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Abstract 
Disciple is an approach to agent development by 
subject matter experts where an expert teaches a 
Disciple agent his or her problem solving exper-
tise in a way that resembles how a person 
teaches another person. This paper presents an 
overview of the teaching and learning process 
during which the expert helps Disciple to learn 
and Disciple helps the expert to teach it, empha-
sizing the mixed-initiative control of the compo-
nent agents of Disciple, particularly the Model-
ing agent, the Rule Learning agent and the Ex-
ception-based Ontology Learning agent. It dis-
cusses current implementations, evaluation re-
sults, lessons learned and future developments. 

1 Introduction 
Disciple is an evolving theory, methodology, and family 
of agent shells for the development of intelligent agents 
by subject matter experts, with limited assistance from 
computer scientists or knowledge engineers [Tecuci et 
al., 2001]. A subject matter expert interacts directly with 
a Disciple learning agent, to teach it to solve problems, in 
a way that is similar to how the expert would teach a hu-
man apprentice, by giving the agent examples and expla-
nations, as well as by supervising and correcting its be-
havior.  

Building the knowledge base of a Disciple agent is an 
example of a problem that, by its very nature, requires a 
mixed-initiative solution. Indeed, neither the subject mat-
ter expert, nor the Disciple agent can solve this problem 
independently. While the subject matter expert has the 
knowledge to be represented in the knowledge base, he is 
not a knowledge engineer and cannot properly formalize 
it. On the other hand, the learning agent obviously does 
not have the knowledge to be represented, but it can in-
corporate knowledge engineering methods to formalize 
the expert’s knowledge. The goal is then to divide the 
responsibility between the expert and Disciple for those 
elements of knowledge engineering for which they have 
the most knowledge and aptitude, such that together they 
form a complete team for knowledge base development. 
This requires mixed-initiative reasoning, where the ex-

pert and the agent share representations, communicate 
naturally, properly divide their tasks and responsibilities, 
coordinate their actions, take initiative and release con-
trol. 

We have pursued the research on the Disciple approach 
for many years, developing increasingly more competent 
learning agents [Tecuci, 1988, 1998; Boicu, 2002]. 
Mixed-initiative, however, is a newer and very promising 
feature of the Disciple approach, which is discussed in 
this paper. 

The next section provides a brief overview of the 
teaching and learning process in Disciple. Section 3 de-
scribes the multi-agent architecture of the Disciple 
Teaching agent and the mixed-initiative control of its 
component agents which include the Modeling agent, the 
Rule Leaner and the Exception Handler. Then, sections 4, 
5, and 6 present more details on the mixed-initiative con-
trol inside these component agents. Finally, section 7 
concludes the paper with a discussion of related research 
on mixed-initiative reasoning. 

2 Teaching the Disciple agent 
A Disciple agent solves problems through task reduction. 
That is, it successively reduces a problem solving task to 
simpler tasks, finds the solutions of the simplest tasks, 
and then successively composes these solutions to obtain 
the solution of the initial task. To exhibit this type of be-
havior, its knowledge base has to contain an object on-
tology (that specifies the terms from a particular domain) 
and reduction and composition rules (expressed with the 
terms from the ontology). 

A fragment of the object ontology from the Center of 
Gravity analysis domain [Tecuci et al., 2002] is repre-
sented in the bottom left hand side of Figure 1. The on-
tology is a hierarchical representation of the objects and 
types of objects from the application domain. It repre-
sents the different kinds of objects, the properties of each 
object, and the relationships existing between objects.  

The expert teaches Disciple how to solve problems by 
considering a certain problem solving task, helping the 
agent to understand each reasoning step toward the solu-
tion, and supervising and correcting the agent’s behavior, 
when it attempts to solve new problems. During mixed-
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initiative interactions the agent learns from the expert, 
building and refining its knowledge base to represent the 
problem solving expertise of the human expert. 

First the expert expresses his/her reasoning process in 
natural language, as illustrated by the task reduction ex-
ample in the upper left side of Figure 1. The top task is 
the task to be reduced. In order to reduce this task the 
expert asks a relevant question and formulates its answer. 
The answer to this question leads to the reduction of this 
task to a subtask. Disciple may help the expert in com-
pleting the current problem solving step by employing 
different heuristics, such as analogical reasoning with 
previously encountered problem solving steps.  

Once the reduction step is defined, the expert has to 
help the agent to understand it. The agent has to identify 
those elements from the object ontology that represent 
the meaning of the question-answer pair. These ontology 
elements are the explanation of why the top task is re-
duced to the bottom task. One explanation piece is:  

President_Roosevelt  is_protected_by  US_Secret_Service_1943 
Once these explanation pieces are found, the agent 

generalizes the task reduction example and its explana-
tion to the task reduction rule from the right hand side of 
Figure 1. The learned rule has an informal structure 
(shown in the top right part of Figure 1) and a formal 
structure (shown in the bottom right part of Figure 1). 
The informal structure preserves the natural language of 
the expert and is used in agent-user communication. The 

formal structure is used in the actual reasoning of the 
agent. The reduction rule is an IF-THEN structure that 
expresses how and under what conditions a certain type 
of task may be reduced to simpler subtask. Notice, how-
ever, that the formal structure of the rule does not have a 
single applicability condition, but a plausible upper 
bound condition and a plausible lower bound condition. 
These conditions approximate the exact condition that 
Disciple is attempting to learn. The agent will use this 
partially learned rule in problem solving, and the feed-
back received from the expert will be used to learn the 
exact condition. Notice that the generalization of the ex-
ample into a rule is based on the object ontology which is 
used as the agent’s generalization hierarchy. Indeed, the 
specific instances from the example (e.g. Presi-
dent_Roosevelt, US_Secret_Service_1943) are replaced in 
the learned rule with more general concepts from the ob-
ject ontology (i.e. head_of_government, personal_protection 
_agency), and their relationships (e.g. is_protected_by, 
provides).  

3 The architecture of the Teaching 
Assistant  

Figure 2 shows the hierarchical multi-agent architecture 
of a major Disciple component, the Teaching Assistant. 
The parent agents call the child agents, each agent run-
ning in a separate process. The top level process in Dis-

Figure 1: Teaching the Disciple agent 
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ciple is the Mixed-Initiative Control Agent that controls 
the interaction between the user and Disciple. The user 
may initiate this process by specifying the problem solv-
ing task to be performed. Then Disciple attempts to suc-
cessively reduce the current task to simpler subtasks.  

When Disciple does not know how to reduce the cur-
rent task (such as the top task from the left hand side of 
Figure 1), the Control Agent invokes the Modeling Assis-
tant to help the user to provide a solution. The Modeling 
Assistant invokes the Example Editor, the Example 
Completion Agent, and the Example Analyzer. These 
agents interact with the user, suggesting plausible com-
pletions of the example and checking its correctness.  For 
instance, as the user specifies the question (see Figure 1), 
the Example Editor updates the current internal structure 
of the example. It also invokes the Word Completion 
Agent that suggests plausible completions of the word 
that is being typed by the user. When the question is 
completed, the Example Completion Agent suggests a 
plausible answer of the question and even a plausible 
subtask. When the entire example is completed, the Ex-
ample Analyzer may suggest improvements or correc-
tions. The mixed-initiative interactions between these 
agents will be discussed in more detail in section 4. 

After the example from the left hand side of Figure 1 is 
specified, the Task Formalization Assistant helps the user 
to formalize the new tasks which will be included in the 
formal structure of the rule to be learned (shown in the 
bottom right hand side of Figure 1). Then the example is 
passed to the Rule Learning Agent. Rule learning is a 
complex mixed-initiative process in which the user helps 
the agent to understand why the example is correct, and 
the agent help the user to explain it. There are several 
agents involved in this process. The Explanation Genera-
tion Agent proposes plausible explanations to the user, 
based on user hints, analogical reasoning, and natural 

language processing. The Implicit Explanations Agent 
identifies contextually true explanations and automati-
cally adds them to the explanations of the current exam-
ple. The Rule Analyzer checks the learned rule and iden-
tifies potential problems. This agent initiates an internal 
problem solving process to check if the rule generates too 
many solutions, in which case it provides hints for addi-
tional explanations of the example constraining the rule.  

The Rule Refinement Assistant is also composed of 
several agents that interact with the user to improve the 
rule based on its successful or unsuccessful use in prob-
lem solving. Similarly, the Exception-Based Ontology 
Learning Assistant interacts with the user to identify ex-
tensions of the object ontology that eliminate the excep-
tions of the learned rules. 

Because the interface of Disciple is implemented in 
Java, the Graphical User Interfaces (GUI) of all the 
agents run in the same process. However, each agent con-
trols the life and interaction of its graphical components, 
making the GUI control a distributed process shared by 
all the component agents of Disciple. 

These types of interaction have led to a synergistic in-
tegration of the main teaching processes: modeling, 
learning and problem solving [Boicu, 2002]. 

An important lesson learned from this architecture is 
related to the model used to implement the mixed-
initiative control. We have initially implemented a cen-
tralized rule-based control that is simple, uniform, and a 
single place in the system for self-awareness. However, 
we discovered that it has two major disadvantages. First, 
all the mixed-initiative processes need to be based on the 
same communication scheme which is not suitable for all 
the agents. Second, all the communications need to go 
through the central mixed-initiative control, which cre-
ates bottlenecks when there are processes that need to 
exchange many messages and the multi-tasking platform 

Figure 2: The multi-agent architecture of the Teaching Assistant 
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is slow. Therefore we are currently developing an alter-
native approach to the mixed-initiative control. This new 
approach is an integration of hierarchical control and 
mixed-initiative control. There is a top-level mixed-
initiative control that involves the user and the top level 
assistants from Disciple which perform a major function 
identifiable by the user, such as problem solving, model-
ing, task formalization, rule learning, etc. However, each 
such assistant (e.g. the Modeling Assistant) may initiate a 
new mixed-initiative process that involves its subagents 
(i.e. the Example Editor, the Example Completion Agent, 
and the Example Analyzer). If one of the subagents has 
also a multi-agent architecture, then it may initiate a 
mixed-initiative process for its subagents, and so on.  

The highest level of mixed-initiative control is gov-
erned by the Mixed-initiative Control Agent. This agent, 
as a parent of the other agents, may request and receive 
detailed reports on the status of all the others agents 
(through its direct sub-agents). Therefore, at this level it 
is still possible to perform global self-awareness reason-
ing as needed, but without a permanent burden on the 
component agents. This agent may also control the 
mixed-initiative interaction between Disciple and exter-
nal agents.  

Figure 3 describes the other levels of mixed-initiative 
control in Disciple. Agent-k is initiated by its parent 
agent. The parent agent controls its life cycle, being re-
sponsible of the correct startup and shutdown of Agent-k. 
At startup the parent agent registers the new agent with 
all the existing running agents that need to know about it. 
Then Agent-k executes its initialization task which may 
involve initiation of sub-agents and/or communication 
with existing agents. After initialization Agent-k enters 
an execution cycle, performing tasks corresponding to the 
external messages received, as it will be discussed below. 
When a shutdown request is received Agent-k is respon-
sible of the proper shutdown of its sub-agents and the 
corresponding cleanup procedure. 

Agent-k communicates with other agents (including its 
subagents) using two types of messages: task execution 
requests and result notifications. There might be two or 
more agents capable to execute the requested task. The 
negotiation is coordinated by the sender 
agent, resulting in one of the following 
situations: 1) all capable agents execute 
the task and the results are unified; 2) the 
best agent is selected to execute the task; 
and 3) the first capable agent available 
executes the task. 

During or after the execution of a task 
an agent may send notification messages 
to the registered agents, informing them 
about the results obtained during task 
execution. The receiving agents may start 
the execution of new tasks or modify the 
current internal execution flow.  

Notice that the same agent may run in 
different processes (for instance the prob-

lem solving agent is invoked both at the main level of the 
Teaching Assistant but also to help the Rule Analyzer). 

The current implementation pre-codes this mixed-
initiative mechanism. Moreover, the agents are responsi-
ble for implementing critical communication and control 
capabilities. We are currently working on developing a 
mixed-initiative framework that will offer predefined 
types of mixed-initiative agents, which will make the 
definition of such agents very easy, reducing them to the 
description of tasks and their execution. 

4 The Modeling Assistant 
In this section we will present the mixed-initiative con-
trol at the level of a Disciple assistant, using the Model-
ing Assistant as an example.  

Let us consider the top left task from Figure 1 which 
Disciple does not know how to reduce. In such a case the 
user has to provide the reduction from the left hand side 
of Figure 1 (i.e. the question, the answer and the sub-
task), and the Modeling Assistant has to help the user to 
specify it.  

There are two main situations in the interaction be-
tween the user and the Modeling Assistant: 1) when the 
user is typing a word of the current knowledge element 
(e.g. a word of the question) and 2) when the user has 
just finished the current element and wants to continue 
with the next one (e.g. has finished typing the question, 
and wants to start typing the answer). We will discuss 
each of them. 

Figure 4 shows the exchanged messages and the ac-
tions taken by each agent of the Modeling Assistant when 
the user is typing a word of the question in the Example 
Editor. The elementary user action is the typing of a let-
ter (for instance, the letter “r” in: “What is a means to pro-
tect Pr”). The GUI of the Example Editor is notifying all 
the registered agents of the user action:  

User modified question (example-id, new-question, version) 
As a result, the Example Editor does the following: 
- identifies concepts and instances in the current Ques-

tion fragment (none in this case); 
- modifies the internal structure of the example; 
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- if any concept or instance was identified, notifies all 
the registered processes on the actions taken:  
“Updated question (example-id, new-question, version)” 

There are two agents to notify: the Example Editor 
GUI and the Word Completion Agent. The Example Edi-
tor GUI will need to synchronize the current form (which 
may be different if the user typed other letters) with the 
received form of the question (which will contain newly 
identified concepts or instances). The agents use the 
“version” parameter for synchronization. Each time the 
user is performing an editing operation the version of the 
edited element is increased. When an update notification 
is sent with a result the Example Editor GUI compares 
the received version with its current one, and, if it is the 
same, it updates the result. Otherwise it ignores the re-
ceived result. 

A similar process takes place for suggesting the word 
completions. When the Word Completion GUI receives 
the update message it invalidates the current selection 
list, keeps the version and waits for the new list of sug-
gestions. The Word Completion Agent will compute the 
most plausible completions, based on partial lexical 
matching, reasoning context analysis and analogical rea-
soning. If, during computation, another message is re-
ceived, the current computation will be discarded and a 
new one will start. After the list is computed the agent 
sends the completions to the GUI. The synchronization is 
again assured through the use of the version parameter.  

Another important aspect of the control mechanism is 
the proactive execution. For instance, the Example Com-
pletion agent is running in the background to hypothesize 
the most plausible answers (or the patterns of the an-
swers) of the currently edited question. Each time the 
question is modified this agent updates its hypotheses. 
When the user finishes the question by pressing Enter, 
this agent immediately proposes the most plausible an-

swers. The agent uses several heuristics methods to gen-
erate plausible answers. They are based on natural lan-
guage processing, analogy with answers from previously 
learned rules, and methodological guidelines, as de-
scribed in Boicu [2002]. 

An earlier version of the Modeling Assistant was 
evaluated in an experiment at the US Army War College 
in Spring 2002. In this experiment, which will be re-
peated in Spring 2003, 15 subject matter experts have 
taught personal copies of Disciple their own reasoning in 
Center of Gravity analysis. The evaluation results de-
scribed in Boicu [2002] show that this mixed-initiative 
implementation has led to significantly better results than 
a previously used example editor. The experts succeeded 
to model more examples, and needed less help from the 
knowledge engineers, because the Modeling Assistant 
provided suggestions that they considered generally use-
ful and understandable. They also considered this assis-
tant generally well organized and easy to use. 

5 The Rule Learning Assistant 
In this section we present the mixed-initiative control at 
the level of the Rule Learning Assistant, as we are cur-
rently implementing.  

Let us consider again the task reduction step from Fig-
ure 1. The user and the sub-agents of the Rule Learning 
Agent, shown in Figure 2, have to cooperate to find the 
following formal explanation pieces: 

President_Roosevelt is_protected_by  US_Secret_Service_1943 
US_Secret_Service_1943 is protection_agency 
protection_agency provides means_to_be_protected 
means_to_be_protected is requirement_to_be_protected 
First, the Rule Regeneration Agent takes control and 

generates the initial version of the rule. This initial ver-
sion is generated based only on the task reduction step. 

Figure 4: Illustration of the mixed-initiative execution 
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Each time an explanation piece is accepted or deleted, the 
Rule Regeneration Agent recomputes the rule to incorpo-
rate or remove a generalization of the explanation piece. 

Next, the Implicit Explanations Agent takes control 
and searches for implicit explanations. Some explana-
tions are implicit in certain terms. For instance, “US_1943 
has_as_government goverment_of_US_1943” is implicit in 
the name government_of_US_1943. Others are explanation 
pieces from upper level task reduction steps that are con-
sidered as implicit in the current reduction step (e.g. Al-
lied_Forces_1945 has_as_member US_1945). However, in 
the Disciple methodology we view each example as gen-
erating a stand-alone rule. This makes the rules inde-
pendent from their reasoning context, and allows their 
use independently of other rules. But, this requires each 
and every rule to contain all the necessary explanations 
in its applicability condition. Therefore, the Implicit Ex-
planations Agent analyzes the rule, the example and the 
problem solving context and determines the most plausi-
ble implicit explanations. These explanations are auto-
matically accepted and integrated into the rule by the 
Rule Explanations Agent, but the user may delete any of 
them. 

Next, the Rule Analyzer, the Explanation Generation 
Agent, and the user engage in a mixed-initiative process 
where each of them contributes to the explanation of the 
example according to its capabilities. 

The Rule Analyzer continuously analyzes the rule after 
each modification, to determine if it is good enough for 
problem solving. The Rule Analyzer performs both an 
internal analysis of the rule and also calls the Problem 
Solving Agent to externally check the rule. The internal 
check is based on the variable instantiation flow, our 
modeling methodology and several knowledge engineer-
ing guidelines. The external check analyzes how the rule 
will apply during problem solving, for instance if it gen-
erates too many solutions for a given input. The Rule 
Analyzer combines the results of the performed checks 
and displays a list of plausible problems and their sug-
gested solutions as soon as they are found. This process 
keeps the user informed and assures that a better rule is 
learned from the very beginning. This method is applied 
both during rule learning and during rule refinement 
based on additional positive and negative examples. Ex-
perimental evaluation results showed that the users con-
sider the suggestions provided by the agent generally 
useful and understandable [Boicu, 2002]. 

The Explanation Generation Agent has two main tasks: 
to propose an initial set of plausible explanations, and to 
help the user through mixed-initiative hint refinement. To 
identify the initial set of explanation pieces, the agent 
uses analogical reasoning and other heuristics.  

At any time the user may interrupt the computation of 
the Explanation Generation Agent by specifying a hint 
that narrows down the search. A hint is a fragment of an 
explanation, such as an object or a relationship between 
two objects. Then the agent starts looking for explana-
tions conforming to the hint. If the search process is too 

time-consuming or there are too many found explana-
tions, the agent proposes only incomplete fragments of 
explanations (e.g. means_to_be_protected is …) and then 
continues to search in the background. The user can se-
lect such an incomplete explanation fragment and give it 
as a hint to further narrow down the search. When the 
user accepts an explanation piece as correct, the Rule 
Regeneration Agent recomputes the rule and the Rule 
Analyzer updates its problems and suggestions list. 

In the current implementation the Explanation Genera-
tion Agent does not have any sub-agents. We are cur-
rently making a new design for this agent that will in-
clude a sub-agent for each type of heuristic and hint-
based search method. The Explanation Generation Agent 
will be able to start such sub-agents and integrate the 
explanations generated by each of them, ordered by their 
plausibility. 

6 Exception-based ontology learning 
We are currently implementing a mixed-initiative behav-
ior for the Exception-based Ontology Learning Assistant. 
Because the object ontology is generally incomplete, the 
learned rules will accumulate exceptions. We have de-
veloped methods that elicit from the user the missing 
ontological knowledge in order to remove the exceptions 
of the rules [Boicu et al., 2003]. 

A planned mixed-initiative extension is to allow this 
assistant to start by itself when the rules have accumu-
lated too many exceptions. Each time an exception is 
encountered, the Exception-based Ontology Learning 
Assistant will start in the background to determine 
whether it is appropriate to propose to the user an excep-
tion handling session. This assistant will use several heu-
ristics to determine if such a session is necessary. One 
heuristic is based on the number of the accumulated ex-
ceptions of the rules. Another heuristic is based on the 
discovery of ontology extension candidates that have 
high potential to reduce the exceptions. This analysis will 
allow the agent to decide when to take the initiative to 
start the exception handling session. 

Moreover, the Exception Handling module is itself re-
designing to support mixed-initiative between its compo-
nent agents, which will benefit the entire process. 

7 Related research and conclusion 
A growing number of interactive intelligent systems de-
signed to collaborate with their users in performing vari-
ous tasks exhibit mixed-initiative behavior in order to 
improve the effectiveness of their collaboration. [Cohen 
et. al., 1998] analyzes a large number of theories of 
mixed-initiative and the corresponding implemented sys-
tems in terms of their definition for initiative, and the 
mechanisms for detecting the initiative taker and a switch 
in initiative, and proposes a classification of them in four 
main theories. The Disciple approach to mixed-initiative 
can be classified in the theory that defines initiative as 
“the exercising of the power or ability of a dialogue par-
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ticipant to suggest (or perform) a plan (or task) which is 
instrumental to the solving of the problem at hand”. In-
deed, the mixed initiative approach in Disciple is task-
oriented. Moreover, in Disciple, the delegation of a task 
by one participant to the other is not considered a change 
in initiative (for example, the Explanation Generation 
Agent proposes plausible explanations to the user only 
after being explicitly asked to do so, and its invocation 
does not signal a change in initiative taking). Finally, 
proposing a task to be addressed does not guarantee that 
the participant which proposed it will maintain the initia-
tive until a new task or subtask is proposed (for example, 
the user may select a specific reasoning step for model-
ing, but the Example Completion Agent may very well 
take the initiative by proposing a question for that rea-
soning step). 

In designing the mixed-initiative interactions between 
Disciple and its user, and between the internal agents of 
Disciple, we followed an approach similar to the one de-
scribed in [Hartrum and DeLoach, 1999]. We incremen-
tally developed both our mixed-initiative approach and 
Disciple, by iterating through domain-level design, 
agent-level design, component design and system design. 
Disciple is a multi-agent system that contains several 
task-specific agents that collaborate according to the 
peer-to-peer model, in which each participant can be both 
a contributor to a problem solving process and a receiver 
of the contribution(s) of some other agent(s). The same 
model of collaboration also characterizes the mixed-
initiative interactions between Disciple and its user. 

Disciple has many of the characteristics of a true 
mixed-initiative intelligent system, because the initiative 
taking is not predefined at design time but determined 
based on the capabilities of the participants in the interac-
tion, given the current context. For example, the Example 
Completion Agent may have enough relevant information 
to be able to propose a plausible question for the consid-
ered reasoning step, in which case it will take the initia-
tive an propose it. If not enough information is available, 
the agent will make no proposal at all, and the user has to 
take the initiative in defining the question. The situation 
is similar in the case of Rule Learning Agent, where the 
Implicit Explanations Agent may be capable to propose 
the needed explanations. But, in the case it does not have 
enough information, the user has to take the initiative and 
select the needed ones. 

However, Disciple currently lacks an explicit interac-
tion model and a user model corresponding to its mixed-
initiative approach. The capabilities of each agent are 
pre-coded, and each agent knows exactly which other 
agent(s) to interact with for performing each given task. 
This will especially affect the flexibility, the adaptability, 
and the ability of these agents in the various roles they 
could play during the interaction between them and with 
the user.  

COLLAGEN ([Eisenstein and Rich, 2002]) is a system 
for building collaborative interface agents that are based 
on explicit formal task models that describe and control 

the interactions between users and the applications for 
which the interface agents were built. An important dif-
ference between the Disciple approach and the 
COLLAGEN approach is that the COLLAGEN agents 
operate as bridges between users and external applica-
tions, while the Disciple agents are the actual applica-
tions, and therefore the task (interaction) models are 
tightly integrated with the agents the experts use, having 
access to the full power of the agent’s representation 
framework, its reasoning and learning capabilities.  

[Fleming and Cohen, 2001] presents a user-specific 
quantitative framework for determining the utility of in-
teraction (which may not necessarily imply a change in 
initiative). Their focus is on when it is useful for the sys-
tem, while performing an action, to ask the user clarifica-
tion-type questions. [Horvitz, 1999] proposes a similar 
framework in which the focus is on when should the sys-
tem interrupt the user (which performs the action) with 
notifications and/or initiative taking. In contrast, Disciple 
currently uses a predefined fixed strategy for determining 
when to attempt to take the initiative and how to notify 
the user about it. For example, the Word Completion 
Agent always takes the initiative in proposing to the user 
a set of possible terms for insertion into the edited text 
and immediately updates the display once the word to the 
left of the keyboard cursor changes. In contrast, both the 
Example Analyzer and the Rule Analyzer wait until the 
user signals the completion of the modeling and (respec-
tively) the learning tasks to notify the user of potential 
problems with the corresponding processes even though 
they continuously check and update their assessment of 
the user activities (thus allowing the user to concentrate 
on the creative aspect of those processes).  

A future version of Disciple will include a user model 
that will permit a flexible assessment of the utility of 
interaction between the user and the agent, for all types 
of interactions between them, and considering the initia-
tive change as an additional factor in the interaction. 
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