

Learnable Representation for Real World Planning

Mihai Boicu, Gheorghe Tecuci, Bogdan Stanescu, Liviu Panait, Cristina Cascaval
Learning Agents Laboratory, Department of Computer Science, MSN 4A5, George Mason University, Fairfax, VA 22030

{mboicu, tecuci, bstanesc, lpanait, ccascava}@gmu.edu

Abstract
This paper presents a learnable representation for real-world
planning systems. This representation is a significant
extension of the ones used in the most recent systems from
the Disciple family, the Disciple-Workaround system for
plan generation, and the Disciple-COA system for plan
critiquing. This representation is defined to support an
integration of domain modeling, knowledge acquisition,
learning and planning, in a mixed-initiative framework. It
also helps to remove the current distinction between the
development phase of a planning system and its
maintenance phase. It provides an elegant solution to the
knowledge expressiveness / knowledge efficiency trade-off,
and allows reasoning with incomplete or partially incorrect
knowledge. These qualities of the representation are
supported by several experimental results.

1 Introduction

A great challenge in constructing a real world planning
system is the selection of an appropriate representation of
the domain knowledge that has to satisfy several
constraints, generally regarded as being contradictory (Gil
and Melz, 1996). In this paper we discuss a representation
of knowledge that has several desirable properties for
planning that are derived primarily from the fact that it is
learnable directly from a subject matter expert. This
learnable knowledge representation is being developed as
part of the evolving Disciple theory, methodology, and
tools. Our long-term goal with the Disciple research is to
enable users that do not have any special training in
knowledge engineering and computer science, to build by
themselves agents that can act as intelligent assistants.
While Disciple is being developed as a general approach,
applicable to a wide range of domains, planning has
received considerable attention in our recent work,
performed as part of the DARPA’s High Performance
Knowledge Bases program (Cohen et al., 1998). As part of
this program, we have developed two systems, Disciple-
Workaround and Disciple-COA.
 Disciple-Workaround was developed to address the
workaround challenge problem which consists of rapidly
developing and maintaining a knowledge-based agent that
is able to plan how a convoy of military vehicles can
circumvent or overcome obstacles in their path (such as
damaged bridges or minefields), the primary goal being to
estimate the time needed to workaround such an obstacle in
a given situation (Jones, 1998). Disciple-COA was
developed to address the COA challenge problem which
consists of rapidly developing and maintaining a critiquing

agent to evaluate military Courses Of Action that were
developed as hasty candidate plans for ground combat
operations (Jones, 1999). Disciple-COA is able to identify
the strengths and the weaknesses of a course of action with
respect to the principles of war and the tenets of army
operations.
 The learnable representation presented in this paper
emerged as an extension of the ones used in Disciple-
Workaround and Disciple-COA. In this paper we will
concentrate on those aspects of this representation that
support planning-related activities that lie outside basic
plan generation. We will clarify what we mean by
learnable representation; how a domain model that exists in
the mind of the expert is captured at different levels of
abstractions and formalization (informal for abstract
modeling of the domain, formal for actual planning, and
natural language for user-agent communication); how the
rationale underlying the generated plans is acquired and
represented; how the reasoning complexity is managed by
using different levels of details in user-agent
communication; how time-ordering constraints and
functions are learned and represented; and finally how this
representation supports reasoning with incomplete or
partially incorrect knowledge.
 The rest of this paper is organized as follows. We first
introduce the basic Disciple approach to agent
development, and its knowledge representation, and clarify
what we mean by learnable representation. Then we use an
example from the workaround domain to address several
knowledge representation issues that are important for real-
world planning systems. We continue with presenting
several experimental results that support our claims
concerning this representation, and conclude the paper.

2 User-Developed Planning Agents

Disciple is a learning agent shell that allows customization
for a particular domain. It consists of a learning and
knowledge acquisition engine as well as a problem solving
engine. It also supports building an agent with a knowledge
base consisting of an ontology that defines the concepts
from the application domain, and a set of task reduction
rules expressed in terms of these concepts. The problem-
solving engine is based on the task reduction paradigm. In
this paradigm, a task to be accomplished by the agent is
successively reduced to simpler tasks until the initial task is
reduced to a set of elementary tasks that can be
immediately performed. This problem solving paradigm
applies very naturally to hierarchical planning.

 While an ontology is characteristic to a certain domain
(such as an ontology of military units, or an ontology of
military equipment, in the case of the military domain), the
rules are much more specific, corresponding not only to a
certain type of application in that domain, but even to a
specific expert, representing his or her characteristic
problem-solving strategies (e.g. rules for an agent that
assists a military commander in critiquing courses of
action, or rules for an agent that assists in planning the
repair of damaged bridges or roads). Therefore the rules
and the tasks composing them have to be acquired from the
expert. Based on this observation, the process of
developing a Disciple agent starts with importing an initial
ontology from an external knowledge server, such as CYC
(Lenat, 1995), Ontolingua (Farquhar et al., 1996), or
LOOM(MacGregor, 1999). This process continues with
teaching the agent how to perform various tasks, in a way
that resembles how an expert would teach a human
apprentice when solving problems in cooperation. During
this teaching process, the agent will learn the tasks and the
rules from the expert and will also extend its ontology.

3 Mixed-Initiative Modeling, Planning and
Learning

The process of teaching the agent integrates domain
modeling, planning and learning, in a mixed-initiative
framework. The expert selects or defines a planning task
and Disciple tries to automatically generate a plan by
applying the task reduction rules from its knowledge base.
This may produce several good plans, wrong plans, or no
plans at all. Each of these situations is an opportunity for
learning, but let us here consider the case where no
complete plan is produced. In this case the agent will help
the expert to identify the most promising partial plan that
needs to be extended to a complete and correct plan. The
expert and the agent will enter a mixed-initiative modeling,
planning and learning process, working together to
complete the plan. In the same time, the agent will learn
from this joint activity. While trying to reduce a current
task to a set of subtasks, the expert and the agent may
encounter three different situations:

 A) No rule is applicable and therefore no reduction is
proposed by Disciple. In this case the expert will enter a
modeling phase where he or she has to define the reduction
of the current task. From this example Disciple will learn
both a general reduction rule and several tasks and task
features.

 B) A reduction rule is applied to reduce the current task
to subtasks, and the expert accepts this reduction. In this
case the applied rule may be automatically generalized
(depending of how the reduction was generated) and the
planning process continues with further reducing one of the
subtasks.

 C) A reduction rule is applied to reduce the current task
to subtasks, but the expert rejects this reduction. In this
case the applied rule is specialized (in a mixed-initiative
scenario) to no longer generate the wrong reduction, and
the process continues as in case A.

Figure 1 shows an example of task reduction provided by
the expert, as a result of a modeling process. In order to
reduce the top level task in Figure 1, the expert formulates
a question that clarifies what aspects of the situation
determine the solution (“What bank needs to be reduced?”). Then
the expert finds and formulates the answer to the question
(“Both site107 and site105”), and defines the solution (the
ordered subtasks shown at the bottom of Figure 1). All
these phrases are in natural language, except that whenever
a reference to a concept or instance from the ontology is
needed, the user has to use the name of that instance in the
ontology (such as “bulldozer-unit201” or “bank”). The
agent assists not only in identifying the name of an object,
but also in structuring the natural language phrases
representing the tasks (as shown in Figure 1). In addition, it
learns general tasks patterns from these task examples, as
discussed in section 4.
 Once the example reduction is defined, a mixed-
initiative explanation generation process starts in which the
agent will find the explanations of this reduction, shown in
the left and right hand sides of Figure 1. This process is
discussed in section 5. Then, based on the example
reduction and its explanations from Figure 1, the agent will
learn the rule from Figure 2. This rule is refined in future
planning situations of type B or C when this rule is
applicable.

4 Learning of Task Representation

The format of a task in the user provided example is a
compromise between free natural language description and
a restrictive formal representation. The Disciple agent
helps the expert to define the tasks in a predefined
structure, but inside that structure there are no additional
restrictions (except that of using the object names from the
ontology). For instance, the expert expresses the first
subtask of the decomposition in Figure 1 in natural
language:

“Reduce the slope of site107, by direct cut, using bulldozer-unit201, to
allow the fording of unit10”

A task example must start with a task name (an unrestricted
free natural language phrase that does not contain any
object name) and is followed by one or more task
description features. Each task description feature includes
at most one relevant object from the ontology (concept or
instance) or a constant (number or string). Based on this
structure, automatically (or sometimes requiring some
minimal help from the user), the agent will create a general
task pattern that includes generic variables, formal task

features, and plausible version spaces for the ranges of
these features. For instance, the task pattern learned from
the above task example is:

Reduce-the-slope
of ?O1 (pub: (geographical-region) plb: (site107))
by-direct-cut
using ?O2 (pub: (equipment) plb: (bulldozer-unit201))
to-allow-the-fording-by ?O3 (pub: (modern-military-organization)
 plb: (unit10))

While the first time a task is used, the user can define it any
way he or she wants, future uses of this task will have to
use the same structure. These new examples of the task
pattern will be used to learn better ranges for the features
of the task. The structuring of the tasks is also used in
reasoning about task similarities during domain modeling,
planning and learning. Disciple also learns hierarchical
relations between tasks that are used in domain modeling
to support creative reasoning.

In previous versions of Disciple, the user had to first
model the domain, then define the task features, and then
define the tasks based on the defined feature. All these
activities had to be done before using the task in an
example. The new version of Disciple allows all these
activities to take place at the same time when the example
is defined. Moreover, the user is primarily responsible only
for domain modeling, because the tasks and tasks features

are learned by the agent from the provided model of task
reduction. In the next two sections we will briefly discuss
the mixed-initiative learning of task reduction rules,
starting from the provided example.

5 Mixed-Initiative Explanation Generation
To learn a rule from the example reduction, Disciple needs
to understand why the reduction is correct. Finding the
explanations of the task reduction is a mixed-initiative
process of searching the agent’s ontology, an explanation
being a path of objects and relations in this ontology. This
search process is guided by three sources of knowledge: an
ordered set of heuristics for analogical reasoning, the
Question and the Answer corresponding to the reduction to
be explained, and a mixed-initiative process of hint
refinement.

The heuristics for analogical reasoning are based on the
similarity relations between the tasks and the features from
Disciple’s knowledge base, and on different types of
structure similarity between the current example and the
existing rules. In essence, Disciple identifies the rules that
include tasks similar to those in the current example. Then
it uses the explanations from which these rules have been
learned as a guide to search for similar explanations of the
current example. It displays the found explanations,
ordered by their plausibility, and asks the expert to select

Figure 1. An example of task reduction

Ford the river after the reduction of the slope of the banks
at site103
by unit10
which is at site107
and is using bulldozer-unit201

What bank needs to be reduced?

Both site107 and site105

Reduce the slope
of site107
by direct cut
using bulldozer-unit201
to allow the fording by unit10

Ford
bulldozer-unit201
at site103

Reduce the slope
of site105
by direct cut
using bulldozer-unit201
to allow the fording by unit10

Unit10 has a default-negotiable-slope of 25 and
Site107 has a max-slope of 200 > 25.

Unit10 has a default-negotiable-slope of 25 and
Site105 has a max-slope of 200 > 25.

Site105 is a bank.

AFTERAFTER

AFTER

Report that
bulldozer-unit201
has been obtained by unit10

Site107 is on the opposite-side of site105.

Restore the traffic link
at site103
for unit10

AFTER

Task to be
decomposed

Question
Explanations

Answer
Decomposition

Explanations

the correct ones.
 Guidance for explanation generation is also provided by
the question and the answer from the example that identify
the objects that should be part of the explanation, even
though Disciple does not yet have the ability to understand
these natural language phrases. However, in order to
facilitate explanation generation, we are currently
investigating techniques to partially understand the
Question and the Answer.
 Finally, there is a mixed-initiative process of hint
refinement. A hint might be a fragment of an explanation
(such as an object or a relationship between two objects),
or any abstraction of such a fragment. Both the expert and
the agent can formulate an initial hint, and then each of
them may propose possible refinements. The refinements
proposed by the agent are based on an analysis of the
structure of the ontology, and on the analogy with the hints
from which other rules have been learned. The expert may
also guide the agent in proposing various refinements of
the current hint, and then may select the most promising
refinements. This process continues until the hint is refined
to an explanation accepted by the expert.

6 Learning of Plausible Version Space Rules

From the example task reduction and its explanations
shown in Figure 1, the agent automatically generates the
task reduction rule shown in Figure 2. This rule is a
complex IF-THEN structure that specifies one or several
conditions under which the task from the IF part can be
reduced to the tasks from the THEN part. Each rule
includes a main condition that has to be satisfied in order
for the rule to be applicable. Partially learned rules, such as
the one shown in Figure 2, do not contain exact conditions,
but plausible version spaces for these conditions. Each such
plausible version space is represented by a plausible upper
bound condition which, as an approximation, is more
general than the exact (but not yet known) condition, and a
plausible lower bound condition which, as an
approximation, is less general than the exact condition. In
addition to the tasks and the main condition, the learned
rule also includes generalizations of the Question and its
Answer, and of the Explanations. We can see that the
learned rule represents information at various levels of
abstraction and formalization which allow the Disciple
agent to perform a wide range of reasoning processes. For
instance, the Question and the Answer help the expert in
domain modeling, by suggesting a certain line of
reasoning, when the expert attempts to reduce a task
similar with the one reduced by the current rule. They are
also used by the natural language generation module of
Disciple to generate the question and answer part of a task
reduction step obtained by applying a rule. Representing
knowledge in a rule at various levels of abstractions allows
the Disciple agent to present the justifications of its
solutions at each of these levels of abstractions, as has been
demonstrated with Disciple-COA. Disciple-COA generated
three types of justifications to a solution. The most abstract
one included only the initial task, the sequence of questions

and answers, and the final solution. A more detailed one
also included the intermediate tasks. Finally, the most
detailed one also included the explanations and the rules
that generated the intermediate steps.
As the planning agent learns plausible version space rules,
it can use them to propose routine, innovative or inventive
solutions to the current problems. The routine solutions are
those that satisfy the plausible lower bound conditions of
the task reduction rules and are very likely to be correct. If
such a solution is not correct, then the corresponding rule is
extended with an Except-for condition.

Figure 2: The rule learned from the example in Figure 1.

Ford the river after the reduction of the slope of the banks
at ?O1
by ?O2
which is at ?O3
and is using ?O4

What bank needs to be reduced?

Both ?O3 and ?O5.

Reduce the slope
of ?O3
by direct cut
using ?O4
to allow the fording by ?O2

• ?O2 has a default-negotiable-slope of ?N1 and
?O3 has a max-slope of ?N2 > ?N1.

• ?O3 is on the opposite-site of ?O5.
• ?O5 is a bank.
• ?O2 has a default-negotiable-slope of ?N1 and

?O5 has a max-slope of ?N3 > ?N1.

If the task to accomplish is:

and the question

has the answer

because

then decompose the task into the subtasks:

• ?O1 is site
• ?O2 is military-unit

default-negotiable-slope ?N1
• ?O3 is geographical-region

max-slope ?N2
opposite-site ?O5

• ?O4 is military-equipment
• ?O5 is geographical-region

max-slope ?N3
• ?N1 ∈ [0.0 , 200.0]
• ?N2 ∈ (0.0 , 1000.0]

> ?N1
• ?N3 ∈ (0.0 , 1000.0]

> ?N1

?T1

AFTER

Ford
?O4
at ?O1

?T2
AFTER

?T1

Reduce the slope
of ?O5
by direct cut
using ?O4
to allow the fording by ?O2

?T3

AFTER

?T2

Restore the traffic link
at ?O1
for ?O2

?T4
AFTER

?T3

Plausible Upper Bound
• ?O1 is site103
• ?O2 is unit10

default-negotiable-slope ?N1
• ?O3 is site107

max-slope ?N2
opposite-site ?O5

• ?O4 is bulldozer-unit201
• ?O5 is site105

max-slope ?N3
• ?N1 ∈ { 25.0 }
• ?N2 ∈ { 200 }

> ?N1
• ?N3 ∈ { 200 }

> ?N1

Plausible Lower Bound

Report that
?O4
has been obtained by ?O3

Main Condition

 The innovative solutions are those that satisfy the
plausible upper bound conditions. These solutions may or
may not be correct, but each case will lead to a refinement
of the task reduction rules that generated them. Correct
solution will lead to automatic generalization of the
plausible lower bound condition of the rule. Incorrect
solutions may lead to either the specialization of the
plausible upper bound condition of the rule, or the addition
or refinement of an Except-When condition. To illustrate
this last situation, let us consider that the Disciple agent
generated a solution that was rejected by the expert
because the bank to be reduced was made of rock. This
failure explanation "site105 soil-type rock" will cause the
extension of the rule in Figure 2 with the except-when
plausible version space condition shown in Figure 3. In
future planning situations the updated rule will only be
applied if the Except-When condition will not be satisfied.
During refinement, the rule may be augmented with several
such Except-When conditions.

The inventive solutions are based on weaker forms of
plausible reasoning (such as partial matching of the
plausible conditions of the rules, and tasks similarity based
on the structure of the ontology). An inventive task
reduction step is based on several rules, and is generally a
novel reduction based on tasks from these rules. From
inventive solutions the agent will learn new plausible task
reduction rules.
 One can also notice that the general rule in Figure 2
contains generalized AFTER relations, in its right hand
side. They are also generated automatically from the
example in Figure 1. An important feature of our
representation is that the value of an AFTER relation may
be an incomplete description of a task that may appear in
some other part of the plan being generated. For instance,
the first task of the decomposition in Figure 1 (i.e. "Reduce
the slope of site107...") can only start after it has been
reported that unit10 has obtained bulldozer-unit201. This is
a very ellegant solution to the generation of nonlinear plans
that allowed us to treat task decompositions as if they were
independent. Consider, for instance, a situation that
involves a damaged bridge that is also mined. We can
decompose this task into two subtasks, de-mining the
bridge, and installing an AVLB bridge, and further
decompose these subtasks independently. However, in each
case where an important condition is satisfied, we
introduce a Report task that signals this condition.
Similarly, at each point where such a condition is needed,
we would introduce a corresponding AFTER relation. For
instance, in the de-mining planning tree, after the action of
de-mining site107, the near bank of the river, we introduce

the action "Report that site107 has been de-mined..."
Similarly, in the install-AVLB planning tree, the action
"Reduce the slope of site107 ..." will include an "AFTER
Report that site107 has been de-mined ..." This works also
in the cases when the bridge is not mined. Because the
generated plan will not contain any de-mining report, the
corresponding AFTER relation of the action "Reduce the
slope of site105 ..." will be ignored.
 The task reduction examples may also contain functions
that are automatically generalized in the learned rules. The
workaround domain made heavy use of functions for
estimating the time required for various operations (such as
reducing the slope of a bank, or emplacing an AVLB70
bridge).
 In addition to being learnable based on very simple
interactions with a domain expert, the Disciple rules show
a practical solution to the expressiveness/efficiency trade-
off. The different types of conditions of a rule (main
condition, except-when conditions, for conditions and
except-for conditions) offer it a high level of
expressiveness. Maintaining also generalized justifications
at various levels of abstractions and formalizations
(informal and abstract for Question and Answer; formal
and abstract for the explanations; formal and compiled for
the conditions), allows Disciple to provide justifications of
its actions at each of these levels. On the other hand, the
(compiled) conditions of the rules allow very efficient
reasoning. Notice also that a partially learned rule, such as
the one in Figure 2, is an incomplete and possibly partially
incorrect piece of knowledge. However, as has been shown
above, Disciple could use such rules in various types of
reasoning, from routine to creative.

7 Robustness of the Learned Representation

In the Disciple approach, the whole process of developing
the KB of the planning agent is one of creating and refining
(or adapting) knowledge pieces to better represent the
domain model of the teaching expert. The same operations
are involved in updating the KB in response to changes in
the application environment or in the goals of the planning
agent, that is, in maintaining the planning agent. Therefore,
in the life-cycle of a Disciple planning agent there is no
distinction between KB development and KB maintenance.
If we take into account that the Disciple approach
significantly speeds up the process of KB development (as
demonstrated in the HPKB program), and that,
traditionally, KB maintenance costs are about four times
the (already high) KB development costs, then we can
conclude that Disciple can have a very significant positive
impact on the development and maintenance costs for real
world planning systems.
 In addition to its ability to update the task reduction rules
to account for new examples, as presented in the previous
section, Disciple also implements a mechanism of rule re-
generation from (a partial set of) the examples and the
explanations from which it was initially learned. This is
precisely what might be required during KB maintenance
when, for instance, some concepts that appear in the rule

Figure 3: The except when condition learned.

• ?O5 has a soil-type of ?O6
and because not

• ?O5 is geographical-region
soil-type ?O6

• ?O6 is hard-soil

Plausible Upper Bound
• ?O5 is site105

soil-type ?O6
• ?O6 is rock

Plausible Lower Bound
Except When Condition

might be deleted from the ontology. In such a case, the
automatic regeneration of the rule, based on the updated
ontology, will lead to a new rule that no longer contains the
concept that was deleted.
 Disciple also provides intelligent assistants for ontology
maintenance, such as the delete assistant or the copy
assistant (Boicu et al., 1999), that control the operations on
the ontology, in order to maintain its consistency. Let us
consider, for instance, the deletion of a concept from the
ontology. Many knowledge elements may be affected by
this deletion, such as its subconcepts, features that have the
deleted concept is their ranges or domains, rules that
contain the concept in their conditions, etc. In such a case
the delete assistant engages in a mixed initiative dialog
with the expert in order to identify the best strategies to
update its knowledge, while maintaining its consistency.

8 Experimental Results and Conclusions
Disciple-Workaround and Disciple-COA have been the
subject of intense experimentation during the HPKB
program, and the results obtained support the claims made
in this paper about the suitability of our representation for
developing and maintaining real world planning systems.
Disciple-Workaround demonstrated that a knowledge
engineer can rapidly teach Disciple using Military
Engineering manuals and sample solutions provided by a
domain expert. During the 17 days of DARPA’s 1998
evaluation, the knowledge base of Disciple was increased
by 72% (from the equivalent of 5,920 simple axioms to
10,162 simple axioms) with almost no decrease in
performance. Also, Disciple-Workaround was rapidly
extended with new planning strategies, and was
incorporated by Alphatech into a more complex application
presented at EFX’98, the Air Force’s showcase of the most
promising technologies.
 With Disciple-COA we achieved two new significant
milestones. For the first time we developed the knowledge
base around an ontology created by another group
(Teknowledge and Cycorp), demonstrating both the
feasibility of knowledge reuse with the Disciple approach,
and the generality of the Disciple rule learning and
refinement methods. Moreover, the Disciple-COA agent
was taught even more rapidly than the Disciple-
Workaround agent, and has again demonstrated a very high
performance. In this case, Disciple was taught jointly by a
domain expert and a knowledge engineer, and its
knowledge base increased by 46% in 8 days of evaluation,
from a size of 6,229 simple axioms equivalent to a size of
9,092 simple axioms equivalent. The final knowledge base
contained 801 concepts, 444 object and task features, 360
tasks and 342 task reduction rules. Also, each COA was
represented with around 1,500 facts. The second milestone
was the knowledge acquisition experiment performed at
the US Army Battle Command Battle Lab in Fort
Leavenworth, Kansas. In this experiment four military
experts with no prior knowledge engineering experience
received very limited training in the teaching of Disciple-
COA and then each succeeded to significantly extend its

knowledge base (with around 275 simple axioms in about 3
hours), receiving no or very limited support from a
knowledge engineer.
 In conclusion, Disciple offers a learnable represenation
for planning that is expert-oriented, as oppossed to
knoweledge engineer oriented. The representation supports
an integration of domain modeling, knowledge acquisition,
learning and planning, in a mixed-initiative framework, as
shown in section 3. It also helps to remove the current
distinction between the development phase of a planning
system and its maintenance phase, as discussed in section
7. Moreover, as ahown in section 6, it provides an elegant
solution to the knowledge expressiveness / knowledge
efficiency trade-off, and allows reasoning with incomplete
or partially incorrect knowledge.

Acknowledgments. This research was supported by the
AFOSR grant F49620-97-1-0188, as part of the DARPA’s
High Performance Knowledge Bases Program. Dorin
Marcu, Mike Bowman, Florin Ciucu, Cristian Levcovici
and Marinel Alangiu have contributed to the development
of the current version of the Disciple system.

References
Boicu M., Tecuci G., Bowman M., Marcu D., Lee S.W.
and Wright K., (1999). A Problem-Oriented Approach to
Ontology Maintenance, Proc. of AAAI-99, Workshop on
"Ontology Management", Orlando, Florida, AAAI Press.
Cohen P., Schrag R., Jones E., Pease A., Lin A., Starr B.,
Gunning D., and Burke M. (1998). The DARPA High-
Performance Knowledge Bases Project, AI Magazine,
19(4),25-49.

Farquhar, A., Fikes, R., and Rice, J.(1996) The Ontolingua
Server: a Tool for Collaborative Ontology Construction. In
Proceedings of the Knowledge Acquisition for Knowledge-
Based Systems Workshop, Banff, Alberta, Canada.

Gil Y. and Melz E. (1996). Explicit Representations of
Problem-Solving Strategies to Support Knowledge
Acquisition. In AAAI-96/IAAI-96 Proc., pp.469-476.

Jones E. (1998). HPKB Year 1 End-to-End Battlespace
Challenge Problem Specification, Burlington, MA.

Jones E. (1999). HPKB Course of Action Challenge
Problem Specification, Burlington, MA.

Lenat, D.B. (1995). CYC: A Large-scale Investment in
Knowledge Infrastructure Comm of the ACM 38(11):33-38.

MacGregor, R. (1999). Retrospective on LOOM. Available
online as: http://www.isi.edu/isd/LOOM/papers/macgregor
/Loom_Retrospective.html

Tecuci, G. (1998). Building Intelligent Agents: An
Apprenticeship Multistrategy Learning Theory,
Methodology, Tool and Case Studies. London, England:
Academic Press.
Tecuci, G., Boicu, M., Wright, K., Lee, S.W., Marcu, D.
and Bowman, M. (1999). An Integrated Shell and
Methodology for Rapid Development of Knowledge-Based
Agents, in AAAI-99/IAAI-99 Proc., AAAI Press, CA

	Text1: In Proceedings of the AAAI-2000 Workshop on Representational Issues for Real-World Planning Systems, Austin, Texas. 2000.

