
�

������������	
����
���������������
����
����������������������

��
��� ���� ��	
����
�����

� �
�
��������� ������
��������������

Rapid Development of Large Knowledge Bases*

Marcel Barbulescu1, Gabriel Balan1, Mihai Boicu1, Gheorghe Tecuci1,2
1 MSN 4A5, Learning Agents Laboratory, George Mason University, Fairfax, VA, 22030

2 Center for Strategic Leadership, US Army War College, Carlisle, PA, 17013
{mbarbule, gbalan, mboicu, tecuci}@gmu.edu; http://lalab.gmu.edu

* 0-7803-7952-7/03/$17.00 © 2003 IEEE.

Abstract - This paper presents the Disciple-RKF
methodology for rapid development of large knowledge
bases which relies on importing ontological knowledge
from existing knowledge repositories, on parallel
development of separate knowledge bases by subject
matter experts, and on the merging of these knowledge
bases into a high performance integrated knowledge base.
The paper discusses several issues related to ontology
import and merging, and presents the results of a
successful knowledge base development and integration
experiment performed at the US Army War College.

Keywords: ontology import, knowledge bases integration,
knowledge acquisition, intelligent agents, military center
of gravity, experimental evaluation.

1 Introduction
 In order to solve real-world problems, software agents
need to incorporate complex models of the world, encoded
into large knowledge bases. In the traditional approach to
agent development the subject matter expert explains his
reasoning to a knowledge engineer who formalizes it and
encodes it into the agent’s knowledge base. After that, the
knowledge engineer and the subject matter expert analyze
the way the agent reasons, find explanations for the agent’s
incomplete or incorrect solutions, and refine the knowledge
base. This long, difficult and error-prone process is known
as “the knowledge acquisition bottleneck” of agent
development [2].

 Recognizing the importance of advancing the
knowledge base development technology, DARPA has
sponsored two leading programs, High Performance
Knowledge Bases, 1997-2000 [10] and Rapid Knowledge
Formation, 2000-2004 [3]. The Learning Agents
Laboratory at George Mason University has participated in
both of them, continuing the development of the Disciple
approach, an evolving theory, methodology and family of
intelligent agent shells for rapid development of
knowledge-based agents by subject matter experts, with
limited assistance from knowledge engineers
[18,19,20,21]. As a result, the current version of the
Disciple approach allows rapid development of knowledge
bases and agents for complex applications domains by

importing ontological knowledge from existing knowledge
repositories, by enabling a team of subject matter experts
that do not have prior knowledge engineering experience,
to rapidly construct, update and extend knowledge bases in
parallel, and by merging these knowledge bases into a high
performance integrated knowledge base. This paper
presents the general knowledge base development
methodology of Disciple, particularly the ontology import
and the knowledge base merging processes, supporting the
claim of rapid development with the results of a knowledge
base development and integration experiment performed at
the US Army War College.

2 Methodology Overview
 The Disciple approach relies on an instructable
(learning) agent that can be taught directly by a subject
matter expert to become a knowledge-based assistant. The
expert teaches the agent how to perform problem solving
tasks in a way that is similar to how the expert would teach
a person. That is, the expert teaches the agent by providing
it examples on how to solve specific problems, helping it to
understand the solutions, and supervising and correcting
the problem solving behavior of the agent. The agent, in
turn, learns from the expert by generalizing the examples
and building its knowledge base.

 As shown in Figure 1, the rapid knowledge base
development methodology of Disciple has four phases:
domain analysis; building of an initial knowledge base;
parallel development of knowledge bases for expertise sub-
domains; and merging of the constructed knowledge bases
into an integrated one.

 The domain analysis phase is performed jointly by a
knowledge engineer and a subject matter expert. During
this phase they analyze typical problems in the application
domain, informally outlining how the expert may solve
these problems using the task reduction / solution synthesis
paradigm. In this paradigm, a complex problem solving
task is successively reduced to simpler sub-tasks, the
solutions of the simplest sub-tasks are found, and these
solutions are successively composed into the solution of
the initial task. The Disciple methodology includes detailed
guidelines and methods for helping the experts to express

�

������������	
����
���������������
����
����������������������

��
��� ���� ��	
����
�����

� �
�
��������� ������
��������������

their problem solving expertise using the task reduction
paradigm. This approach was demonstrated in a variety of
domains, including planning to repair damaged bridges,
critiquing of military courses of action, and determining
strategic centers of gravity in war scenarios [1].

 There are three primary results of the “Domain
analysis” phase: 1) an understanding by the subject matter
experts of how to express their problem solving expertise
using the task reduction paradigm, which they will use to
teach personal Disciple agents; 2) an informal specification
of the ontological terms (objects, relations, properties)
needed in the knowledge base to be developed, which will
guide the ontology import process; and 3) a partitioning of
the application domain in different sub-domains for which
knowledge bases will be developed in parallel, and then
merged.

 The second phase of the methodology consists in
building an initial knowledge base consisting of an initial
object ontology that represents the terms from a particular
domain, and an initial set of problem solving (i.e. task
reduction and solution composition) rules expressed with
these terms. The object ontology is the more general
component of the knowledge base, being characteristic to
an entire domain, such as medicine, or military. A domain
ontology specifies terms that are useful in a wide range of
different applications in that domain. For instance, a
military ontology would include specifications of military
units and of military equipment that are very likely to be
included in the knowledge base of any agent developed for
a particular military application. Moreover, there is a wide
agreement in any mature domain on the basic terms of that
domain. This allows one to reuse ontological knowledge
that was developed for previous applications in that
domain. Therefore, Disciple includes modules for
importing ontological knowledge from existing knowledge
repositories, such CYC [12]. Using the terms identified in
the domain analysis phase as a guide, the knowledge
engineer and the subject matter expert will search for
formal descriptions of this ontological knowledge, and will
import them into the object ontology under development.
This ontology is further extended using the ontology
browsers and editors of Disciple [16]. We describe the
import method in detail in section 3.

 The problem solving rules are a more specific
component of the knowledge base. The rules are not only
specific to a particular application in a given domain, but
they are even specific to a particular subject matter expert.
Consider, for instance, an agent that assists a military
commander in critiquing courses of action with respect to
the principles of war and the tenets of army operations
[20]. The rules will identify strengths and weaknesses in a
military course of action, and will obviously be domain
specific. Moreover, they are very likely to include
subjective elements that are based on the experience of a

specific military expert. Defining such problem solving
rules is a very complex knowledge engineering task. In the
Disciple approach, however, these rules are learned by a
Disciple agent through a natural interaction with a subject
matter expert, as described in [19, 21]. During the second
phase of the methodology, the subject matter experts and
the knowledge engineer teach a Disciple agent how to
reduce the problems to solve into a set of sub-problems,
where each sub-problem is a top-level problem in one of
the sub-domains identified in phase 1 (see Figure 1).

 In the third phase of the methodology, each subject
matter expert receives a copy of the Disciple agent
developed in phase 2, and is assigned one of the identified
sub-domains of the domain. Then each subject matter
expert will teach his/her personal Disciple agent how to
solve problems in the corresponding sub-domain, and the
agent will learn general problem solving rules and will
extend the object ontology. The result will be n knowledge
bases, one for each sub-domain of the initial domain. These
n knowledge bases are then integrated into a single
Disciple knowledge base. The new ontological terms
defined by the experts are merged into a common ontology
by using the method described in section 4. However, the
rules learned by the different Disciple agents are kept in
separate partitions of the integrated knowledge base.
Therefore, when solving a complex problem, the final
Disciple agent will first reduce it to a set of sub-problems,
then each sub-problem will be solved in one rule partition,
and the resulting solutions will be combined into a solution
of the initial problem.

Figure 1. The phases of rapid knowledge base development

1. Domain analysis

2. Initial KB
development

3. Parallel KB
development

4. Knowledge
bases merging

KB0

KB1 KB2 KBn

Subject matter
experts

Final KB

External
Repositories

Initial KB

Ontology
specification

Generic
problems

Expertise
subdomains

�

������������	
����
���������������
����
����������������������

��
��� ���� ��	
����
�����

� �
�
��������� ������
��������������

3 Ontology Import
 In the initial KB development phase (see Figure 1),
the knowledge engineer and the subject matter expert build
an object ontology around the terms identified during the
domain analysis phase. Instead of building it from scratch,
they try to reuse knowledge already encoded in external
repositories.

 The ontology import process is depicted in Figure 2,
and consists of three steps. First, there is an interactive step
of identifying the objects in an external repository, such as
CYC, that correspond to the terms specified during the
domain analysis phase. We refer to these terms as the seed
of the import process. Next, there is an automatic
extraction of the knowledge related to these terms, into an
Intermediate Ontology File. Finally, the extracted
knowledge is translated and integrated into the Disciple
ontology, through an interactive process.

Figure 2. Ontology import architecture

 A external repository is accessed through a dedicated
module (e.g. CYC Ontology Retrieval, in Figure 2), which
performs interactive seed discovery, automatic knowledge
extraction and intermediate format translation. First, for
every natural language term identified in the domain
analysis phase, this module returns the objects from the
external repository that are most likely to represent this
term or a closely related one, and the expert has to select
the relevant objects. So far, the only lexical relatedness
metric we have used is substring matching, which is
particularly useful since many frames have groups of
words as names. However, synonyms of the original
natural language term can also be used.

 Once relevant terms from the external repository have
been identified, the system performs an automatic
extraction of other terms related to them, by using a slicing
algorithm [6]. Intuitively, treating the ontology as a
semantic graph, this algorithm computes the connected
components of the nodes in the seed set. It produces a
transitive closure of that set in terms of ontological

relationships. The slicing algorithm considers only those
edges in the knowledge graph corresponding to axioms that
can be accommodated by the destination knowledge
representation. Because the original algorithm was
designed with the slot-frame representation in mind, it uses
the subclass-of, instance-of, domain-of, range-of and
object-feature-value axioms. The algorithm follows the
subclass-of and instance-of edges to get the generalizations
of the objects in the seed. However, it does not follow
these axioms “down” the generalization hierarchy. This
could pose a limitation on the extracted knowledge. For
example, the only way one could import a taxonomy of
cars is to include the most specific car sub-concepts from
the source repository into the seed. Special attention must
be paid to these “downward” edges, since one could end up
slicing (importing) the whole ontology regardless of the
seed, thus defeating the whole purpose of the operation.
Our slicing algorithm allows also to import generalization
hierarchies of features.

 The slicing algorithm performs a breadth-first search
in the semantic graph. It also allows the user to specify a
depth limit for the search. This is based on the observation
that after a number of levels, some of the encountered
terms tend to not longer be relevant to the original purpose
of the seed. For instance, a catholic priest is a male person,
which is conceptually related with male clothing, which is
a subset of durable goods, which, in turn, is usually
transported in trucks, trains or cargo ships.

 The Translation Engine (see Figure 2) is responsible
for the creation of an ontology consisting only of imported
knowledge. It performs both a syntactic rewriting and a
semantic one. The syntactic rewriting takes place during
slicing and provides a one-to-one mapping from the
extracted axioms to an intermediate representation which is
an extension of Disciple’s knowledge representation.

 We will describe the semantic rewriting with the most
characteristic example of its use. In the Disciple knowledge
representation, a frame cannot be both a class and an
instance, such as in CYC. The system should decide
whether to translate the imported frame into a concept, or
to translate it into an instance, or to translate it both into an
instance and into a concept. Such a decision can be made
only after considering all taxonomic relationships the frame
is involved in. However, the simpler model of translating a
single axiom into another one is not powerful enough for
this task. We say that local information is insufficient for
rewriting one such taxonomic axiom, and global
information is required. The semantic rewriting consists of
building a temporary frame-based mirror of the sliced
knowledge, and then querying it. While the assertional
view and the frame based one are isomorphic, the later one
is preferable when local information does not suffice.
Notice that OntoMorph [4] uses a similar approach to the
translation process.

INTERMEDIATE
DISCIPLE

ONTOLOGY

DISCIPLE
ONTOLOGY

INTERMEDIATE
ONTOLOGY FILE

Translation
Engine

Ontology
Integration

Specification
of terms …

CYC

CYC
Ontology
Retrieval

OKBC server

OKBC
Ontology
Retrieval

�

������������	
����
���������������
����
����������������������

��
��� ���� ��	
����
�����

� �
�
��������� ������
��������������

 We also use the distinction between the syntactic
rewriting and the semantic rewriting for modularization
purposes. Unlike the semantic stage, the syntactic one
depends of the source repository. In order to import from
other knowledge repositories, such as an OKBC server [5],
one only needs to develop an appropriate wrapper of access
functions and a specification of the rewriting of the
extracted objects into the intermediate knowledge
representation of Disciple. For the semantic rewriting, one
needs to extend it only if the original design of the
intermediate representation proves to be incomplete. In
Klein’s terminology [11], the language level mismatches
have been taken care of. After this point, the knowledge
has been transferred to Disciple, and the user will have to
use only Disciple’s knowledge representation and tools for
the rest of the ontology import process. This last phase is
performed by the Ontology Integration module (see Figure
2) which is described in the next section.

4 Knowledge Base Merging
 Currently there is no automatic method of merging
knowledge bases, all the existing approaches, including
Prompt [15], Chimaera [13], and Disciple, use an
interactive, semi-automatic approach.

 We use knowledge base merging in two phases of our
methodology. First we use it during the ontology import
(phase 2 in Figure 1) for integrating the knowledge from
multiple slicing operations into an initial ontology. Second,
we use merging to integrate the knowledge bases that were
developed in parallel during phase 3 (see Figure 1).

 The knowledge needed in the ontology could be
obtained through multiple extractions, from different
external sources. The outcome of these extractions is a set
of ontologies that must be combined into a single one. Our
approach is to incorporate these ontologies one by on into
an intermediary ontology, each time merging a new
ontology into the intermediary ontology. This is similar to
the approach described in [14], where the intermediary
ontology plays the role of the “preferred ontology.”

 We have implemented a mixed-initiative ontology-
merging tool by extending the functionality of the ontology
editing tools of Disciple. The characteristic operation of
this phase is the integration of a frame from one ontology
into another. In the destination ontology, the copied frame
can be coalesced into an existing one or a new frame can
be created. If the whole frame is being transferred, this
operation is called deep-copy. If only the name and the
documentation of a frame are transferred, the action is
called shallow-copy. The user is offered the possibility to
shallow-copy a frame, deep-copy it or anything in between.
A side effect of integrating a frame into the destination
ontology is the creation of appropriate frames for all the
names that were mentioned in the frame being copied, but

did not already exist. Because the created frames are
incompletely defined, they are placed in a special list, with
the purpose of reminding the user that they need to be fully
specified. In this way the user is kept focused on the part of
the ontology currently being integrated. The merging
research efforts mentioned before have identified non
atomic operations such as merge/remove concept,
add/remove parent, etc. Our approach offers all these
operations, but in a frame-oriented, more intuitive fashion.

 One assumption in our approach is that terms with
identical name in the source and destination ontologies
should be semantically identical. Sometimes, when a frame
from the source ontology is integrated into the destination
ontology, its name is changed, either to match an existing
frame or to follow a standardized naming pattern. This
change is then automatically performed in the source
ontology. This way, we maintain the link between the two
frames in the two ontologies. Because the system relies
heavily on name matching, consistent renaming is
mandatory.

 The developed merging capability is suitable for
combining any pair of ontologies. However, the merging
performed in phase 4 of our methodology (see Figure 1)
has a particular flavor added to it. Because the ontologies
to be merged originate from a common root (i.e. KB0) and
share a common upper ontology, it makes sense for the
user to be presented with a list of differences between them
and with suggestions of what changes should be
performed. We provide filters for the differences list, so the
user can choose the appropriate level for the task at hand.
These differences are at the semantic level, but they still
rely on the previously stated assumption that same name
implies same meaning. Throughout the merging process
the user has to check for homonyms and coverage and
granularity differences. This process is guided by heuristics
such as the following one: if a name is a substring of
another, the first might be a generalization of the second
[13].

 Using the ontologies merging operations as building
blocks, we have also developed a module for merging the
rules from the knowledge bases developed in parallel
during phase 4, into a partitioned final knowledge base.

5 Rapid KB Development Experiments
 In Spring 2002 a first rapid knowledge base
development experiment was performed as part of the
“Intelligent Agents” course at George Mason University.
Each student had to develop an agent for helping someone
choose a PhD advisor. The agent’s goal was to identify
strengths and weaknesses of potential advisors of the
student. Six students trained personal Disciple agents in
parallel, considering different characteristics of advisors
and students. Then the six developed knowledge bases

�

������������	
����
���������������
����
����������������������

��
��� ���� ��	
����
�����

� �
�
��������� ������
��������������

were integrated into a final knowledge base. This
experiment was conducted with students having prior
knowledge engineering experience and it served as a dry
run for an experiment with subject matter experts described
in the following.

 In Spring 2003 we have performed a unique
experiment of parallel knowledge base development and
merging using the methodology presented in Figure 1. This
experiment was performed as part of the “Military
Applications of Artificial Intelligence” course, at the US
Army War College.

 The goal was to have the students – high ranking
military personal without extensive computer experience –
to build an integrated knowledge base for determining the
centers of gravity of the opposing forces in a war scenario.
As defined by Carl Von Clausewitz in 1832 [7], the center
of gravity of an entity (state, alliance, coalition, or group)
is the foundation of capability, the hub of all power and
movement, upon which everything depends, the point
against which all the energies should be directed. If a
combatant eliminates or influences the enemy’s strategic
center of gravity, then the enemy will lose control of its
power and resources and will eventually fall to defeat. If a
combatant fails to adequately protect his own strategic
center of gravity, he invites disaster [9].

 The students have been provided with a Disciple
agent previously trained to identify leaders as center of
gravity candidates. The knowledge base of this agent
consisted of 432 concepts and features, 29 tasks and 18
task reduction rules. We have then performed a joint
domain analysis and ontology development with all the
subject matter experts, by considering the example of
testing whether Saddam Hussein, in the Iraq 2003 scenario,
has all the required critical capabilities to be the center of
gravity for Iraq 2003 [17]. In particular, we have analyzed
whether Saddam Hussein has the capabilities to be
protected, stay informed, communicate, be influential, have
support, be a driving force, and be irreplaceable. Then we
have identified which are the critical requirements for these
capabilities to be operational, and which are their critical
vulnerabilities. Based on this analysis, the Disciple’s
ontology was extended by a knowledge engineer with 37
new concepts and features identified as relevant by the
subject matter experts.

 The 13 subject matter experts have then been grouped
into five teams (of 2 or 3 experts each), and each team was
given a copy of the extended Disciple agent. Each team has
trained its agent to test whether a leader has one or two of
the critical capabilities mentioned above (e.g. the capability
to be protected). The training was done based on three
scenarios (the Iraq 2003 war, the Arab-Israeli 1973 war,
and the current war on terror), the experts teaching Disciple
how to test each strategic leader from that scenario. As a

result of the training performed by the subject matter
experts, the knowledge base of each Disciple agent was
extended with learned features, tasks, and rules. The
average training time for each team was 5.47 hours. The
teams have learned a total of 99 rules, with an average rate
of 3.53 rules/hour, and from an average of 2.5
examples/rule. This supports our claim of rapid knowledge
base development.

 Then the knowledge bases of the five Disciple agents
have been merged by a knowledge engineer. During this
process two semantically equivalent features have been
unified, 4 incomplete rules were deleted, and 11 other rules
were refined.

 Next, each team has tested the integrated agent on a
new scenario and has been asked to judge the correctness
of the solutions generated by the agent (but only with
respect to the capabilities for which that team performed
the training of the agent). The result was 98.15%
correctness, which supports our claim of developing high
performance knowledge bases.

 To our knowledge, this is the first time that such an
experiment has been performed. It demonstrates Disciple’s
capability for rapid development of high performance
knowledge bases by subject matter experts, with limited
assistance from knowledge engineers.

6 Conclusions and Future Work
 We have presented a methodology for rapid
development of large knowledge bases, by a team of
subject matter experts. We have shown how to speed up
the development process by reusing previously developed
knowledge and by developing different parts of the
knowledge base in parallel. We have discussed in more
detail issued related to the implementation of translation
and merging of ontologies. We have also presented several
experiments that validate our methodology.

 We plan to extend our current work in several
directions: refine the import algorithm in order to limit the
slicing of irrelevant data; develop wrappers to allow
importing from other external knowledge sources such as
OKBC knowledge servers [5] or DAML+OIL ontologies
[8]; improve the pro-activity of the mixed-initiative
ontology merging assistant.

Acknowledgments. This research was sponsored by
DARPA, AFRL, AFMC, USAF, under agreement number
F30602-00-2-0546, by the AFOSR under grant no.
F49620-00-1-0072, and by the US Army War College.
Several members of the LALAB, particularly Dorin Marcu,
Bogdan Stanescu, and Cristina Boicu, contributed to the
development of Disciple-RKF.

�

������������	
����
���������������
����
����������������������

��
��� ���� ��	
����
�����

� �
�
��������� ������
��������������

References
[1] Bowman, M., A Methodology for Modeling Expert
Knowledge that Supports Teaching Based Development of
Agents, Ph.D. Dissertation, George Mason Univ, 2002.

[2] Buchanan, B. G. and Wilkins, D. C. eds. Readings in
Knowledge Acquisition and Learning: Automating the
Construction and Improvement of Expert Systems. San
Francisco, CA: Morgan Kaufmann, 1993.

[3] Burke, M., Rapid Knowledge Formation Program
Description, at http://reliant.teknowledge.com/RKF/
projects/Darpa_RKF_PIP.htm, 1999, accessed on 3 July
2003

[4] Chalupsky, H., “OntoMorph: A Translation System
for Symbolic Knowledge”, In A.G. Cohn, F. Giunchiglia,
and B. Selman, eds, Principles of Knowledge
Representation and Reasoning: Proceedings of the Seventh
International Conference. San Francisco, CA: Morgan
Kaufmann, 2000.

[5] Chaudhri, V. K., Farquhar, A., Fikes, R., Karp, P. D.
and Rice, J. P., “OKBC: A Programmatic Foundation for
Knowledge Base Interoperability”, Proc. of the 15th
National Conference on Artificial Intelligence, 600-607,
Madison, Wisconsin: AAAI Press/The MIT Press, 1998.

[6] Chaudhri, V. K., Stickel, M. E., Thomere, J. F. and
Waldinger, R. J., “Using Prior Knowledge: Problems and
Solutions”, Proc. of the 17th National Conference on
Artificial Intelligence and the 12th Conference on
Innovative Applications of Artificial Intelligence, 436-442.
Austin, Texas: AAAI Press/The MIT Press, 2000.

[7] Clausewitz, C.V. 1832, On War, translated and edited
by M. Howard and P. Paret. Princeton, NJ: Princeton
University Press, 1976.

[8] Connolly, D., van Hermelan, F., Horrocks, I.,
McGuiness, D., Patel-Schneider, P. F., and Stein, L. A.,
“Reference Description of the DAML+OIL Ontology
Markup Language”, W3C Note 18 December 2001.

[9] Giles, P.K., and Galvin, T.P., Center of Gravity:
Determination, Analysis and Application, CSL, U.S. Army
War College, PA: Carlisle Barracks, 1996.

[10] Gunning, D., High Performance Knowledge Bases
Program Description, at http://reliant.teknowledge.com/
/HPKB/about/about.html, 1996, accessed on 3 July 2003.

[11] Klein, M., “Combining and Relating Ontologies: An
Analysis of Problems and Solutions”, Proceedings of the
IJCAI-2000 Workshop on Ontologies and Information
Sharing, Seattle, Washington: IJCAI, Inc., 2000.

[12] Lenat, D. B., “CYC: A Large-scale Investment in
Knowledge Infrastructure”, Communications of the ACM,
38(11): 33-38, 1995.

[13] McGuinness, D. L., Fikes, R., Rice, J., and Wilder, S.,
“An Environment for Merging and Testing Large
Ontologies”, Proc. of the 7th International Conference on
Principles of Knowledge Representation and Reasoning,
483-493, Breckenridge, CO: Morgan Kaufmann, 2000.

[14] Noy, N. F. and Musen, M. A., “An Algorithm for
Merging and Aligning Ontologies: Automation and Tool
Support”, Proc. of the AAAI-99 Workshop on Ontology
Management, Orlando, Florida: AAAI Press, 1999.

[15] Noy, N. F. and Musen, M. A., “PROMPT: Algorithm
and Tool for Automated Ontology Merging and
Alignment”, Proc. of the 17th National Conference on
Artificial Intelligence, Austin, Texas: AAAI Press, 2000.

[16] Stanescu, B., Boicu, C., Balan, G., Barbulescu, M.,
Boicu, M., Tecuci, G., “Ontologies for Learning Agents:
Problems, Solutions and Directions’, Proc. of the IJCAI-03
Workshop on Ontologies and Distributed Systems,
Acapulco, Mexico, August 2003.

[17] Strange, J., Centers of Gravity & Critical
Vulnerabilities: Building on the Clausewitzian Foundation
So That We Can All Speak the Same Language, Quantico,
VA: Marine Corps University Foundation, 1996.

[18] Tecuci G., Disciple: A Theory, Methodology and
System for Learning Expert Knowledge, Thèse de Docteur
en Science, University of Paris-South, France, 1988.

[19] Tecuci G., Building Intelligent Agents: An
Apprenticeship Multistrategy Learning Theory,
Methodology, Tool and Case Studies, San Diego:
Academic Press, 1998.

[20] Tecuci G., Boicu M., Bowman M., and Marcu D.,
with a commentary by Burke M., “An Innovative
Application from the DARPA Knowledge Bases Programs:
Rapid Development of a High Performance Knowledge
Base for Course of Action Critiquing”, AI Magazine, 22, 2,
pp.43-61, AAAI Press, Menlo Park, CA, 2001.

[21] Tecuci G., Boicu M., Marcu D., Stanescu B., Boicu
C., Comello J., “Training and Using Disciple Agents: A
Case Study in the Military Center of Gravity Analysis
Domain”, AI Magazine, 24, 4, pp.51-68, AAAI Press,
Menlo Park, CA, 2002.

