
In Proceedings of the IJCAI-03 Workshop on Mixed-Initiative Intelligent Systems, Acapulco, Mexico, August 2003.

Abstract
Disciple is an approach to agent development by
subject matter experts where an expert teaches a
Disciple agent his or her problem solving exper-
tise in a way that resembles how a person
teaches another person. This paper presents an
overview of the teaching and learning process
during which the expert helps Disciple to learn
and Disciple helps the expert to teach it, empha-
sizing the mixed-initiative control of the compo-
nent agents of Disciple, particularly the Model-
ing agent, the Rule Learning agent and the Ex-
ception-based Ontology Learning agent. It dis-
cusses current implementations, evaluation re-
sults, lessons learned and future developments.

1 Introduction
Disciple is an evolving theory, methodology, and family
of agent shells for the development of intelligent agents
by subject matter experts, with limited assistance from
computer scientists or knowledge engineers [Tecuci et
al., 2001]. A subject matter expert interacts directly with
a Disciple learning agent, to teach it to solve problems, in
a way that is similar to how the expert would teach a hu-
man apprentice, by giving the agent examples and expla-
nations, as well as by supervising and correcting its be-
havior.

Building the knowledge base of a Disciple agent is an
example of a problem that, by its very nature, requires a
mixed-initiative solution. Indeed, neither the subject mat-
ter expert, nor the Disciple agent can solve this problem
independently. While the subject matter expert has the
knowledge to be represented in the knowledge base, he is
not a knowledge engineer and cannot properly formalize
it. On the other hand, the learning agent obviously does
not have the knowledge to be represented, but it can in-
corporate knowledge engineering methods to formalize
the expert’s knowledge. The goal is then to divide the
responsibility between the expert and Disciple for those
elements of knowledge engineering for which they have
the most knowledge and aptitude, such that together they
form a complete team for knowledge base development.
This requires mixed-initiative reasoning, where the ex-

pert and the agent share representations, communicate
naturally, properly divide their tasks and responsibilities,
coordinate their actions, take initiative and release con-
trol.

We have pursued the research on the Disciple approach
for many years, developing increasingly more competent
learning agents [Tecuci, 1988, 1998; Boicu, 2002].
Mixed-initiative, however, is a newer and very promising
feature of the Disciple approach, which is discussed in
this paper.

The next section provides a brief overview of the
teaching and learning process in Disciple. Section 3 de-
scribes the multi-agent architecture of the Disciple
Teaching agent and the mixed-initiative control of its
component agents which include the Modeling agent, the
Rule Leaner and the Exception Handler. Then, sections 4,
5, and 6 present more details on the mixed-initiative con-
trol inside these component agents. Finally, section 7
concludes the paper with a discussion of related research
on mixed-initiative reasoning.

2 Teaching the Disciple agent
A Disciple agent solves problems through task reduction.
That is, it successively reduces a problem solving task to
simpler tasks, finds the solutions of the simplest tasks,
and then successively composes these solutions to obtain
the solution of the initial task. To exhibit this type of be-
havior, its knowledge base has to contain an object on-
tology (that specifies the terms from a particular domain)
and reduction and composition rules (expressed with the
terms from the ontology).

A fragment of the object ontology from the Center of
Gravity analysis domain [Tecuci et al., 2002] is repre-
sented in the bottom left hand side of Figure 1. The on-
tology is a hierarchical representation of the objects and
types of objects from the application domain. It repre-
sents the different kinds of objects, the properties of each
object, and the relationships existing between objects.

The expert teaches Disciple how to solve problems by
considering a certain problem solving task, helping the
agent to understand each reasoning step toward the solu-
tion, and supervising and correcting the agent’s behavior,
when it attempts to solve new problems. During mixed-

Mixed-initiative Control for Teaching and Learning in Disciple

Mihai Boicu1, Gheorghe Tecuci1,2, Dorin Marcu1, Cristina Boicu1, Bogdan Stanescu1
1 Learning Agents Laboratory, George Mason University

MSN 4A5, 4400 University Dr., Fairfax, VA, 22030, USA
2 Center for Strategic Leadership, US Army War College

Carlisle Barracks, PA 17013, USA
{mboicu, tecuci, dmarcu, ccascava, bstanesc}@gmu.edu

 2

initiative interactions the agent learns from the expert,
building and refining its knowledge base to represent the
problem solving expertise of the human expert.

First the expert expresses his/her reasoning process in
natural language, as illustrated by the task reduction ex-
ample in the upper left side of Figure 1. The top task is
the task to be reduced. In order to reduce this task the
expert asks a relevant question and formulates its answer.
The answer to this question leads to the reduction of this
task to a subtask. Disciple may help the expert in com-
pleting the current problem solving step by employing
different heuristics, such as analogical reasoning with
previously encountered problem solving steps.

Once the reduction step is defined, the expert has to
help the agent to understand it. The agent has to identify
those elements from the object ontology that represent
the meaning of the question-answer pair. These ontology
elements are the explanation of why the top task is re-
duced to the bottom task. One explanation piece is:

President_Roosevelt is_protected_by US_Secret_Service_1943
Once these explanation pieces are found, the agent

generalizes the task reduction example and its explana-
tion to the task reduction rule from the right hand side of
Figure 1. The learned rule has an informal structure
(shown in the top right part of Figure 1) and a formal
structure (shown in the bottom right part of Figure 1).
The informal structure preserves the natural language of
the expert and is used in agent-user communication. The

formal structure is used in the actual reasoning of the
agent. The reduction rule is an IF-THEN structure that
expresses how and under what conditions a certain type
of task may be reduced to simpler subtask. Notice, how-
ever, that the formal structure of the rule does not have a
single applicability condition, but a plausible upper
bound condition and a plausible lower bound condition.
These conditions approximate the exact condition that
Disciple is attempting to learn. The agent will use this
partially learned rule in problem solving, and the feed-
back received from the expert will be used to learn the
exact condition. Notice that the generalization of the ex-
ample into a rule is based on the object ontology which is
used as the agent’s generalization hierarchy. Indeed, the
specific instances from the example (e.g. Presi-
dent_Roosevelt, US_Secret_Service_1943) are replaced in
the learned rule with more general concepts from the ob-
ject ontology (i.e. head_of_government, personal_protection
_agency), and their relationships (e.g. is_protected_by,
provides).

3 The architecture of the Teaching
Assistant

Figure 2 shows the hierarchical multi-agent architecture
of a major Disciple component, the Teaching Assistant.
The parent agents call the child agents, each agent run-
ning in a separate process. The top level process in Dis-

Figure 1: Teaching the Disciple agent

I need to

Therefore
Test whether the US_Sectret_Service_1943 that protects
President_Roosevelt has any significant vulnerability

Test whether President_Roosevelt has mean_to_be_protected

What is a means to protect
President_Roosevelt from all threats?

President_Roosevelt is protected by the
US_Secret_Service_1943.

IF
Test whether a controlling element has a critical
requirement

The controlling element is ?O1
The critical requirement is ?O2

THEN:
Test whether a protection agency that protects a
controlling element has any significant vulnerability

The controlling element is ?O1
The protection agency is ?O3

Explanation
?O1 is_protected_by ?O3
?O3 provides ?O2
?O2 is requirement_to_be_protected
?O3 is protection_agency

Plausible Upper Bound
Condition

?O1 is agent
is_protected_by ?O3

?O2 is requirement_to_be_
protected

?O3 is protection_agency

provides ?O2

IF
Test whether ?O1 has ?O2
Question: What is a means to protect ?O1 from all threats?
Answer: ?O1 is protected by the ?O3.

Plausible Lower Bound
Condition

?O1 is head_of_government
is_protected_by ?O3

?O2 is requirement_to_be_
protected

?O3 is personal_protection_
agency

provides ?O2

THEN
Test whether the ?O3 that protects ?O1 has any significant
vulnerability

means_to_
be_protected

Rule

President_
Roosevelt

is_protected_by

critical_requirement_
for_a_capability

strategic_COG_
relevant_factor

agent

object

person

controlling_leader

head_of_government

political_leader

Example

US_Secret_
Service_1943

protection_
agency

personal_
protection_agency

provides
requirement_to_

be_protected

critical_requirement_for_
a_capability_of_a_leader

critical_requirement

 3

ciple is the Mixed-Initiative Control Agent that controls
the interaction between the user and Disciple. The user
may initiate this process by specifying the problem solv-
ing task to be performed. Then Disciple attempts to suc-
cessively reduce the current task to simpler subtasks.

When Disciple does not know how to reduce the cur-
rent task (such as the top task from the left hand side of
Figure 1), the Control Agent invokes the Modeling Assis-
tant to help the user to provide a solution. The Modeling
Assistant invokes the Example Editor, the Example
Completion Agent, and the Example Analyzer. These
agents interact with the user, suggesting plausible com-
pletions of the example and checking its correctness. For
instance, as the user specifies the question (see Figure 1),
the Example Editor updates the current internal structure
of the example. It also invokes the Word Completion
Agent that suggests plausible completions of the word
that is being typed by the user. When the question is
completed, the Example Completion Agent suggests a
plausible answer of the question and even a plausible
subtask. When the entire example is completed, the Ex-
ample Analyzer may suggest improvements or correc-
tions. The mixed-initiative interactions between these
agents will be discussed in more detail in section 4.

After the example from the left hand side of Figure 1 is
specified, the Task Formalization Assistant helps the user
to formalize the new tasks which will be included in the
formal structure of the rule to be learned (shown in the
bottom right hand side of Figure 1). Then the example is
passed to the Rule Learning Agent. Rule learning is a
complex mixed-initiative process in which the user helps
the agent to understand why the example is correct, and
the agent help the user to explain it. There are several
agents involved in this process. The Explanation Genera-
tion Agent proposes plausible explanations to the user,
based on user hints, analogical reasoning, and natural

language processing. The Implicit Explanations Agent
identifies contextually true explanations and automati-
cally adds them to the explanations of the current exam-
ple. The Rule Analyzer checks the learned rule and iden-
tifies potential problems. This agent initiates an internal
problem solving process to check if the rule generates too
many solutions, in which case it provides hints for addi-
tional explanations of the example constraining the rule.

The Rule Refinement Assistant is also composed of
several agents that interact with the user to improve the
rule based on its successful or unsuccessful use in prob-
lem solving. Similarly, the Exception-Based Ontology
Learning Assistant interacts with the user to identify ex-
tensions of the object ontology that eliminate the excep-
tions of the learned rules.

Because the interface of Disciple is implemented in
Java, the Graphical User Interfaces (GUI) of all the
agents run in the same process. However, each agent con-
trols the life and interaction of its graphical components,
making the GUI control a distributed process shared by
all the component agents of Disciple.

These types of interaction have led to a synergistic in-
tegration of the main teaching processes: modeling,
learning and problem solving [Boicu, 2002].

An important lesson learned from this architecture is
related to the model used to implement the mixed-
initiative control. We have initially implemented a cen-
tralized rule-based control that is simple, uniform, and a
single place in the system for self-awareness. However,
we discovered that it has two major disadvantages. First,
all the mixed-initiative processes need to be based on the
same communication scheme which is not suitable for all
the agents. Second, all the communications need to go
through the central mixed-initiative control, which cre-
ates bottlenecks when there are processes that need to
exchange many messages and the multi-tasking platform

Figure 2: The multi-agent architecture of the Teaching Assistant

Modeling Assistant

D
is

tr
ib

ut
ed

 G
U

I

Word Completion
Agent

Example Editor
Agent

Example
Completion Agent

Mixed-initiative
Control Agent

Teaching Assistant

Rule Learning
Assistant

Problem Solving
Assistant

Teaching Assistant
GUI

Modeling Assistant
GUI

Example Analyzer
Agent GUI

Example Editor
Agent GUI

Example Completion
Agent GUI

Example Analyzer
Agent

Task Formalization
Assistant

Rule Analyzer
Agent

Implicit
Explanations Agent

Explanation
Generation Agent

Problem Solving
Agent

Word Completion
Agent GUI

Rule Refinement
Assistant

Rule Regeneration
Agent

Example-based
Ontology Learning

Exception-based
Ontology Learning

 4

is slow. Therefore we are currently developing an alter-
native approach to the mixed-initiative control. This new
approach is an integration of hierarchical control and
mixed-initiative control. There is a top-level mixed-
initiative control that involves the user and the top level
assistants from Disciple which perform a major function
identifiable by the user, such as problem solving, model-
ing, task formalization, rule learning, etc. However, each
such assistant (e.g. the Modeling Assistant) may initiate a
new mixed-initiative process that involves its subagents
(i.e. the Example Editor, the Example Completion Agent,
and the Example Analyzer). If one of the subagents has
also a multi-agent architecture, then it may initiate a
mixed-initiative process for its subagents, and so on.

The highest level of mixed-initiative control is gov-
erned by the Mixed-initiative Control Agent. This agent,
as a parent of the other agents, may request and receive
detailed reports on the status of all the others agents
(through its direct sub-agents). Therefore, at this level it
is still possible to perform global self-awareness reason-
ing as needed, but without a permanent burden on the
component agents. This agent may also control the
mixed-initiative interaction between Disciple and exter-
nal agents.

Figure 3 describes the other levels of mixed-initiative
control in Disciple. Agent-k is initiated by its parent
agent. The parent agent controls its life cycle, being re-
sponsible of the correct startup and shutdown of Agent-k.
At startup the parent agent registers the new agent with
all the existing running agents that need to know about it.
Then Agent-k executes its initialization task which may
involve initiation of sub-agents and/or communication
with existing agents. After initialization Agent-k enters
an execution cycle, performing tasks corresponding to the
external messages received, as it will be discussed below.
When a shutdown request is received Agent-k is respon-
sible of the proper shutdown of its sub-agents and the
corresponding cleanup procedure.

Agent-k communicates with other agents (including its
subagents) using two types of messages: task execution
requests and result notifications. There might be two or
more agents capable to execute the requested task. The
negotiation is coordinated by the sender
agent, resulting in one of the following
situations: 1) all capable agents execute
the task and the results are unified; 2) the
best agent is selected to execute the task;
and 3) the first capable agent available
executes the task.

During or after the execution of a task
an agent may send notification messages
to the registered agents, informing them
about the results obtained during task
execution. The receiving agents may start
the execution of new tasks or modify the
current internal execution flow.

Notice that the same agent may run in
different processes (for instance the prob-

lem solving agent is invoked both at the main level of the
Teaching Assistant but also to help the Rule Analyzer).

The current implementation pre-codes this mixed-
initiative mechanism. Moreover, the agents are responsi-
ble for implementing critical communication and control
capabilities. We are currently working on developing a
mixed-initiative framework that will offer predefined
types of mixed-initiative agents, which will make the
definition of such agents very easy, reducing them to the
description of tasks and their execution.

4 The Modeling Assistant
In this section we will present the mixed-initiative con-
trol at the level of a Disciple assistant, using the Model-
ing Assistant as an example.

Let us consider the top left task from Figure 1 which
Disciple does not know how to reduce. In such a case the
user has to provide the reduction from the left hand side
of Figure 1 (i.e. the question, the answer and the sub-
task), and the Modeling Assistant has to help the user to
specify it.

There are two main situations in the interaction be-
tween the user and the Modeling Assistant: 1) when the
user is typing a word of the current knowledge element
(e.g. a word of the question) and 2) when the user has
just finished the current element and wants to continue
with the next one (e.g. has finished typing the question,
and wants to start typing the answer). We will discuss
each of them.

Figure 4 shows the exchanged messages and the ac-
tions taken by each agent of the Modeling Assistant when
the user is typing a word of the question in the Example
Editor. The elementary user action is the typing of a let-
ter (for instance, the letter “r” in: “What is a means to pro-
tect Pr”). The GUI of the Example Editor is notifying all
the registered agents of the user action:

User modified question (example-id, new-question, version)
As a result, the Example Editor does the following:
- identifies concepts and instances in the current Ques-

tion fragment (none in this case);
- modifies the internal structure of the example;

Agent 1

Task executionPriority
message queueAgent k2

Agent k3
Mixed-initiative control

of sub-processes

Agent k

Agent k2 Agent k3

Agent 1

Agent k2

Agent 4

Messages to request
task execution or to
notify task results

Messages to request
task execution or to
notify task results

Initiate sub-
processes for
its sub-agents

Parent Agent

Figure 3: Mixed-initiative control architecture

 5

- if any concept or instance was identified, notifies all
the registered processes on the actions taken:
“Updated question (example-id, new-question, version)”

There are two agents to notify: the Example Editor
GUI and the Word Completion Agent. The Example Edi-
tor GUI will need to synchronize the current form (which
may be different if the user typed other letters) with the
received form of the question (which will contain newly
identified concepts or instances). The agents use the
“version” parameter for synchronization. Each time the
user is performing an editing operation the version of the
edited element is increased. When an update notification
is sent with a result the Example Editor GUI compares
the received version with its current one, and, if it is the
same, it updates the result. Otherwise it ignores the re-
ceived result.

A similar process takes place for suggesting the word
completions. When the Word Completion GUI receives
the update message it invalidates the current selection
list, keeps the version and waits for the new list of sug-
gestions. The Word Completion Agent will compute the
most plausible completions, based on partial lexical
matching, reasoning context analysis and analogical rea-
soning. If, during computation, another message is re-
ceived, the current computation will be discarded and a
new one will start. After the list is computed the agent
sends the completions to the GUI. The synchronization is
again assured through the use of the version parameter.

Another important aspect of the control mechanism is
the proactive execution. For instance, the Example Com-
pletion agent is running in the background to hypothesize
the most plausible answers (or the patterns of the an-
swers) of the currently edited question. Each time the
question is modified this agent updates its hypotheses.
When the user finishes the question by pressing Enter,
this agent immediately proposes the most plausible an-

swers. The agent uses several heuristics methods to gen-
erate plausible answers. They are based on natural lan-
guage processing, analogy with answers from previously
learned rules, and methodological guidelines, as de-
scribed in Boicu [2002].

An earlier version of the Modeling Assistant was
evaluated in an experiment at the US Army War College
in Spring 2002. In this experiment, which will be re-
peated in Spring 2003, 15 subject matter experts have
taught personal copies of Disciple their own reasoning in
Center of Gravity analysis. The evaluation results de-
scribed in Boicu [2002] show that this mixed-initiative
implementation has led to significantly better results than
a previously used example editor. The experts succeeded
to model more examples, and needed less help from the
knowledge engineers, because the Modeling Assistant
provided suggestions that they considered generally use-
ful and understandable. They also considered this assis-
tant generally well organized and easy to use.

5 The Rule Learning Assistant
In this section we present the mixed-initiative control at
the level of the Rule Learning Assistant, as we are cur-
rently implementing.

Let us consider again the task reduction step from Fig-
ure 1. The user and the sub-agents of the Rule Learning
Agent, shown in Figure 2, have to cooperate to find the
following formal explanation pieces:

President_Roosevelt is_protected_by US_Secret_Service_1943
US_Secret_Service_1943 is protection_agency
protection_agency provides means_to_be_protected
means_to_be_protected is requirement_to_be_protected
First, the Rule Regeneration Agent takes control and

generates the initial version of the rule. This initial ver-
sion is generated based only on the task reduction step.

Figure 4: Illustration of the mixed-initiative execution

Distributed GUI

Example Editor
Agent

User typed letter
“r” in the question

of the example
• Update the screen appearance
• Notify registered processes

Word Completion
Agent

Update example question
(example-id, new-question, version)

If the same
version update

GUI appearance

What is a means
to protect Pr|

Example Editor

What is a means
to protect Pr|

Example Editor

President_Roosevelt
President

Word completion

President_Roosevelt
President

Word completion

• Automatically identify known
terms
• Modify the internal structure
of the example
• Notify registered processes

If the same version, validate
component and show

completion suggestions

Example
Completion Agent

User modified example question
(example-id, new-question, version)

Compute the most
plausible word

completion, if any

Invalidate
component
selection

Update the preemptive
computation of the next
element (the answer)

Update completions
(word-completions, version)

1

2

3

2

2
2

3

3

4

4

2

 6

Each time an explanation piece is accepted or deleted, the
Rule Regeneration Agent recomputes the rule to incorpo-
rate or remove a generalization of the explanation piece.

Next, the Implicit Explanations Agent takes control
and searches for implicit explanations. Some explana-
tions are implicit in certain terms. For instance, “US_1943
has_as_government goverment_of_US_1943” is implicit in
the name government_of_US_1943. Others are explanation
pieces from upper level task reduction steps that are con-
sidered as implicit in the current reduction step (e.g. Al-
lied_Forces_1945 has_as_member US_1945). However, in
the Disciple methodology we view each example as gen-
erating a stand-alone rule. This makes the rules inde-
pendent from their reasoning context, and allows their
use independently of other rules. But, this requires each
and every rule to contain all the necessary explanations
in its applicability condition. Therefore, the Implicit Ex-
planations Agent analyzes the rule, the example and the
problem solving context and determines the most plausi-
ble implicit explanations. These explanations are auto-
matically accepted and integrated into the rule by the
Rule Explanations Agent, but the user may delete any of
them.

Next, the Rule Analyzer, the Explanation Generation
Agent, and the user engage in a mixed-initiative process
where each of them contributes to the explanation of the
example according to its capabilities.

The Rule Analyzer continuously analyzes the rule after
each modification, to determine if it is good enough for
problem solving. The Rule Analyzer performs both an
internal analysis of the rule and also calls the Problem
Solving Agent to externally check the rule. The internal
check is based on the variable instantiation flow, our
modeling methodology and several knowledge engineer-
ing guidelines. The external check analyzes how the rule
will apply during problem solving, for instance if it gen-
erates too many solutions for a given input. The Rule
Analyzer combines the results of the performed checks
and displays a list of plausible problems and their sug-
gested solutions as soon as they are found. This process
keeps the user informed and assures that a better rule is
learned from the very beginning. This method is applied
both during rule learning and during rule refinement
based on additional positive and negative examples. Ex-
perimental evaluation results showed that the users con-
sider the suggestions provided by the agent generally
useful and understandable [Boicu, 2002].

The Explanation Generation Agent has two main tasks:
to propose an initial set of plausible explanations, and to
help the user through mixed-initiative hint refinement. To
identify the initial set of explanation pieces, the agent
uses analogical reasoning and other heuristics.

At any time the user may interrupt the computation of
the Explanation Generation Agent by specifying a hint
that narrows down the search. A hint is a fragment of an
explanation, such as an object or a relationship between
two objects. Then the agent starts looking for explana-
tions conforming to the hint. If the search process is too

time-consuming or there are too many found explana-
tions, the agent proposes only incomplete fragments of
explanations (e.g. means_to_be_protected is …) and then
continues to search in the background. The user can se-
lect such an incomplete explanation fragment and give it
as a hint to further narrow down the search. When the
user accepts an explanation piece as correct, the Rule
Regeneration Agent recomputes the rule and the Rule
Analyzer updates its problems and suggestions list.

In the current implementation the Explanation Genera-
tion Agent does not have any sub-agents. We are cur-
rently making a new design for this agent that will in-
clude a sub-agent for each type of heuristic and hint-
based search method. The Explanation Generation Agent
will be able to start such sub-agents and integrate the
explanations generated by each of them, ordered by their
plausibility.

6 Exception-based ontology learning
We are currently implementing a mixed-initiative behav-
ior for the Exception-based Ontology Learning Assistant.
Because the object ontology is generally incomplete, the
learned rules will accumulate exceptions. We have de-
veloped methods that elicit from the user the missing
ontological knowledge in order to remove the exceptions
of the rules [Boicu et al., 2003].

A planned mixed-initiative extension is to allow this
assistant to start by itself when the rules have accumu-
lated too many exceptions. Each time an exception is
encountered, the Exception-based Ontology Learning
Assistant will start in the background to determine
whether it is appropriate to propose to the user an excep-
tion handling session. This assistant will use several heu-
ristics to determine if such a session is necessary. One
heuristic is based on the number of the accumulated ex-
ceptions of the rules. Another heuristic is based on the
discovery of ontology extension candidates that have
high potential to reduce the exceptions. This analysis will
allow the agent to decide when to take the initiative to
start the exception handling session.

Moreover, the Exception Handling module is itself re-
designing to support mixed-initiative between its compo-
nent agents, which will benefit the entire process.

7 Related research and conclusion
A growing number of interactive intelligent systems de-
signed to collaborate with their users in performing vari-
ous tasks exhibit mixed-initiative behavior in order to
improve the effectiveness of their collaboration. [Cohen
et. al., 1998] analyzes a large number of theories of
mixed-initiative and the corresponding implemented sys-
tems in terms of their definition for initiative, and the
mechanisms for detecting the initiative taker and a switch
in initiative, and proposes a classification of them in four
main theories. The Disciple approach to mixed-initiative
can be classified in the theory that defines initiative as
“the exercising of the power or ability of a dialogue par-

 7

ticipant to suggest (or perform) a plan (or task) which is
instrumental to the solving of the problem at hand”. In-
deed, the mixed initiative approach in Disciple is task-
oriented. Moreover, in Disciple, the delegation of a task
by one participant to the other is not considered a change
in initiative (for example, the Explanation Generation
Agent proposes plausible explanations to the user only
after being explicitly asked to do so, and its invocation
does not signal a change in initiative taking). Finally,
proposing a task to be addressed does not guarantee that
the participant which proposed it will maintain the initia-
tive until a new task or subtask is proposed (for example,
the user may select a specific reasoning step for model-
ing, but the Example Completion Agent may very well
take the initiative by proposing a question for that rea-
soning step).

In designing the mixed-initiative interactions between
Disciple and its user, and between the internal agents of
Disciple, we followed an approach similar to the one de-
scribed in [Hartrum and DeLoach, 1999]. We incremen-
tally developed both our mixed-initiative approach and
Disciple, by iterating through domain-level design,
agent-level design, component design and system design.
Disciple is a multi-agent system that contains several
task-specific agents that collaborate according to the
peer-to-peer model, in which each participant can be both
a contributor to a problem solving process and a receiver
of the contribution(s) of some other agent(s). The same
model of collaboration also characterizes the mixed-
initiative interactions between Disciple and its user.

Disciple has many of the characteristics of a true
mixed-initiative intelligent system, because the initiative
taking is not predefined at design time but determined
based on the capabilities of the participants in the interac-
tion, given the current context. For example, the Example
Completion Agent may have enough relevant information
to be able to propose a plausible question for the consid-
ered reasoning step, in which case it will take the initia-
tive an propose it. If not enough information is available,
the agent will make no proposal at all, and the user has to
take the initiative in defining the question. The situation
is similar in the case of Rule Learning Agent, where the
Implicit Explanations Agent may be capable to propose
the needed explanations. But, in the case it does not have
enough information, the user has to take the initiative and
select the needed ones.

However, Disciple currently lacks an explicit interac-
tion model and a user model corresponding to its mixed-
initiative approach. The capabilities of each agent are
pre-coded, and each agent knows exactly which other
agent(s) to interact with for performing each given task.
This will especially affect the flexibility, the adaptability,
and the ability of these agents in the various roles they
could play during the interaction between them and with
the user.

COLLAGEN ([Eisenstein and Rich, 2002]) is a system
for building collaborative interface agents that are based
on explicit formal task models that describe and control

the interactions between users and the applications for
which the interface agents were built. An important dif-
ference between the Disciple approach and the
COLLAGEN approach is that the COLLAGEN agents
operate as bridges between users and external applica-
tions, while the Disciple agents are the actual applica-
tions, and therefore the task (interaction) models are
tightly integrated with the agents the experts use, having
access to the full power of the agent’s representation
framework, its reasoning and learning capabilities.

[Fleming and Cohen, 2001] presents a user-specific
quantitative framework for determining the utility of in-
teraction (which may not necessarily imply a change in
initiative). Their focus is on when it is useful for the sys-
tem, while performing an action, to ask the user clarifica-
tion-type questions. [Horvitz, 1999] proposes a similar
framework in which the focus is on when should the sys-
tem interrupt the user (which performs the action) with
notifications and/or initiative taking. In contrast, Disciple
currently uses a predefined fixed strategy for determining
when to attempt to take the initiative and how to notify
the user about it. For example, the Word Completion
Agent always takes the initiative in proposing to the user
a set of possible terms for insertion into the edited text
and immediately updates the display once the word to the
left of the keyboard cursor changes. In contrast, both the
Example Analyzer and the Rule Analyzer wait until the
user signals the completion of the modeling and (respec-
tively) the learning tasks to notify the user of potential
problems with the corresponding processes even though
they continuously check and update their assessment of
the user activities (thus allowing the user to concentrate
on the creative aspect of those processes).

A future version of Disciple will include a user model
that will permit a flexible assessment of the utility of
interaction between the user and the agent, for all types
of interactions between them, and considering the initia-
tive change as an additional factor in the interaction.

Acknowledgements
This research was sponsored by DARPA, AFRL, AFMC,
USAF, under agreement number F30602-00-2-0546, by
the AFOSR under grant no. F49620-00-1-0072, and by
the US Army War College.

References
[Boicu et al., 2003] Cristina Boicu, Gheorghe Tecuci, Mihai
Boicu, and Dorin Marcu. Improving the Representation Space
through Exception-Based Learning. To appear in Proceedings
of the Sixteenth International Flairs Conference. 2003.

[Boicu, 2002] Mihai Boicu. Modeling and Learning with In-
complete Knowledge. PhD Thesis in Information Technology,
Learning Agents Laboratory, School of Information Technol-
ogy and Engineering, George Mason University, 2002.

[Cohen et al., 1998] Robin Cohen, Coralee Allaby, Christian
Cumbaa, Mark Fitzgerald, Kinson Ho, Bowen Hui, Celine
Latulipe, Fletcher Lu, Nancy Moussa, David Pooley, Alex

 8

Qian, and Saheem Siddiqi. What is Initiative? User Modeling
and User-Adapted Interaction, 8, 171–214, Kluwer Academic
Publishers, 1998.

[Eisenstein and Rich, 2002] Jacob Eisenstein, and Charles
Rich. Agents and GUI's from Task Models. In Proceedings of
the 7th international conference on intelligent user interfaces,
47–54, 2002.

[Fleming and Cohen, 2001] Michael Fleming, and Robin
Cohen. A User Modeling Approach to Determining System
Initiative in Mixed-Initiative AI Systems. In Proceedings of the
Eighth International Conference on User Modeling, 54–63,
2001.

[Hartrum and DeLoach, 1999] Thomas C. Hartrum, and Scott
A. DeLoach.. Design Issues for Mixed-Initiative Agent Sys-
tems. AAAI-99 Workshop on Mixed-Initiative Intelligence, Or-
lando, Florida, 1999.

[Horvitz, 1999] Eric Horvitz. Principles of Mixed-Initiative
User Interfaces. In Proceedings of CHI’99, ACM SIGCHI Con-
ference on Human Factors in Computing Systems, Pittsburg,
Pennsylvania, 159–166. ACM Press, 1999.

[Tecuci, 1988] Gheorghe Tecuci. DISCIPLE: A Theory, Meth-
odology and System for Learning Expert Knowledge. Thése de
Docteur en Science, University of Paris-South, France, 1988.

[Tecuci, 1998] Gheorghe Tecuci. Building Intelligent Agents:
An Apprenticeship Multistrategy Learning Theory, Methodol-
ogy, Tool and Case Studies. Academic Press, London, 1998.

[Tecuci et al., 2001] Gheorghe Tecuci, Mihai Boicu, Michael
Bowman, and Dorin Marcu, with a preface by Murry Burke. An
Innovative Application from the DARPA Knowledge Bases
Programs: Rapid Development of a High Performance Knowl-
edge Base for Course of Action Critiquing. AI Magazine, 22(2),
43–61. AAAI Press, Menlo Park, California, 2001.

[Tecuci et al., 2002] Gheorghe Tecuci, Mihai Boicu, Dorin
Marcu, Bogdan Stanescu, Cristina Boicu, and Jerome Comello.
Training and Using Disciple Agents: A Case Study in the Mili-
tary Center of Gravity Analysis Domain. AI Magazine, 23(4),
51–68. AAAI Press, Menlo Park, California, 2002.

