and by the NSF
grant No. CDA-9616478, as part of the program
Collaborative Research on Learning Technologies.

References
Aïmeur, E. and Frasson, C. 1995. Eliciting the learning
context in co-operative tutoring systems. In Proceedings
of the IJCAI-95 Workshop on Modeling Context in
Knowledge Representation and Reasoning.

Hamburger, H. 1995. Structuring two-medium dialog for
language learning. In M. Holland, J. Kaplan and M. Sams
(Eds.) Intelligent Language Tutors: Balancing Theory and
Technology. Hillsdale, NJ: L. Erlbaum Associates.

Hamburger H. and Tecuci G. 1998. Toward a Unification
of Human-Computer Learning and Tutoring. In H.M. Halff
and B. Goettl (Eds.) Intelligent Tutoring Systems:
Proceedings of the Fourth International Conference, ITS
’98, San Antonio. Berlin: Springer.

Schoelles, M. and Hamburger, H. 1996. Teacher-usable
exercise design tools. In C. Frasson, G. Gauthier and A.
Lesgold (Eds.) Intelligent Tutoring Systems: Proceedings
of the Third International Conference, ITS ’96, Montreal.
Berlin: Springer.

Self, J.A. 1990. Bypassing the intractable problem of
student modeling. In C. Frasson and G. Gauthier (Eds.)
Intelligent Tutoring Systems: At the Crossroads of
Artificial Intelligence and Education. Norwood, NJ:
Ablex Publ. Co.

Tecuci G. and Kodratoff Y. 1990. Apprenticeship
Learning in Imperfect Theory Domains. In Y. Kodratoff
and R. S. Michalski (Eds.), Machine Learning: An
Artificial Intelligence Approach, vol. 3, Morgan
Kaufmann, 514-551.

Tecuci G. and Keeling H. 1998. Developing Intelligent
Educational Agents with the Disciple Learning Agent
Shell. In H.M. Halff and B. Goettl (Eds.) Intelligent
Tutoring Systems: Proceedings of the Fourth International
Conference, ITS ’98, San Antonio. Berlin: Springer.

Tecuci G. 1998. Building Intelligent Agents: An
Apprenticeship Multistrategy Learning Theory,
Methodology, Tool and Case Studies, Academic Press.

