
Exhibit at the International Conference on Intelligent Tutoring Systems, ITS'98, San Antonio, Texas, 1998.

The Disciple Learning Agent Shell

and a Disciple Test Generation Agent

Gheorghe Tecuci, Harry Keeling, Tomasz Dybala, Kathryn Wright, David Webster

Department of Computer Science
MSN 4A5, George Mason University

4400 University Dr., Fairfax, VA 22030-4444
phone: (703) 993-1722, fax: (703) 993-1710, email: tecuci@gmu.edu

Abstract

The Disciple Learning Agent Shell is a tool for developing intelligent agents where an expert
teaches the agent how to perform domain-specific tasks in a way that resembles the way the
expert would teach an apprentice, by giving the agent examples and explanations as well as by
supervising and correcting its behavior. Disciple can be used by educators to build educational
agents that will assist them in various ways. Such an educational agent that was built with
Disciple generates history tests for middle school students, assisting the teacher in the
assessment of students’ understanding and use of higher-order thinking skills. The agent can also
provide intelligent feedback to the student in the form of hints, answer and explanations. The test
generation agent and the process of building it are presented in (Tecuci and Keeling, 1998). We
propose to demonstrate both the Disciple shell and the test generation agent.

1. Disciple Learning Agent Shell

Disciple is an apprenticeship, multistrategy learning approach for developing intelligent agents
where an expert teaches the agent how to perform domain-specific tasks in a way that resembles
the way the expert would teach an apprentice, by giving the agent examples and explanations as
well as by supervising and correcting its behavior. The central idea of the Disciple approach is to
facilitate the agent building process by the use of synergism at several levels. First, there is the
synergism between different learning methods employed by the agent. By integrating
complementary learning methods (such as inductive learning from examples, explanation-based
learning, learning by analogy, learning by experimentation) in a dynamic, task-dependent way,
the agent is able to learn from the human expert in situations in which no single strategy learning
method would be sufficient. Second, there is the synergism between teaching (of the agent by the
expert) and learning (from the expert by the agent). For instance, the expert may select
representative examples to teach the agent, may provide explanations, and may answer agent’s
questions. The agent, on the other hand, will learn general rules that are difficult to be defined by
the expert, and will consistently integrate them into its knowledge base. The Disciple approach is
implemented in a tool, called Disciple Learning Agent Shell, that significantly reduces the
involvement of the knowledge engineer in the process of building an intelligent agent.

The Disciple Learning Agent Shell is implemented in Common LISP, and runs on Macintosh. It
consists of four main domain independent components shown in the light gray area of Figure 1.
They are:

Exhibit at the International Conference on Intelligent Tutoring Systems, ITS'98, San Antonio, Texas, 1998.

 2

• a knowledge acquisition and learning component for developing and improving the
knowledge base, with a domain-independent graphical user interface;

• a basic problem solving component which provides basic problem solving operations;
• a knowledge base manager which controls access and updates to the knowledge base;
• an empty knowledge base to be developed for the specific application domain.

The two components in the dark gray area are the domain dependent components that need to be
developed and integrated with the Disciple shell to form a customized agent that performs
specific tasks in an application domain. They are:

• a specialized problem solver which provides the specific functionality of the agent;
• a domain-specific graphical user interface.

Concept Editor
Concept Browser
Association Browser
Dictionary Browser/Editor

Rule Learner
Rule Editor
Rule Browser

Rule Refiner
Example Editor
Explanation Grapher

Transitivity and Inheritance
Network Matching
Rule Matching
Example Generation

DISCIPLE
ShellKNOWLEDGE BASE

KNOWLEDGE BASE MANAGER

KNOWLEDGE ACQUISITION AND LEARNING COMPONENT

I n t e l l i g e n t A g e n t

Knowledge Query Language

SPECIALIZED
PROBLEM SOLVER

GRAPHICAL USER INTERFACE

DOMAIN-INDEPENDENT GRAPHICAL USER INTERFACE

Figure 1: Architecture of the Disciple Shell

In the case of the test generation agent built with Disciple, the specialized problem solver is the
test generator that also builds and maintains a student model. Two domain specific interfaces
were built. One was built to facilitate the communication between the history expert/teacher and
the agent. The other was built to facilitate communication between the agent and the students.

Exhibit at the International Conference on Intelligent Tutoring Systems, ITS'98, San Antonio, Texas, 1998.

 3

We will demonstrate the use of the Disciple Learning Agent Shell to build an educational agent
that generates history tests for students. We will also demonstrate the use of the test generation
agent.

2 Using the Disciple shell to build the test generation agent

First, the knowledge engineer customizes the general Disciple learning agent shell into a specific
learning shell for test generation, by defining several interface modules. One is the Source
Viewer that allows the agent to access and display historical sources from a multimedia
database. Another is a Customized Example Editor that allows the expert to give examples of
test questions using natural language templates. Yet another is a test interface that allows the
agent to display test questions. The knowledge engineer also builds a test generation engine that
relies on example generation, a basic problem solving operation supported by the Disciple shell
(see Figure 1).

After the learning shell for test generation has been built, the history expert or teacher interacts
with it to develop its initial knowledge base and to teach it higher-order thinking skills such as
how to judge the relevance of a historical source to a given task. The expert starts by choosing a
historical theme (such as Slavery in America) for which the agent will generate test questions.
Then the expert identifies a set of historical concepts that are appropriate and necessary to be
learned by the students. The expert also identifies a set of historical sources that illustrate these
concepts and will be used in test questions. All these concepts and the historical sources are
represented by the history expert/teacher in the knowledge base of the assessment agent, by
using the various editors and browsers of the customized learning agent shell (see Figure 1). This
initial knowledge base of the agent is assumed to be incomplete and even possibly partially
incorrect and will be improved during the next stages of knowledge base development.

Once the initial knowledge base is built, the expert teaches the agent higher-order thinking skills
such as judging the relevance of a source to a given task. During this process the agent learns
reasoning rules and also extends and improves the semantic network of objects and concepts.

To teach the agent how to judge the relevance of a source to a given task, the history expert
interacts with the Customized Example Editor to provide an example of a task and a source
relevant to this task. The agent tries to understand why the source is relevant to the given task by
using various heuristics to propose plausible explanations from which the expert has to choose
the correct ones. The expert may also provide additional explanations. Based on the selected
explanations and on the initial example the agent automatically generates an initial rule. Next,
the agent generates examples analogous to the initial example. These will be similar tasks and
sources that the agent assumes to be relevant. Each generated example is shown to the teacher
who is asked to accept it as correct or to reject it, thus characterizing it as a positive or a negative
example of the rule. These examples are used to refine the rule. Other rules for judging the
relevance of historical sources to other types of tasks are learned in a similar fashion.

The test generation agent is implemented in Common LISP, except for the interface which is
implemented in JAVA, to allow the agent to run on different platforms.

3. The test generation agent for higher order thinking skills in history

Exhibit at the International Conference on Intelligent Tutoring Systems, ITS'98, San Antonio, Texas, 1998.

 4

The built agent generates history tests to assist in the assessment of students’ understanding and
use of higher-order thinking skills, such as the evaluation of historical sources for relevance. To
motivate the middle school students, for which this agent was developed, and to provide an
element of game playing, the agent employs a journalist metaphor. It asks the students to assume
the role of a novice journalist who has to complete assignments from the Editor. One assignment
could be to write an article on the experience of African American women during the Civil War.
Within this context, the students are given source material and asked various questions that
would require them to exercise higher-order thinking skills in much the way journalists do when
they complete their assignments and prepare stories for publication.

The agent dynamically generates a test question, based on a student model, together with the
answer, hints and explanations. Figure 2 shows such a test question generated by the agent. The
student is given a task, a historical source and three possible reasons why the source is relevant
to the task. He/she has to investigate the source and decide which reason(s) account for the fact
that the source is relevant to the task. The student is instructed to check the box next to the
correct reason(s). No check means that the reason is not correct. In the presented example, the
student has correctly indicated that only reason “C“ explains why the source ‘Christmas in
Virginia’ is relevant to the task. The agent has displayed feedback that evaluates the student’s
answer.

Figure 2: Why relevant test question with feedback for right answer*

* Picture reproduced from LC-USZ62-30813, Library of Congress, Prints & Photographs Division, Civil War Photographs

Exhibit at the International Conference on Intelligent Tutoring Systems, ITS'98, San Antonio, Texas, 1998.

 5

The agent has two modes of operation: final exam mode and self-assessment mode. In the final
exam mode, the agent generates an exam consisting of a set of test questions of different levels
of difficulty. The student has to answer one test question at a time and, after each question, he or
she receives the correct answer and an explanation of the answer. In the self-assessment mode,
the student chooses the type of test question to solve, and will receive, on request, feedback in
the form of hints to answer the question, the correct answer, and some or all the explanations of
the answer. That is, in the self-assessment mode, the agent also tutors the student. The test
questions are generated such that all students interacting with the agent are likely to receive
different tests even if they follow exactly the same interaction pattern. Moreover, the agent
builds and maintains a student model and uses it in the process of test generation. For instance,
to the extent possible, the agent tries to generate test questions that involve historical sources that
have not been investigated by the student, or historical sources that were not used in previous
tests for that student. The number of test questions that the agent can generate is of the order of
105.

Acknowledgments
This research was supported by the DARPA contract N66001-95-D-8653, as part of the
Computer-Aided Education and Training Initiative, directed by Kirstie Bellman. Partial support
was also provided by the NSF grant No. CDA-9616478, as part of the program Collaborative
Research on Learning Technologies, directed by Caroline Wardle.

Reference
Tecuci G. and Keeling H. (1998), Developing Intelligent Educational Agents with the Disciple
Learning Agent Shell, submitted to ITS’98.

