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Abstract 
This paper presents a learnable representation for real-world 
planning systems. This representation is a significant 
extension of the ones used in the most recent systems from 
the Disciple family, the Disciple-Workaround system for 
plan generation, and the Disciple-COA system for plan 
critiquing. This representation is defined to support an 
integration of domain modeling, knowledge acquisition, 
learning and planning, in a mixed-initiative framework. It 
also helps to remove the current distinction between the 
development phase of a planning system and its 
maintenance phase. It provides an elegant solution to the 
knowledge expressiveness / knowledge efficiency trade-off, 
and allows reasoning with incomplete or partially incorrect 
knowledge. These qualities of the representation are 
supported by several experimental results. 

1 Introduction 

A great challenge in constructing a real world planning 
system is the selection of an appropriate representation of 
the domain knowledge that has to satisfy several 
constraints, generally regarded as being contradictory (Gil 
and Melz, 1996). In this paper we discuss a representation 
of knowledge that has several desirable properties for 
planning that are derived primarily from the fact that it is 
learnable directly from a subject matter expert. This 
learnable knowledge representation is being developed as 
part of the evolving Disciple theory, methodology, and 
tools. Our long-term goal with the Disciple research is to 
enable users that do not have any special training in 
knowledge engineering and computer science, to build by 
themselves agents that can act as intelligent assistants. 
While Disciple is being developed as a general approach, 
applicable to a wide range of domains, planning has 
received considerable attention in our recent work, 
performed as part of the DARPA’s High Performance 
Knowledge Bases program (Cohen et al., 1998). As part of 
this program, we have developed two systems, Disciple-
Workaround and Disciple-COA. 
 Disciple-Workaround was developed to address the 
workaround challenge problem which consists of rapidly 
developing and maintaining a knowledge-based agent that 
is able to plan how a convoy of military vehicles can 
circumvent or overcome obstacles in their path (such as 
damaged bridges or minefields), the primary goal being to 
estimate the time needed to workaround such an obstacle in 
a given situation (Jones, 1998). Disciple-COA was 
developed to address the COA challenge problem which 
consists of rapidly developing and maintaining a critiquing 

agent to evaluate military Courses Of Action that were 
developed as hasty candidate plans for ground combat 
operations (Jones, 1999). Disciple-COA is able to identify 
the strengths and the weaknesses of a course of action with 
respect to the principles of war and the tenets of army 
operations. 
 The learnable representation presented in this paper 
emerged as an extension of the ones used in Disciple-
Workaround and Disciple-COA. In this paper we will 
concentrate on those aspects of this representation that 
support planning-related activities that lie outside basic 
plan generation. We will clarify what we mean by 
learnable representation; how a domain model that exists in 
the mind of the expert is captured at different levels of 
abstractions and formalization (informal for abstract 
modeling of the domain, formal for actual planning, and 
natural language for user-agent communication); how the 
rationale underlying the generated plans is acquired and 
represented; how the reasoning complexity is managed by 
using different levels of details in user-agent 
communication; how time-ordering constraints and 
functions are learned and represented; and finally how this 
representation supports reasoning with incomplete or 
partially incorrect knowledge. 
 The rest of this paper is organized as follows. We first 
introduce the basic Disciple approach to agent 
development, and its knowledge representation, and clarify 
what we mean by learnable representation. Then we use an 
example from the workaround domain to address several 
knowledge representation issues that are important for real-
world planning systems. We continue with presenting 
several experimental results that support our claims 
concerning this representation, and conclude the paper. 

2 User-Developed Planning Agents 

Disciple is a learning agent shell that allows customization 
for a particular domain. It consists of a learning and 
knowledge acquisition engine as well as a problem solving 
engine. It also supports building an agent with a knowledge 
base consisting of an ontology that defines the concepts 
from the application domain, and a set of task reduction 
rules expressed in terms of these concepts. The problem-
solving engine is based on the task reduction paradigm. In 
this paradigm, a task to be accomplished by the agent is 
successively reduced to simpler tasks until the initial task is 
reduced to a set of elementary tasks that can be 
immediately performed. This problem solving paradigm 
applies very naturally to hierarchical planning. 



  

 While an ontology is characteristic to a certain domain 
(such as an ontology of military units, or an ontology of 
military equipment, in the case of the military domain), the 
rules are much more specific, corresponding not only to a 
certain type of application in that domain, but even to a 
specific expert, representing his or her characteristic 
problem-solving strategies (e.g. rules for an agent that 
assists a military commander in critiquing courses of 
action, or rules for an agent that assists in planning the 
repair of damaged bridges or roads). Therefore the rules 
and the tasks composing them have to be acquired from the 
expert. Based on this observation, the process of 
developing a Disciple agent starts with importing an initial 
ontology from an external knowledge server, such as CYC 
(Lenat, 1995), Ontolingua (Farquhar et al., 1996), or 
LOOM(MacGregor, 1999). This process continues with 
teaching the agent how to perform various tasks, in a way 
that resembles how an expert would teach a human 
apprentice when solving problems in cooperation. During 
this teaching process, the agent will learn the tasks and the 
rules from the expert and will also extend its ontology. 

3 Mixed-Initiative Modeling, Planning and 
Learning 

The process of teaching the agent integrates domain 
modeling, planning and learning, in a mixed-initiative 
framework. The expert selects or defines a planning task 
and Disciple tries to automatically generate a plan by 
applying the task reduction rules from its knowledge base. 
This may produce several good plans, wrong plans, or no 
plans at all. Each of these situations is an opportunity for 
learning, but let us here consider the case where no 
complete plan is produced. In this case the agent will help 
the expert to identify the most promising partial plan that 
needs to be extended to a complete and correct plan. The 
expert and the agent will enter a mixed-initiative modeling, 
planning and learning process, working together to 
complete the plan. In the same time, the agent will learn 
from this joint activity. While trying to reduce a current 
task to a set of subtasks, the expert and the agent may 
encounter three different situations: 

 A) No rule is applicable and therefore no reduction is 
proposed by Disciple. In this case the expert will enter a 
modeling phase where he or she has to define the reduction 
of the current task. From this example Disciple will learn 
both a general reduction rule and several tasks and task 
features. 

 B) A reduction rule is applied to reduce the current task 
to subtasks, and the expert accepts this reduction. In this 
case the applied rule may be automatically generalized 
(depending of how the reduction was generated) and the 
planning process continues with further reducing one of the 
subtasks. 

 C) A reduction rule is applied to reduce the current task 
to subtasks, but the expert rejects this reduction. In this 
case the applied rule is specialized (in a mixed-initiative 
scenario) to no longer generate the wrong reduction, and 
the process continues as in case A. 

Figure 1 shows an example of task reduction provided by 
the expert, as a result of a modeling process. In order to 
reduce the top level task in Figure 1, the expert formulates 
a question that clarifies what aspects of the situation 
determine the solution (“What bank needs to be reduced?”). Then 
the expert finds and formulates the answer to the question 
(“Both site107 and site105”), and defines the solution (the 
ordered subtasks shown at the bottom of Figure 1). All 
these phrases are in natural language, except that whenever 
a reference to a concept or instance from the ontology is 
needed, the user has to use the name of that instance in the 
ontology (such as “bulldozer-unit201” or “bank”). The 
agent assists not only in identifying the name of an object, 
but also in structuring the natural language phrases 
representing the tasks (as shown in Figure 1). In addition, it 
learns general tasks patterns from these task examples, as 
discussed in section 4.  
 Once the example reduction is defined, a mixed-
initiative explanation generation process starts in which the 
agent will find the explanations of this reduction, shown in 
the left and right hand sides of Figure 1. This process is 
discussed in section 5. Then, based on the example 
reduction and its explanations from Figure 1, the agent will 
learn the rule from Figure 2. This rule is refined in future 
planning situations of type B or C when this rule is 
applicable. 

4 Learning of Task Representation 

The format of a task in the user provided example is a 
compromise between free natural language description and 
a restrictive formal representation. The Disciple agent 
helps the expert to define the tasks in a predefined 
structure, but inside that structure there are no additional 
restrictions (except that of using the object names from the 
ontology). For instance, the expert expresses the first 
subtask of the decomposition in Figure 1 in natural 
language: 

“Reduce the slope of site107, by direct cut, using bulldozer-unit201, to 
allow the fording of unit10” 

A task example must start with a task name (an unrestricted 
free natural language phrase that does not contain any 
object name) and is followed by one or more task 
description features. Each task description feature includes 
at most one relevant object from the ontology (concept or 
instance) or a constant (number or string). Based on this 
structure, automatically (or sometimes requiring some 
minimal help from the user), the agent will create a general 
task pattern that includes generic variables, formal task 



 

features, and plausible version spaces for the ranges of 
these features. For instance, the task pattern learned from 
the above task example is: 

Reduce-the-slope  
of ?O1 (pub: (geographical-region) plb: (site107)) 
by-direct-cut 
using ?O2 (pub: (equipment) plb: (bulldozer-unit201)) 
to-allow-the-fording-by ?O3 ( pub: (modern-military-organization) 
 plb: (unit10)) 

While the first time a task is used, the user can define it any 
way he or she wants, future uses of this task will have to 
use the same structure. These new examples of the task 
pattern will be used to learn better ranges for the features 
of the task. The structuring of the tasks is also used in 
reasoning about task similarities during domain modeling, 
planning and learning. Disciple also learns hierarchical 
relations between tasks that are used in domain modeling 
to support creative reasoning. 

In previous versions of Disciple, the user had to first 
model the domain, then define the task features, and then 
define the tasks based on the defined feature. All these 
activities had to be done before using the task in an 
example. The new version of Disciple allows all these 
activities to take place at the same time when the example 
is defined. Moreover, the user is primarily responsible only 
for domain modeling, because the tasks and tasks features 

are learned by the agent from the provided model of task 
reduction. In the next two sections we will briefly discuss 
the mixed-initiative learning of task reduction rules, 
starting from the provided example. 

5 Mixed-Initiative Explanation Generation 
To learn a rule from the example reduction, Disciple needs 
to understand why the reduction is correct. Finding the 
explanations of the task reduction is a mixed-initiative 
process of searching the agent’s ontology, an explanation 
being a path of objects and relations in this ontology. This 
search process is guided by three sources of knowledge: an 
ordered set of heuristics for analogical reasoning, the 
Question and the Answer corresponding to the reduction to 
be explained, and a mixed-initiative process of hint 
refinement.  

The heuristics for analogical reasoning are based on the 
similarity relations between the tasks and the features from 
Disciple’s knowledge base, and on different types of 
structure similarity between the current example and the 
existing rules. In essence, Disciple identifies the rules that 
include tasks similar to those in the current example. Then 
it uses the explanations from which these rules have been 
learned as a guide to search for similar explanations of the 
current example. It displays the found explanations, 
ordered by their plausibility, and asks the expert to select 

Figure 1. An example of task reduction 

Ford the river after the reduction of the slope of the banks
at site103
by unit10
which is at site107
and is using bulldozer-unit201

What bank needs to be reduced?

Both site107 and site105

Reduce the slope
of site107
by direct cut
using bulldozer-unit201
to allow the fording by unit10

Ford
bulldozer-unit201
at site103

Reduce the slope
of site105
by direct cut
using bulldozer-unit201
to allow the fording by unit10

Unit10 has a default-negotiable-slope of 25 and
Site107 has a max-slope of 200 > 25.

Unit10 has a default-negotiable-slope of 25 and
Site105 has a max-slope of 200 > 25.

Site105 is a bank.

AFTERAFTER

AFTER

Report that
bulldozer-unit201
has been obtained by unit10

Site107 is on the opposite-side of site105.

Restore the traffic link 
at site103
for unit10

AFTER

Task to be 
decomposed

Question
Explanations

Answer
Decomposition

Explanations



  

the correct ones. 
 Guidance for explanation generation is also provided by 
the question and the answer from the example that identify 
the objects that should be part of the explanation, even 
though Disciple does not yet have the ability to understand 
these natural language phrases. However, in order to 
facilitate explanation generation, we are currently 
investigating techniques to partially understand the 
Question and the Answer. 
 Finally, there is a mixed-initiative process of hint 
refinement. A hint might be a fragment of an explanation 
(such as an object or a relationship between two objects), 
or any abstraction of such a fragment. Both the expert and 
the agent can formulate an initial hint, and then each of 
them may propose possible refinements. The refinements 
proposed by the agent are based on an analysis of the 
structure of the ontology, and on the analogy with the hints 
from which other rules have been learned. The expert may 
also guide the agent in proposing various refinements of 
the current hint, and then may select the most promising 
refinements. This process continues until the hint is refined 
to an explanation accepted by the expert. 

6 Learning of Plausible Version Space Rules 

From the example task reduction and its explanations 
shown in Figure 1, the agent automatically generates the 
task reduction rule shown in Figure 2. This rule is a 
complex IF-THEN structure that specifies one or several 
conditions under which the task from the IF part can be 
reduced to the tasks from the THEN part. Each rule 
includes a main condition that has to be satisfied in order 
for the rule to be applicable. Partially learned rules, such as 
the one shown in Figure 2, do not contain exact conditions, 
but plausible version spaces for these conditions. Each such 
plausible version space is represented by a plausible upper 
bound condition which, as an approximation, is more 
general than the exact (but not yet known) condition, and a 
plausible lower bound condition which, as an 
approximation, is less general than the exact condition. In 
addition to the tasks and the main condition, the learned 
rule also includes generalizations of the Question and its 
Answer, and of the Explanations. We can see that the 
learned rule represents information at various levels of 
abstraction and formalization which allow the Disciple 
agent to perform a wide range of reasoning processes. For 
instance, the Question and the Answer help the expert in 
domain modeling, by suggesting a certain line of 
reasoning, when the expert attempts to reduce a task 
similar with the one reduced by the current rule. They are 
also used by the natural language generation module of 
Disciple to generate the question and answer part of a task 
reduction step obtained by applying a rule. Representing 
knowledge in a rule at various levels of abstractions allows 
the Disciple agent to present the justifications of its 
solutions at each of these levels of abstractions, as has been 
demonstrated with Disciple-COA. Disciple-COA generated 
three types of justifications to a solution. The most abstract 
one included only the initial task, the sequence of questions 

and answers, and the final solution. A more detailed one 
also included the intermediate tasks. Finally, the most 
detailed one also included the explanations and the rules 
that generated the intermediate steps. 
As the planning agent learns plausible version space rules, 
it can use them to propose routine, innovative or inventive 
solutions to the current problems. The routine solutions are 
those that satisfy the plausible lower bound conditions of 
the task reduction rules and are very likely to be correct. If 
such a solution is not correct, then the corresponding rule is 
extended with an Except-for condition. 

Figure 2: The rule learned from the example in Figure 1. 

Ford the river after the reduction of the slope of the banks
at ?O1
by ?O2
which is at ?O3
and is using ?O4

What bank needs to be reduced?

Both ?O3 and ?O5.

Reduce the slope
of ?O3
by direct cut
using ?O4
to allow the fording by ?O2

• ?O2 has a default-negotiable-slope of ?N1 and
?O3 has a max-slope of ?N2 > ?N1.

• ?O3 is on the opposite-site of ?O5.
• ?O5 is a bank.
• ?O2 has a default-negotiable-slope of ?N1 and

?O5 has a max-slope of ?N3 > ?N1.

If the task to accomplish is:

and the question

has the answer

because

then decompose the task into the subtasks:

• ?O1 is site
• ?O2 is military-unit

default-negotiable-slope ?N1
• ?O3 is geographical-region

max-slope ?N2
opposite-site ?O5

• ?O4 is military-equipment
• ?O5 is geographical-region

max-slope ?N3
• ?N1 ∈ [ 0.0 , 200.0 ]
• ?N2 ∈ (0.0 , 1000.0 ]

> ?N1
• ?N3 ∈ (0.0 , 1000.0 ]

> ?N1

?T1

AFTER

Ford
?O4
at ?O1

?T2
AFTER

?T1

Reduce the slope
of ?O5
by direct cut
using ?O4
to allow the fording by ?O2

?T3

AFTER

?T2

Restore the traffic link
at ?O1
for ?O2

?T4
AFTER

?T3

Plausible Upper Bound
• ?O1 is site103
• ?O2 is unit10

default-negotiable-slope ?N1
• ?O3 is site107

max-slope ?N2
opposite-site ?O5

• ?O4 is bulldozer-unit201
• ?O5 is site105

max-slope ?N3
• ?N1 ∈ { 25.0 }
• ?N2 ∈ { 200 } 

> ?N1
• ?N3 ∈ { 200 } 

> ?N1

Plausible Lower Bound

Report that
?O4
has been obtained by ?O3

Main Condition



 

 The innovative solutions are those that satisfy the 
plausible upper bound conditions. These solutions may or 
may not be correct, but each case will lead to a refinement 
of the task reduction rules that generated them. Correct 
solution will lead to automatic generalization of the 
plausible lower bound condition of the rule. Incorrect 
solutions may lead to either the specialization of the 
plausible upper bound condition of the rule, or the addition 
or refinement of an Except-When condition. To illustrate 
this last situation, let us consider that the Disciple agent 
generated a solution that was rejected by the expert 
because the bank to be reduced was made of rock. This 
failure explanation "site105 soil-type rock" will cause the 
extension of the rule in Figure 2 with the except-when 
plausible version space condition shown in Figure 3. In 
future planning situations the updated rule will only be 
applied if the Except-When condition will not be satisfied. 
During refinement, the rule may be augmented with several 
such Except-When conditions.  

The inventive solutions are based on weaker forms of 
plausible reasoning (such as partial matching of the 
plausible conditions of the rules, and tasks similarity based 
on the structure of the ontology). An inventive task 
reduction step is based on several rules, and is generally a 
novel reduction based on tasks from these rules. From 
inventive solutions the agent will learn new plausible task 
reduction rules. 
 One can also notice that the general rule in Figure 2 
contains generalized AFTER relations, in its right hand 
side. They are also generated automatically from the 
example in Figure 1. An important feature of our 
representation is that the value of an AFTER relation may 
be an incomplete description of a task that may appear in 
some other part of the plan being generated. For instance, 
the first task of the decomposition in Figure 1 (i.e. "Reduce 
the slope of site107...") can only start after it has been 
reported that unit10 has obtained bulldozer-unit201. This is 
a very ellegant solution to the generation of nonlinear plans 
that allowed us to treat task decompositions as if they were 
independent. Consider, for instance, a situation that 
involves a damaged bridge that is also mined. We can 
decompose this task into two subtasks, de-mining the 
bridge, and installing an AVLB bridge, and further 
decompose these subtasks independently. However, in each 
case where an important condition is satisfied, we 
introduce a Report task that signals this condition. 
Similarly, at each point where such a condition is needed, 
we would introduce a corresponding AFTER relation. For 
instance, in the de-mining planning tree, after the action of 
de-mining site107, the near bank of the river, we introduce 

the action "Report that site107 has been de-mined..." 
Similarly, in the install-AVLB planning tree, the action 
"Reduce the slope of site107 ..." will include an "AFTER 
Report that site107 has been de-mined ..." This works also 
in the cases when the bridge is not mined. Because the 
generated plan will not contain any de-mining report, the 
corresponding AFTER relation of the action "Reduce the 
slope of site105 ..." will be ignored. 
 The task reduction examples may also contain functions 
that are automatically generalized in the learned rules. The 
workaround domain made heavy use of functions for 
estimating the time required for various operations (such as 
reducing the slope of a bank, or emplacing an AVLB70 
bridge). 
 In addition to being learnable based on very simple 
interactions with a domain expert, the Disciple rules show 
a practical solution to the expressiveness/efficiency trade-
off. The different types of conditions of a rule (main 
condition, except-when conditions, for conditions and 
except-for conditions) offer it a high level of 
expressiveness. Maintaining also generalized justifications 
at various levels of abstractions and formalizations 
(informal and abstract for Question and Answer; formal 
and abstract for the explanations; formal and compiled for 
the conditions), allows Disciple to provide justifications of 
its actions at each of these levels. On the other hand, the 
(compiled) conditions of the rules allow very efficient 
reasoning. Notice also that a partially learned rule, such as 
the one in Figure 2, is an incomplete and possibly partially 
incorrect piece of knowledge. However, as has been shown 
above, Disciple could use such rules in various types of 
reasoning, from routine to creative. 

7 Robustness of the Learned Representation 

In the Disciple approach, the whole process of developing 
the KB of the planning agent is one of creating and refining 
(or adapting) knowledge pieces to better represent the 
domain model of the teaching expert. The same operations 
are involved in updating the KB in response to changes in 
the application environment or in the goals of the planning 
agent, that is, in maintaining the planning agent. Therefore, 
in the life-cycle of a Disciple planning agent there is no 
distinction between KB development and KB maintenance. 
If we take into account that the Disciple approach 
significantly speeds up the process of KB development (as 
demonstrated in the HPKB program), and that, 
traditionally, KB maintenance costs are about four times 
the (already high) KB development costs, then we can 
conclude that Disciple can have a very significant positive 
impact on the development and maintenance costs for real 
world planning systems. 
 In addition to its ability to update the task reduction rules 
to account for new examples, as presented in the previous 
section, Disciple also implements a mechanism of rule re-
generation from (a partial set of) the examples and the 
explanations from which it was initially learned. This is 
precisely what might be required during KB maintenance 
when, for instance, some concepts that appear in the rule 

Figure 3: The except when condition learned. 

• ?O5 has a soil-type of ?O6
and because not

• ?O5 is geographical-region
soil-type ?O6

• ?O6 is hard-soil

Plausible Upper Bound
• ?O5 is site105

soil-type ?O6
• ?O6 is rock

Plausible Lower Bound
Except When Condition



  

might be deleted from the ontology. In such a case, the 
automatic regeneration of the rule, based on the updated 
ontology, will lead to a new rule that no longer contains the 
concept that was deleted. 
 Disciple also provides intelligent assistants for ontology 
maintenance, such as the delete assistant or the copy 
assistant (Boicu et al., 1999), that control the operations on 
the ontology, in order to maintain its consistency. Let us 
consider, for instance, the deletion of a concept from the 
ontology. Many knowledge elements may be affected by 
this deletion, such as its subconcepts, features that have the 
deleted concept is their ranges or domains, rules that 
contain the concept in their conditions, etc. In such a case 
the delete assistant engages in a mixed initiative dialog 
with the expert in order to identify the best strategies to 
update its knowledge, while maintaining its consistency. 

8 Experimental Results and Conclusions 
Disciple-Workaround and Disciple-COA have been the 
subject of intense experimentation during the HPKB 
program, and the results obtained support the claims made 
in this paper about the suitability of our representation for 
developing and maintaining real world planning systems. 
Disciple-Workaround demonstrated that a knowledge 
engineer can rapidly teach Disciple using Military 
Engineering manuals and sample solutions provided by a 
domain expert. During the 17 days of DARPA’s 1998 
evaluation, the knowledge base of Disciple was increased 
by 72% (from the equivalent of 5,920 simple axioms to 
10,162 simple axioms) with almost no decrease in 
performance. Also, Disciple-Workaround was rapidly 
extended with new planning strategies, and was 
incorporated by Alphatech into a more complex application 
presented at EFX’98, the Air Force’s showcase of the most 
promising technologies.  
 With Disciple-COA we achieved two new significant 
milestones. For the first time we developed the knowledge 
base around an ontology created by another group 
(Teknowledge and Cycorp), demonstrating both the 
feasibility of knowledge reuse with the Disciple approach, 
and the generality of the Disciple rule learning and 
refinement methods. Moreover, the Disciple-COA agent 
was taught even more rapidly than the Disciple-
Workaround agent, and has again demonstrated a very high 
performance. In this case, Disciple was taught jointly by a 
domain expert and a knowledge engineer, and its 
knowledge base increased by 46% in 8 days of evaluation, 
from a size of 6,229 simple axioms equivalent to a size of 
9,092 simple axioms equivalent. The final knowledge base 
contained 801 concepts, 444 object and task features, 360 
tasks and 342 task reduction rules. Also, each COA was 
represented with around 1,500 facts. The second milestone 
was the knowledge acquisition experiment performed at 
the US Army Battle Command Battle Lab in Fort 
Leavenworth, Kansas. In this experiment four military 
experts with no prior knowledge engineering experience 
received very limited training in the teaching of Disciple-
COA and then each succeeded to significantly extend its 

knowledge base (with around 275 simple axioms in about 3 
hours), receiving no or very limited support from a 
knowledge engineer. 
 In conclusion, Disciple offers a learnable represenation 
for planning that is expert-oriented, as oppossed to 
knoweledge engineer oriented. The representation supports 
an integration of domain modeling, knowledge acquisition, 
learning and planning, in a mixed-initiative framework, as 
shown in section 3. It also helps to remove the current 
distinction between the development phase of a planning 
system and its maintenance phase, as discussed in section 
7. Moreover, as ahown in section 6, it provides an elegant 
solution to the knowledge expressiveness / knowledge 
efficiency trade-off, and allows reasoning with incomplete 
or partially incorrect knowledge.  
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