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Abstract 
This paper introduces the concept of learning agent shell as 
a new class of tools for rapid development of practical end-
to-end knowledge-based agents, by domain experts, with 
limited assistance from knowledge engineers. A learning 
agent shell consists of a learning and knowledge acquisition 
engine as well as an inference engine and supports building 
an agent with a knowledge base consisting of an ontology 
and a set of problem solving rules. The paper describes a 
specific learning agent shell and its associated agent build-
ing methodology. The process of developing an agent relies 
on importing ontologies from existing repositories of 
knowledge, and on teaching the agent how to perform 
various tasks, in a way that resembles how an expert would 
teach a human apprentice when solving problems in 
cooperation. The shell and methodology represent a 
practical integration of knowledge representation, 
knowledge acquisition, learning and problem solving. This 
work is illustrated with an example of developing a 
hierarchical non-linear planning agent. 

Introduction 
This paper describes recent progress in developing an 
integrated shell and methodology for rapid development of 
practical end-to-end knowledge-based agents, by domain 
experts, with limited assistance from knowledge engineers.  
 We use the term "knowledge-based agent" to broadly 
denote a knowledge based system that interacts with a 
subject matter expert (SME) to learn from the expert how 
to assist him or her with various tasks.  
 Our work advances the efforts of developing methods, 
tools, and methodologies for more rapidly building 
knowledge-based systems. One of the early major 
accomplishments of these efforts was the concept of expert 
system shell (Clancey 1984). An expert system shell 
consists of a general inference engine for a given expertise 
domain (such as diagnosis, design, monitoring, or 
interpretation), and a representation formalism for 
encoding the knowledge base for a particular application in 
that domain.  
 The idea of the expert system shell emerged from the 
architectural separation between the general inference 
engine and the application-specific knowledge base, and 
the goal of reusing the inference engine for a new system.  
 Currently, we witness a similar separation at the level of 
the knowledge base, which is more and more regarded as 
consisting of two main components: an ontology that 
defines the concepts from the application domain, and a set 
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of problem solving rules (methods) expressed in terms of 
these concepts.  
 While an ontology is characteristic to a certain domain 
(such as an ontology of military units, or an ontology of 
military equipment), the rules are much more specific, 
corresponding to a certain type of application in that 
domain (e.g. rules for an agent that assists a military 
commander in critiquing courses of action, or rules for an 
agent that assists in planning the repair of damaged bridges 
or roads).  
 The emergence of domain ontologies is primarily a 
result of terminological standardization in more and more 
domains to facilitate automatic processing of information, 
particularly information retrieval. Some of existing 
ontologies are UMLS (UMLS 1998), CYC (Lenat 1995), 
and WordNet (Fellbaum 1998). 
 The availability of domain ontologies raises the 
prospects of sharing and reusing them when building a 
new system. However, sharing and reusing the components 
of different knowledge representation systems are hard 
research problems because of the incompatibilities in their 
implicit knowledge models. Recently, the Open 
Knowledge Base Connectivity (OKBC) protocol has been 
developed as a standard for accessing knowledge bases 
stored in different frame representation systems (Chaudhri 
et al. 1998). OKBC provides a set of operations for a 
generic interface to such systems. There is also an ongoing 
effort of developing OKBC servers for various systems, 
such as Ontolingua (Farquhar et al. 1996) and Loom 
(MacGregor 1991). These servers are becoming 
repositories of reusable ontologies and domain theories, 
and can be accessed using the OKBC protocol. 
 The existence of domain ontologies facilitates the 
process of building the knowledge base, which may reduce 
to one of reusing an existing ontology and defining the 
application specific problem solving rules. This effort, 
however, should not be underestimated. Several decades of 
knowledge engineering attests that the traditional process 
by which a knowledge engineer interacts with a domain 
expert to manually encode his or her knowledge into rules 
is long, difficult and error-prone. Also, automatic learning 
of rules from data does not yet provide a practical solution 
to this problem. An alternative approach to acquiring 
problem solving rules is presented in (Tecuci 1998). In this 
approach an expert interacts directly with the agent to 
teach it how to perform domain specific tasks. This 
teaching of the agent is done in much the same way as 
teaching a student or apprentice, by giving the agent 
examples and explanations, as well as supervising and 
correcting its behavior. During the interaction with the 
expert the agent learns problem solving rules by 
integrating a wide range of knowledge acquisition and 
machine learning techniques, such as apprenticeship 
learning, empirical inductive learning from examples and 
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explanations, analogical learning and others. 
 Based on these developments and observations, we 
propose the concept of "learning agent shell" as a tool for 
building intelligent agents by domain experts, with limited 
assistance from knowledge engineers. A learning agent 
shell consists of a learning and knowledge acquisition 
engine and an inference engine that support building an 
agent with a knowledge base composed of an ontology and 
a set of problem solving rules. 
 In this paper we present the Disciple Learning Agent 
Shell (Disciple-LAS) and its methodology for rapid 
development of knowledge based agents, which relies 
upon importing ontologies from existing repositories using 
the OKBC protocol and on teaching the agents to perform 
various tasks through cooperative problem solving and 
apprenticeship multistrategy learning. Among the major 
developments of Disciple-LAS with respect to previous 
versions of Disciple, we could mention: 
• the adoption of the OKBC knowledge model as the basic 

representation of Disciple's ontology and the extension 
of the Disciple's apprenticeship multistrategy learning 
methods to deal with this more powerful knowledge 
model. These methods have become more knowledge-
intensive and less dependent on expert's help, especially 
through the use of more powerful forms of analogical 
reasoning. The primary motivation of this extension was 
to facilitate the ontology import process. 

• the development and integration into Disciple of a 
general purpose cooperative problem solver, based on 
task reduction. It can run both in a step by step mode 
and in autonomous mode. 

• the development of an integrated methodology for 
building end-to-end agents. 

With respect to the Disciple-LAS shell and methodology 
we formulate the following three claims: 
• they enable rapid acquisition of relevant problem solving 

knowledge from subject matter experts, with limited 
assistance from knowledge engineers; 

• the acquired problem solving knowledge is of a good 
enough quality to assure a high degree of correctness of 
the solutions generated by the agent; 

• the acquired problem solving knowledge assures a high 
performance of the problem solver. 

The rest of the paper is organized as follows. We first 
introduce the Disciple modeling of an application domain. 
Then we present the architecture of Disciple-LAS, the 
specification of an agent built with Disciple, and the agent 
building methodology. We present experimental results of 
building the specified agent, and we conclude the paper. 

Domain Modeling for Integrated Knowledge 
Acquisition, Learning and Problem Solving 

We claim that the Disciple modeling of an application 
domain provides a natural way to integrate knowledge 
representation, knowledge acquisition, learning and 
problem solving, into an end-to-end shell for building 
practical knowledge-based agents.  
 As problem solving approach we have adopted the 
classical task reduction paradigm. In this paradigm, a task 
to be accomplished by the agent is successively reduced to 
simpler tasks until the initial task is reduced to a set of 

elementary tasks that can be immediately performed.  
 Within this paradigm, an application domain is modeled 
based on six types of knowledge elements: 
 1. Objects that represent either specific individuals or 
sets of individuals in the application domain. The objects 
are hierarchically organized according to the generalization 
relation. 
 2. Features and sets of features that are used to further 
describe objects, other features and tasks. Two important 
features of any feature are its domain (the set of objects 
that could have this feature) and its range (the set of 
possible values of the feature). The features may also 
specify functions for computing their values, and are also 
hierarchically organized. 
 3. Tasks and sets of tasks that are hierarchically 
organized. A task is a representation of anything that the 
agent may be asked to accomplish. 
 The objects, features and tasks are represented as 
frames, according to the OKBC knowledge model, with 
some extensions. 
 4. Examples of task reductions, such as:  
  TR: If the task to accomplish is T1  
   then accomplish the tasks T11, … , T1n 

A task may be reduced to one simpler task, or to a 
(partially ordered) set of tasks. Correct task reductions are 
called positive examples and incorrect ones are called 
negative examples. 

 5. Explanations of task reduction examples. An 
explanation is an expression of objects and features that 
indicates why a task reduction is correct (or why it is 
incorrect). It corresponds to the justification given by a 
domain expert to a specific task reduction:  

the task reduction TR is correct because E 

One could more formally represent the relationship 
between TR and E as follows: 
E � TR, or E � (accomplish(T1) � accomplish(T11, ... , T1n)) 

This interpretation is useful in a knowledge acquisition and 
learning context where the agent tries to learn from a 
domain expert how to accomplish a task and why the 
solution is correct. 
 However, the example and its explanation can also be 
represented in the equivalent form: 
 ((accomplish(T1) & E) � accomplish(T11, ... , T1n)) 

which, in a problem solving context, is interpreted as: 
 If the task to accomplish is T1         (1) 
  and E holds  
 then accomplish the tasks T11, ... , T1n 

 6. Rules. The rules are generalizations of specific 
reductions, such as (1), and are learned by the agent 
through an interaction with the domain expert, as described 
in (Tecuci, 1998): 
 If the task to accomplish is T1g and       (2) 
  Eh holds  
 then accomplish the tasks T11g, ... , T1ng 

In addition to the rule's condition that needs to hold in 
order for the rule to be applicable, the rule may also have 
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several "except-when" conditions that should not hold, in 
order for the rule to be applicable. An except-when 
condition is a generalization of the explanation of why a 
negative example of a rule does not represent a correct task 
reduction. Finally, the rule may also have "except-for" 
conditions (that specify instances that are negative 
exceptions of the rule) and "for" conditions (that specify 
positive exceptions). 
 The ontology of objects, features and tasks serves as the 
generalization hierarchy for Disciple-LAS. An example is 
basically generalized by replacing its objects with more 
general objects from the ontology. In the current version of 
Disciple-LAS the features and the tasks are not 
generalized, but they are used for analogical reasoning and 
learning. 
 Another important aspect of Disciple is that the ontology 
is itself evolving during knowledge acquisition and 
learning. This distinguishes Disciple from most of the 
other learning agents that make the less realistic 
assumption that the representation language for learning is 
completely defined before any learning could take place. 
 Because the Disciple agent is an incremental learner, 
most often its rules are only partially learned. A partially 
learned rule has two conditions, a plausible upper bound 
(PUB) condition Eg which, as an approximation, is more 
general than the exact condition Eh, and a plausible lower 
bound (PLB) condition Es which, as an approximation, is 
less general than Eh: 
 If the task to accomplish is T1g and       (3) 
  PUB: Eg holds  
  PLB: Es holds 
 then accomplish the tasks T11g, ... , T1ng 

We will refer to such a rule as a plausible version space 
rule, or PVS rule. Plausible version space rules are used in 
problem solving to generate task reductions with different 
degrees of plausibility, depending on which of its 
conditions are satisfied. If the PLB condition is satisfied, 
then the reduction is very likely to be correct. If PLB is not 
satisfied, but PUB is satisfied, then the solution is 
considered only plausible. The same rule could potentially 
be applied for tasks that are similar to T1g. In such a case 
the reductions would be considered even less plausible. 
 Any application of a PVS rule however, either 
successful or not, provides an additional (positive or 
negative) example, and possibly an additional explanation, 
that are used by the agent to further improve the rule. 

Architecture of the Disciple-LAS 
The architecture of Disciple-LAS is presented in Figure 1. 
It includes seven main components, shown in the light gray 
area, which are domain independent: 
• a knowledge acquisition and learning component for 

developing and improving the KB. It contains several 
modules for rule learning, rule refinement, and 
exception handling, and a set of browsers and editors, 
each specialized for one type of knowledge (objects, 
features, tasks, examples, explanations and rules).  

• a domain-independent problem solving engine based on 
task reduction. It supports both interactive (step by step) 
problem solving and autonomous problem solving. 

• a knowledge import/export component for accessing 
remote ontologies located on OKBC servers, or for 

importing knowledge from KIF files (Genesereth and 
Fikes, 1992). 

• a knowledge base manager which controls access and 
updates to the knowledge base. Each module of Disciple 
can access the knowledge base only through the 
functions of the KB manager. 

• an OKBC layer which assures a uniform management of 
all the elements of the knowledge base, according to the 
OKBC knowledge model. It also allows future 
integration with Disciple of efficient memory manage-
ment systems, such as PARKA (Stoffel et al. 1997). 

• an initial domain-independent knowledge base to be 
developed for the specific application domain. This 
knowledge base contains the elements that will be part 
of each knowledge base built with Disciple, such as an 
upper-level ontology. 

• a window-based, domain-independent, graphical user 
interface, intended to be used primarily by the 
knowledge engineer. 

Figure 1: General architecture of the Disciple-LAS 
 
The two components in the dark gray area are the domain 
dependent components that need to be developed and 
integrated with the Disciple-LAS shell to form a 
customized agent for a specific application. They are: 
• a domain-dependent graphical user interface which is 

built for the specific agent to allow the domain experts 
to communicate with the agent as close as possible to the 
way they communicate in their environment. 

• a domain-specific problem solving component that 
extends the basic task-reduction engine in order to 
satisfy the specific problem solving requirements of the 
application domain. 

Disciple-LAS is implemented in JAVA and LISP, in a 
client-server architecture that assures portability, multi-
user development of agents, and fast (socket) connection. 

Rapid Development of a Workaround Agent 
The integrated Disciple-LAS and methodology were 
developed as part of the DARPA's High Performance 
Knowledge Bases Program (Cohen et al. 1998), and were 
applied to rapidly build a planning agent for solving the 
workaround challenge problem. We will use this problem 
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to illustrate the Disciple methodology. The problem 
consisted of assessing how rapidly and by what method a 
military unit can reconstitute or bypass damage to an 
infrastructure, such as a damaged bridge or a cratered road 
(Alphatech 1998).  
 The input to the agent includes two elements: (1) a 
description of the damage (e.g. a span of the bridge is 
dropped and the area is mined), and of the terrain (e.g. the 
soil type, the slopes of the river's banks, the river's speed, 
depth and width), (2) a detailed description of the 
resources in the area that could be used to repair the 
damage. This includes a description of the engineering 
assets of the military unit that has to workaround the 
damage, as well as the descriptions of other military units 
in the area that could provide additional resources. 
 The output of the agent consists of the most likely repair 
strategies, each described in terms of three elements: (1) a 
reconstitution schedule, giving the transportation capacity 
of the damaged link (bridge, road or tunnel), as a function 
of time, including both a minimum time and an expected 
time; (2) a partially ordered plan of engineering actions to 
perform the repair, and the minimum as well as the 
expected time that each of these actions require; and (3) a 
set of required resources for the entire plan and for each 
action. 
 Workaround generation requires detailed knowledge 
about the capabilities of various types of engineering 
equipment and about their use. For example, repairing 
damage to a bridge typically involves different types of 
mobile bridging equipment and earth moving equipment. 
Each kind of mobile bridge takes a characteristic amount 
of time to deploy, requires different kinds of bank 
preparation, and is owned by different echelons in the 
military hierarchy. This information was acquired from 
military experts and Army field manuals. 

The Methodology for Building Agents 
In this section we will briefly present the main steps of the 
integrated Disciple-LAS methodology for building end-to-
end agents, stressing the characteristic features of this 
methodology and illustrating them with informal intuitive 
examples from its application to the development of the 
workaround agent described above. The steps are to be 
executed in sequence but at each step one could return to 
any of the previous steps to fix any discovered problem. 
1. Specification of the problem 
The SME and the knowledge engineer generally 
accomplish this step. In the HPKB program, the 
workaround challenge problem was defined in a 161-page 
report created by Alphatech (1998). This report already 
identified many concepts needed to be represented in 
agent’s ontology, such as military units, engineering 
equipment, types of damage, and geographical features of 
interest. Therefore, it provided a significant input to the 
ontology building process. 
2.Modeling the problem solving process as task reduction 
Once the problem is specified, the expert and the 
knowledge engineer have to model the problem solving 
process as task reduction, because this is the problem 
solving approach currently supported by the Disciple shell. 
However, the knowledge acquisition and learning methods 

of Disciple are general, and they could be applied in 
conjunction with other types of problem solvers, this being 
one of our future research directions. 

In the case of the workaround challenge problem, task 
reduction proved to actually be a very natural way to 
model it, the problem solver being a hierarchical non-
linear planner. 

During the modeling process, the domain is partitioned  
into classes of typical problem solving scenarios, and for  
each such scenario, an informal task reduction tree is 
defined. Examples of problem solving scenarios for the 
workaround domain are: workaround a damaged bridge by 
performing minor preparation to install a fixed bridge over 
the river, workaround a damaged bridge by performing gap 
reduction to install a fixed bridge, workaround a damaged 
bridge through fording, workaround a gap in the bridge by 
using a fixed bridge, workaround a damaged bridge by 
installing a ribbon bridge, etc. 

There are several important results of the modeling 
process: (1) an informal description of the agent’s tasks is 
produced, (2) additional necessary concepts and features 
are identified, (3) conceptual task reduction trees are 
produced that will guide the training of the agent by the 
domain expert. 
3. Developing the customized agent 
For the workaround domain, the task reduction engine had 
to be customized by including a component for ordering 
the generated plans based on the minimum time needed to 
execute them, and by generating a summary description of 
each plan. Also, an interface for displaying maps with the 
damaged area was integrated into the agent architecture. 
4. Importing concepts and features from other ontologies 
As a result of the first two steps of the methodology, a 
significant number of necessary concepts and features have 
been identified. Interacting with the Knowledge 
Import/Export Module, the domain expert and the 
knowledge engineer attempt to import the descriptions of 
these concepts from an OKBC server. The expert can 
select a concept or its entire sub-hierarchy and the 
knowledge import module will automatically introduce this 
new knowledge into Disciple’s knowledge base. This 
process involves various kinds of verifications to maintain 
the consistency of Disciple’s knowledge. 

In the case of the HPKB experiment, we imported from 
the LOOM server (MacGregor, 1991) elements of the 
military unit ontology, as well as various characteristics of 
military equipment (such as their tracked and wheeled 
military load classes). The extent of knowledge import was 
more limited than it could have been because the LOOM’s 
ontology was developed at the same time as that of 
Disciple, and we had to define concepts that have later 
been also defined in LOOM and could have been 
imported. 

In any case, importing those concepts proved to be very 
helpful, and has demonstrated the ability to reuse 
previously developed knowledge. 

5. Extending the ontology 
The Disciple shell contains specialized browsing and 
editing tools for each type of knowledge element. It 
contains an object editor, a feature editor, a task editor, an 
example editor, a rule editor, a hierarchy browser and an 
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association browser. We have defined a specialized editor 
for each type of knowledge element to facilitate the 
interaction with the domain expert. 

Using these tools, the domain expert and the knowledge 
engineer will define the rest of the concepts and features 
identified in steps 1 and 2 (that could not be imported), as 
well as the tasks informally specified in step 3. New tasks, 
objects and features, could also be defined during the next 
step of training the agent. 
6. Training the agent for its domain-specific tasks 
While the previous steps are more or less standard in any 
agent building methodology (with the possible exception 
of the agent customization step and the ontology importing 
step), the training of the agent is a characteristic step of the 
Disciple agent building methodology.  

The main result of this step is a set of problem solving 
rules. Defining correct problem solving rules in a 
traditional knowledge engineering approach is known to be 
very difficult. The process implemented in Disciple is 
based on the following assumptions: 
• it is easier for an SME to provide specific examples of 

problem solving episodes than general rules;  
• it is easier for an SME to understand a phrase in agent's 

language (such as an example or an explanation) than to 
create it; 

• it is easier for an SME to specify hints on how to solve a 
problem than to give detailed explanations; 

• it is easier for the agent to assist the SME in the 
knowledge acquisition process if the agent has more 
knowledge.  

As a consequence, Disciple incorporates a suite of methods 
that reduce knowledge acquisition and learning from an 
SME to the above simpler operations, and are based on 
increasing assistance from the agent. These methods 
include: 
• methods to facilitate the definition of examples of task 

reductions;  
• heuristic, hint-based and analogy-based methods to 

generate the explanations of a task reduction;  
• analogy-based method to generalize examples to rules;  
• methods to generate relevant examples to refine the 

reduction rules, etc. 
During this step, the expert teaches Disciple to solve 
problems in a cooperative, step by step, problem solving 
scenario. The expert selects or defines an initial task and 
asks the agent to reduce it.  

The agent will try different methods to reduce the 
current task. First it will try to apply the rules with their 
exact or plausible lower bound conditions, because these 
are most likely to produce correct results. If no reduction is 
found, then it will try to use the rules considering their 
plausible upper bound conditions. If again none of these 
rules apply, then the agent may attempt to use rules 
corresponding to tasks known to be similar with the one to 
be reduced. For instance, to reduce the task "Workaround a 
destroyed bridge using a floating bridge with slope 
reduction", the agent may consider the reduction rules 
corresponding to the similar task "Workaround a destroyed 
bridge using a fixed bridge with slope reduction."  

If the solution was defined or modified by the expert, 
then it represents an initial example for learning a new 
reduction rule. To learn the rule, the agent will first try to 
find an explanation of why the reduction is correct. Then 
the example and the explanation are generalized to a 
plausible version space rule. The agent will attempt 
various strategies to propose plausible explanations from 
which the user will choose the correct ones. The strategies 
are based on an ordered set of heuristics. For instance, the 
agent will consider the rules that reduce the same task into 
different subtasks, and will use the explanations 
corresponding to these rules to propose explanations for 
the current reduction. This heuristic is based on the 
observation that the explanations of the alternative 
reductions of a task tend to have similar structures. The 
same factors are considered, but the relationships between 
them are different. For instance, if the task is to 
workaround a damaged bridge using a fixed bridge over 
the river gap, then the decision of whether to employ (or, 
equivalently, the explanation of why to employ) an 
installation of the bridge with minor preparation of the 
area, or with gap reduction, or with slope reduction, 
depends upon the specific relationships between the 
dimensions of the bridge and the dimensions of the river 
gap. The goal is to have the agent propose explanations or-
dered by their plausibility and the expert to choose the 
right ones, rather than requiring the explanations from the 
expert. 

This above strategy works well when the agent already 
has a significant amount of knowledge related to the 
current reduction. In the situations when this is not true the 
agent has to acquire the explanations from the expert. 
However, even in such cases, the expert need not provide 
explanations, but only hints that may have various degrees 
of detail. Let us consider, for instance, the reduction of the 
task "Workaround damaged bridge using an AVLB70 
bridge over the river gap", to the task "Install AVLB70 
with gap reduction over the river gap". The expert can give 
the agent a very general hint, such as, "Look for 
correlations between the river gap and AVLB70." A more 
specific hint would be "Look for correlations between the 
length of the river gap and the lengths of the gaps 
breachable with AVLB70." Such hints will guide the agent 
in proposing the correct explanation: "The length of the 
river gap is greater than the length of AVLB70, but less 
than the maximum gap that can be reduced in order to use 
AVLB70".  

The goal is to allow the expert to provide hints or 
incomplete explanations rather than detailed explanations.  

The above situations occur when the expert provides the 
reduction of the current task and will ultimately result in 
learning a new task reduction rule. 

We will now briefly consider some of the other possible 
cases, where the agent proposes reductions based on the 
existing rules. If the reduction was accepted by the expert 
and it was obtained by applying the plausible upper bound 
condition of a rule, then the plausible lower bound 
condition of the rule is generalized to cover this reduction. 

If the reduction is rejected by the expert, then the agent 
will attempt to find an explanation of why the reduction is 
not correct, as described above. This explanation will be 
used to refine rule's conditions. When no such failure 
explanation is found, the agent may simply specialize the 
rule, to uncover the negative example. When this is not 
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possible, the rule will be augmented with an except-for 
condition. 

In a given situation, the agent may propose more than 
one solution. Each may be characterized separately as 
good or bad, and treated accordingly. Learning may also 
be postponed for some of these examples. 

This training scenario encourages and facilitates 
knowledge reuse between different parts of the problem 
space, as has been experienced in the workaround domain. 
For instance, many of the rules corresponding to the 
AVLB bridges have been either generalized to apply to the 
bridges of types MGB and Bailey, or have been used to 
guide the learning of new rules for MGB and Bailey. 
These rules have in turn facilitated the learning of new 
rules for floating bridges. The rules for floating bridges 
have facilitated the learning of the rules for ribbon rafts, 
and so on. 
7. Testing and using the agent 
During this phase the agent is tested with additional 
problems, the problem solver being used in autonomous 
mode to provide complete solutions without the expert's 
interaction. If any solution is not the expected one, then the 
expert enters the interactive mode to identify the error and 
to help the agent to fix it, as described before. 

The developed agent can be used by a non-expert user. 
More interesting is, however, the case where the agent 
continues to act as an assistant to the expert, solving 
problems in cooperation, continuously learning from the 
expert, and becoming more and more useful. 

In the case of the workaround domain, the evaluator 
provided a set of 20 testing problems, each with up to 9 
different types of relevant solutions. These examples were 
used to train and test the agent. 
 
As has been shown above, the Disciple-LAS shell and 
methodology provide solutions to some of the issues that 
have been found to be limiting factors in developing 
knowledge-based agents: 
• limited ability to reuse previously developed knowledge; 
• the knowledge acquisition bottleneck; 
• the knowledge adaptation bottleneck; 
• the scalability of the agent building process; 
• finding the right balance between using general tools 

and developing domain specific modules; 
• the portability of the agent building tools and of the 

developed agents. 

Experimental Evaluation 
The Disciple methodology and workaround agent were 
tested together with three other systems in a two week 
intensive study, in June 1998, as part of DARPA's annual 
HPKB program evaluation (Cohen et al. 1998). The 
evaluation consisted of two phases, each comprising a test 
and a re-test. In the first phase, the systems were tested on 
20 problems that were similar with those used for systems 
development. Then the solutions were provided and the 
developers had one week to improve their systems, which 
were tested again on the same problems. In the second 
phase, the systems were tested on five new problems, 
partially or completely out of the scope of the systems. For 
instance, they specified a new type of damage (cratered 

roads), or required the use of new types of engineering 
equipment (TMM bridges, ribbon rafts and M4T6 rafts). 
Then again the correct solutions were provided and the 
developers had one week to improve and develop their 
systems, which were tested again on the same five 
problems and five new ones. Solutions were scored along 
five equally weighted dimensions: (1) generation of the 
best workaround solutions for all the viable options, (2) 
correctness of the overall time estimate for each 
workaround solution, (3) correctness of each solution step, 
(4) correctness of temporal constraints among these steps, 
and (5) appropriateness of engineering resources used. 
Scores were assigned by comparing the systems' answers 
with those of Alphatech's human expert. Bonus points 
were awarded when systems gave better answers than the 
expert and these answers were used as standard for the 
next phase of the evaluation. 
 The participating teams were not uniform in terms of 
prior system development and human resources. 
Consequently, only one of them succeeded to enter the 
evaluation with a system that had a fully developed KB. 
The other three teams entered the evaluation with systems 
that had incompletely developed knowledge bases. Figure 
2 shows a plot of the overall coverage of each system 
against the overall correctness of that system, for each of 
the two phases of the evaluation. 
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Figure 2: Evaluation results. 
 
We entered the evaluation with a workaround agent the 
knowledge base of which was covering only about 40% of 
the workaround domain (11841 binary predicates). The 
coverage of our agent was declared prior to each release of 
the testing problems and all the problems falling within its 
scope were attempted and scored. During the evaluation 
period we continued to extend the knowledge base to cover 
more of the initially specified domain, in addition to the 
developments required by the modification phase. At the 
end of the two weeks of evaluation, the knowledge base of 
our agent grew to cover about 80% of the domain (20324 
binary predicates). This corresponds to a rate of knowledge 
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acquisition of approximately 787 binary predicates/day, as 
indicated in Figure 3. This result supports the claim that 
the Disciple approach enables rapid acquisition of relevant 
problem solving knowledge from subject matter experts. 

With respect to the quality of the generated solutions, 
within its scope, the Disciple agent performed at the level 
of the human expert. There were several cases during the 
evaluation period when the Disciple workaround agent 
generated more correct or more complete solutions than 
those of the human expert. There were also cases when the 
agent generated new solutions that the human expert did 
not initially consider. For instance, it generated solutions to 
work around a cratered road by emplacing a fixed bridge 
over the crater in a similar way with emplacing a fixed 
bridge over a river gap. Or, in the case of several craters, it 
generated solutions where some of the craters were filled 
while on others fixed bridges were emplaced. These 
solutions were adopted by the expert and used as standard 
for improving all the systems. For this reason, although the 
agent also made some mistakes, the overall correctness of 
its solutions was practically as high as that of the expert's 
solutions. This result supports the second claim that the 
acquired problem solving knowledge is of a good enough 
quality to assure a high degree of correctness of the 
solutions generated by the agent. 

Figure 3: KB Development time. 
 
Finally, our workaround generator had also a very good 
performance, being able to generate a solution in about 0.3 
seconds, on a medium power PC. This supports the third 
claim that the acquired problem solving knowledge assures 
a high performance of the problem solver. 
 Based on the evaluation results, the agent developed 
with Disciple-LAS was selected by DARPA and 
Alphatech to be further extended and was integrated by 
Alphatech into a larger system that supports air campaign 
planning by the JFACC and his/her staff. The integrated 
system was one of the systems selected to be demonstrated 
at EFX'98, the Air Force's annual show case of the 
promising new technologies. 

Related Work 
From the point of view of the methods and techniques 
employed, this work is mostly related to the work on 

apprenticeship learning that has produced experimental 
agents that assimilate new knowledge by observing and 
analyzing the problem solving steps contributed by their 
expert users through their normal use of the agents 
(Mahadevan et al. 1993, Wilkins 1993). Disciple-LAS is 
different from these agents in terms of the types of learning 
employed. Also it has been scaled up and developed into a 
general integrated shell and methodology for building 
practical end-to-end agents. 

Disciple-LAS is also related to the tools for building 
knowledge-based systems. Many of these tools provide an 
inference engine, a representation formalism in which the 
KB could be encoded, and mechanisms for acquiring, 
verifying or revising knowledge expressed in that 
formalism. These tools trade power (i.e., the assistance 
given to the expert) against generality (i.e., their domain of 
applicability), covering a large spectrum. At the power end 
of the spectrum there are tools customized to a problem-
solving method and a particular domain (Musen and Tu, 
1993). At the generality end are the tools applicable to a 
wide range of tasks or domains, such as CLIPS (Giarratano 
and Riley, 1994). In between are tools that are method-
specific and domain independent (Chandrasekaran and 
Johnson, 1993).  

With respect to the power-generality trade-off, Disciple-
LAS takes a different approach. It provides a set of general 
and powerful modules for knowledge acquisition and 
learning that are domain-independent and are incorporated 
as such in a developed agent. However, for the interface 
and the problem solver, the Disciple shell contains a 
generic graphical-user interface and a problem solver 
based on task-reduction. Therefore, for a given application 
domain, one has to develop additional, domain-specific 
interfaces and to further develop the problem solver, in 
order to create an easy to train and a useful agent. In spite 
of its generality, and due to its powerful learning 
capabilities, Disciple’s support in knowledge acquisition is 
similar to that of the specific tools. Moreover, it provides 
support in all the stages of knowledge base construction, 
both ontology and rules creation, and their refinement. 
Many of the other systems stress either initial knowledge 
creation, or its refinement. Finally, most of the other tools 
are intended for the knowledge engineer, while Disciple-
LAS is oriented toward direct knowledge acquisition from 
a human expert, attempting to limit as much as possible the 
assistance needed from the knowledge engineer. 
 As compared with Disciple-LAS, the other tools used in 
the HPKB project to solve the workaround challenge 
problem reflect a different approach and philosophy to 
rapid development of knowledge-based systems.  
 ISI’s development environment consists of two domain-
independent tools, the LOOM ontology server (MacGregor 
1991), and the EXPECT system for knowledge base 
refinement (Gil 1994), both being tools designed to assist 
the knowledge engineer, rather than the domain expert. 
Also, the focus is on assisting the refinement of the 
knowledge base rather than its initial creation.  
 The approach taken by both Teknowledge (TFS) and the 
University of Edinburgh (AIAI) is based on Cyc (Lenat 
1995) and emphasizes rapid development of knowledge-
based systems through the reuse of the previously 
developed Cyc ontology. A main difference from our 
approach is that Cyc is based on a very carefully 
engineered general ontology, that is to be reused for 
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different applications, while in our case we take the 
position that the imported ontology should be customized 
for the current domain. Also, Cyc’s concepts and axioms 
are manually defined, while in Disciple the rules are 
learned and refined by the system through an interaction 
with the user. 
 

Conclusion and Future Research 
The main result of this paper is an integration of 
knowledge representation, knowledge acquisition, learning 
and problem solving into an agent shell and methodology 
for efficient development of practical end-to-end 
knowledge-based agents, by domain experts, with limited 
assistance from knowledge engineers. This approach is 
based on the reuse and adaptation of previously developed 
knowledge, and on a natural interaction with the domain 
expert which are achieved through the use of synergism at 
several levels. First, there is the synergism between 
different learning methods employed by the agent. By 
integrating complementary learning methods (such as 
inductive learning from examples, explanation-based 
learning, learning by analogy, learning by 
experimentation) in a dynamic way, the agent is able to 
learn from the human expert in situations in which no 
single strategy learning method would be sufficient. 
Second, there is the synergism between teaching (of the 
agent by the expert) and learning (from the expert by the 
agent). For instance, the expert may select representative 
examples to teach the agent, may provide explanations, 
and may answer agent’s questions. The agent, on the other 
hand, will learn general rules that are difficult to be 
defined by the expert, and will consistently integrate them 
into its knowledge base. Finally, there is the synergism 
between the expert and the agent in solving a problem, 
where the agent solves the more routine parts of the 
problem and the expert solves the more creative parts. In 
the process, the agent learns from the expert, gradually 
evolving toward an intelligent agent.  
 There are, however, several weaknesses of this approach 
that we plan to address in the future. For instance, the 
initial modeling of the domain, which is critical to the 
successful development of the agent, is not yet supported 
by the shell. We therefore plan to develop a modeling tool 
that will use abstract descriptions of tasks and objects in a 
scenario similar to that used in teaching the agent. Also, 
importing concepts and features from previously 
developed ontologies, although very appealing is actually 
quite hard to accomplish. We are therefore planning to 
develop methods where the modeling process and the 
agent provide more guidance in identifying the knowledge 
pieces to import. We also need to develop a more powerful 
and natural approach to hint specification by the expert. 
The current types of allowable hints do not constrain 
enough the search for explanations. Also, some of them are 
not very intuitive for the expert. Finally, we are 
investigating how the learning methods of the agent could 
become even more knowledge intensive, primarily through 
the use of more powerful methods of analogical reasoning. 
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