
In Proceedings of the 14th International Conference on Knowledge Engineering and
Knowledge Management, EKAW 2004, 5-8th October 2004 - Whittlebury Hall,
Northamptonshire, UK, Springer-Verlag, 2004.

Parallel Knowledge Base Development
by Subject Matter Experts

Gheorghe Tecuci, Mihai Boicu, Dorin Marcu,
Bogdan Stanescu, Cristina Boicu, Marcel Barbulescu

MSN 4A5, Learning Agents Center, George Mason University,
4400 University Drive, Fairfax, VA 22030, USA

{tecuci, mboicu, dmarcu, bstanesc, ccascava}@gmu.edu,
mbarb@cs.gmu.edu, http://lac.gmu.edu,

tel: 1 703 993-1722, fax: 1 703 993-1710

Abstract. This paper presents an experiment of parallel knowledge base devel-
opment by subject matter experts, performed as part of the DARPA’s Rapid
Knowledge Formation Program. It introduces the Disciple-RKF development
environment used in this experiment and proposes design guidelines for sys-
tems that support authoring of problem solving knowledge by subject matter
experts. Finally, it compares Disciple-RKF with the other development envi-
ronments from the same DARPA program, providing further support for the
proposed guidelines.

1 Introduction

Traditionally, a knowledge-based system is built by a knowledge engineer (KE) who
needs to acquire the knowledge from a subject matter expert (SME) and to encode it
into the knowledge base. This is a very difficult process because the SMEs express
their knowledge informally, using natural language, visual representations, and com-
mon sense, often omitting many essential details they regard as being obvious. In
order to properly understand an SME’s problem solving knowledge and to represent
it in a formal, precise, and “complete” knowledge base, the knowledge engineer needs
to become himself/herself a kind of SME. Therefore this process is very difficult,
error-prone, and time-consuming, being known as the knowledge acquisition bottle-
neck in system development.

One solution to this problem, pursued by the DARPA’s Rapid Knowledge Forma-
tion program (2000-03), is the development of knowledge bases directly by SMEs,
the central objective of this program being to enable distributed teams of SMEs to
enter and modify knowledge directly and easily, without the need of prior knowledge
engineering experience (http://cerberus.cyc.com/RKF/).

This paper presents an experiment of parallel knowledge base development by
SMEs, and proposes guidelines for the design of systems that support authoring of
problem solving knowledge by SMEs. It briefly introduces the Disciple-RKF inte-
grated development environment used in this experiment, and discusses the main

phases of the experiment. Finally, it compares Disciple-RKF with the other two sys-
tems developed in the DARPA’s RKF program, KRAKEN and SHAKEN [6], which
provide further experimental support for the proposed design guidelines.

2 Disciple-RKF knowledge base development environment

The Disciple approach is the result of 20 years of research on developing a theory and
associated methodologies and tools for knowledge base development [8, 4, 9, 2, 3].
Disciple-RKF, the implementation of the most recent version of the Disciple ap-
proach, is an agent shell with a knowledge base structured into an object ontology
that describes the entities from an application domain, and a set of task reduction and
solution composition rules expressed with these objects. The main functional compo-
nents of Disciple-RKF are:

- A problem solving component based on task reduction. It includes a mixed-
initiative (step-by-step) problem solver that allows the user and the agent to col-
laborate in the problem solving process, and an autonomous problem solver. It
also includes a modeling assistant that helps the user to express his/her contribu-
tions to the problem solving process.

- A learning component for acquiring and refining the knowledge of the agent,
allowing a wide range of operations, from ontology import and user definition of
knowledge base elements (through the use of editors and browsers), to ontology
learning and rule learning.

- A knowledge base manager which controls the access and the updates to the
knowledge base. Each module of Disciple-RKF accesses the knowledge base only
through the functions of the knowledge base manager.

- A window-based graphical user interface.

The development of the knowledge base of a Disciple-RKF agent is based on import-
ing ontological knowledge from existing knowledge repositories, and on teaching the
agent how to perform various tasks, in a way that resembles how an SME teaches a
human apprentice. For instance, to teach the agent, the SME may formulate a specific
problem and show the agent the reasoning steps to solve it, helping the agent to un-
derstand each of them. Each problem solving step represents an example from which
the agent learns a general rule. As Disciple learns new rules from the SME, the inter-
action between the SME and Disciple evolves from a teacher-student interaction,
toward an interaction where both collaborate in solving a problem. During this
mixed-initiative problem solving phase, Disciple learns not only from the contribu-
tions of the SME, but also from its own successful or unsuccessful problem solving
attempts, which lead to the refinement of the learned rules. This process is based on:

- mixed-initiative problem solving, where the SME and the agent solve problems in
cooperation and the agent learns from the contributions of the SME;

- integrated teaching and learning, where the agent helps the SME to teach it (for
instance, by asking relevant questions), and the SME helps the agent to learn (for
instance, by providing examples, hints and explanations); and

- multistrategy learning, where the agent integrates different strategies, such as
learning from examples, from explanations, and by analogy, to learn general con-
cepts and rules.

3 Parallel knowledge base development experiment

A knowledge base development experiment with Disciple-RKF was conducted during
the Military Applications of Artificial Intelligence (MAAI) course, taught at the US
Army War College, in Spring 2003. This was a 10 week, 3 hours/week course, at-
tended by 13 colonels and lieutenant colonels from different military services. The
students, who had no prior knowledge engineering experience, were introduced to the
Disciple approach, and used Disciple-RKF to jointly develop an agent for the deter-
mination of the centers of gravity (COG) of the opposing forces from a conflict. The
concept of center of gravity is fundamental to military strategy, denoting the primary
source of moral or physical strength, power or resistance of a force [7]. The most
important objective of a force is to protect its own center of gravity, while attacking
the center of gravity of its enemy.

Our approach to center of gravity determination, developed with the experts from
the US Army War College, consists of two main phases: identification and testing.
During the identification phase, center of gravity candidates from different elements
of power of a force (such as government, military, people, economy) are identified.
For instance, a strong leader is a center of gravity candidate with respect to the gov-
ernment of a force. Then, during the testing phase, each candidate is analyzed to de-
termine whether it has all the critical capabilities that are necessary to be the center of
gravity. For example, a leader needs to be protected, stay informed, communicate
(with the government, the military, and the people), be influential (with the govern-
ment, the military, and the people), be a driving force, have support (from the gov-
ernment, the military, and the people), and be irreplaceable. For each capability, one
needs to determine the existence of the essential conditions, resources and means that
are required by that capability to be fully operative, and which of these, if any, repre-
sent critical vulnerabilities. The testing of the critical capabilities is based on a general
theory developed by Strange [7].

Figure 1 provides an overview of the performed experiment. Before starting the
experiment, the Disciple-RKF agent was trained to identify leaders as center of grav-
ity candidates. The knowledge base of this agent contained the definitions of 432
concepts and features, 29 tasks and 18 task reduction rules. However, the agent had
no knowledge of how to test the identified candidates.

We then performed a joint domain analysis and ontology development with all the
SMEs, by considering the example of testing whether Saddam Hussein, in the Iraq
2003 scenario, has all the required critical capabilities to be the center of gravity for
Iraq. We determined which are the critical requirements for these capabilities to be
operational, and which are the corresponding critical vulnerabilities, if any. Based on
this domain analysis, we extended the ontology of Disciple-RKF with the definition
of 37 new concepts and features identified with the help of the SMEs.

Fig. 1. Experiment of rapid knowledge base development by SMEs

The 13 SMEs were grouped into five teams (of 2 or 3 SMEs each), and each team
was given a copy of the extended Disciple-RKF agent. After that, each team trained
its agent to test whether a leader has one or two critical capabilities, as indicated in
Figure 1. For instance, Team 1 trained its agent how to test whether a leader has the
critical capabilities of staying informed and being irreplaceable. The training was
done based on three scenarios (Iraq 2003, Arab-Israeli 1973, and War on Terror
2003), the SMEs teaching Disciple-RKF how to test each strategic leader from these
scenarios. As a result of the training performed by the SMEs, the knowledge base of
each Disciple-RKF agent was extended with new features, tasks, and rules, as indi-
cated in Figure 1. For instance, the knowledge base of the agent trained by Team 1
was extended with 5 features, 10 tasks and 10 rules for testing whether a leader has
the capabilities to stay informed and be irreplaceable. The average training time per
team was 5 hours and 28 minutes, and the average rule learning rate per team was
3.53 rules/hour. This included the time spent in all the agent training activities (i.e.,
scenario specification, modeling SME’s reasoning, task formalization, rule learning,
problem solving, and rule refinement).

During each class the SMEs were introduced to the Disciple theory and tools cor-
responding to a particular agent training activity (e.g. scenario specification). The
SMEs were supervised by knowledge engineers who were asked not to offer help,
unless it was requested, and were not allowed to do SME’s work. The SMEs were
helped in the initial phases of learning to use a tool, after it was demonstrated by the
course’s instructor.

After the training of the 5 Disciple-RKF agents, their knowledge bases were
merged by a knowledge engineer, who used the knowledge base merging tool of

Extended KB

stay informed
be irreplaceable communicate be influential

Integrated KB

Initial KB

have support be protected
be driving force

432 concepts and features, 29 tasks, 18 rules
For COG identification for leaders

37 acquired concepts and
features for COG testing

COG identification and testing (leaders)

Domain analysis and ontology
development (KE+SME)

Parallel KB development
(SME assisted by KE)

KB merging (KE)

Knowledge
Engineer (KE)

All subject matter
experts (SME)

DISCIPLE-COG DISCIPLE-COG DISCIPLE-COG DISCIPLE-COG DISCIPLE-COG

Training scenarios:
Iraq 2003

Arab-Israeli 1973
War on Terror 2003

Team 1 Team 2 Team 3 Team 4 Team 5

5 features
10 tasks
10 rules

Learned features, tasks, rules

14 tasks
14 rules

2 features
19 tasks
19 rules

35 tasks
33 rules

3 features
24 tasks
23 rules

Unified 2 features
Deleted 4 rules
Refined 12 rules

Final KB:
+9 features ���� 478 concepts and features
+105 tasks ����134 tasks
+95 rules ����113 rules

DISCIPLE-COG

Testing scenario:
North Korea 2003

Correctness = 98.15%

5h 28min average training time / team
3.53 average rule learning rate / team

Disciple-RKF. The knowledge engineer also performed a general testing of the inte-
grated knowledge base, in which we included 10 new features, 102 new tasks, and 99
new rules (all acquired in less than 6 hours). During this process two semantically
equivalent features were unified, 4 rules were deleted, and 12 other rules were refined
by the knowledge engineer. The other 8 features and 83 rules learned from the SMEs
were not changed. Most of the modifications were done to remove rule redundancies,
or to specialize overly general rules.

Next, each SME team tested the integrated agent on a new scenario (North Korea
2003), and was asked to judge the correctness of each reasoning step performed by
the agent, but only for the capabilities for which that SME team performed the train-
ing of the agent. The result was a very high 98.15% correctness.

In addition to the above experiment, agent training experiments were also con-
ducted during the Spring 2001 and Spring 2002 sessions of the MAAI course, which
were attended by 25 military experts [12]. However, the Spring 2003 experiment is
the first one ever that also included the merging of the developed knowledge bases
into a functional agent, demonstrating a capability for rapid and parallel development
of a knowledge base by SMEs, with limited assistance from knowledge engineers.
One should also mention that this was also the only experiment of parallel knowledge
base development and integration, performed in the DARPA’s RKF program.

The design of this experiment provides the following general guideline for the par-
allel development of a knowledge base by the SMEs.

Guideline 1: Structure the knowledge base development process as follows:
1) Partition the application domain into sub-domains that are as independent as

possible, and assign each partition to an SME.
2) Develop an object ontology for the entire domain (i.e., a hierarchical representa-

tion of the domain objects and their properties and relationships).
3) Develop the knowledge base for the top-level reasoning of the agent, allowing the

agent to reduce any input problem solving task to a set of subtasks from the de-
fined sub-domains.

4) Provide each SME with a copy of the agent, to author problem solving knowledge
for his/her sub-domain. This will result in several parallel extensions of the object
ontology, and in several sets of rules.

5) Integrate the knowledge bases of all the agents by merging all the extended on-
tologies into a shared ontology, and by keeping the developed rules in separate
partitions. Any input problem solving task for the final agent is reduced to sub-
tasks from different sub-domains. Then each subtask is solved using the rules
learned from a single SME (or SME team).

6) Test the agent with the integrated knowledge base.

Notice that the SMEs needed to agree on a common ontology, but not on how to
solve a given subtask, significantly simplifying the knowledge base integration proc-
ess. The next sections discuss two of the most important phases of this process and
their corresponding guidelines.

4 Modeling the reasoning of an SME

In order to teach an agent how to solve problems, the SME has first to be able to
make explicit the way he or she reasons. Our experience shows that this is the single
most difficult agent training activity for the SME. In the following we will briefly
describe the Disciple approach to this challenging problem, and then present several
design guidelines that help simplifying it.

We have developed a very simple and intuitive modeling language in which the
SME expresses the way he/she is solving a specific problem, using natural language,
as if the SME would think aloud. The SME follows a task reduction paradigm, guided
by questions and answers, successively reducing a complex problem solving task to
simpler tasks, finding the solutions of the simplest tasks, and successively combining
them into the solution of the initial task. The Disciple-RKF modeling language is
illustrated in Figure 2 which includes a sequence of two reduction steps.

Fig. 2. A sequence of two task reduction steps

The question associated with the task from the top of Figure 2 considers some rele-
vant piece of information for solving that task. The answer identifies that piece of
information and leads the SME to reduce this task to a simpler task (or, in other cases,
to several simpler tasks). Alternative questions correspond to alternative approaches
to solve the current problem solving task. Several answers to a question correspond to
several potential solutions. The modeling language includes many helpful guidelines
for the SME, such as [3]:

Test whether US_Secret_Service_2003 has any significant vulnerability.

Test whether President_Bush has means_to_be_protected.

What is a means of President_Bush to
be_protected from close physical threats?

Question:

Answer:
US_Secret_Service_2003

I need to

Therefore I need to

The US_Secret_Service_2003 which has no significant vulnerability is a
means_to_be_protected for President_Bush.

Which is a significant vulnerability of the US_Secret_Service_2003?
Question:

Answer:
US_Secret_Service_2003 has no significant vulnerability because its
loyalty_of_the_US_Secret_Service_2003 is based on conviction and
it cannot be influenced by Iraq_2003.

Therefore I conclude that

Guideline 2: Ask small, incremental questions that are likely to have a single cate-
gory of answer (but not necessarily a single answer). This usually means ask who, or
what, or where, or what kind of, or is this or that etc., not complex questions such as
who and what, or what and where.

Higher-level design guidelines, supported by our experiments, are briefly described
below.

Guideline 3: Train the SMEs to express their reasoning using the problem solving
paradigm of the knowledge base development environment.

In our experiment, the problem solving strategy of task reduction based on questions
and answers was discussed and illustrated in action planning, course of action critiqu-
ing, and center of gravity identification. A general approach to center of gravity test-
ing was also discussed, as presented at the beginning of section 3.

Guideline 4: Allow the SMEs to express their reasoning in natural language, but
provide them with helpful and non-disruptive mechanisms for automatic identification
of the knowledge base elements in their phrases.

For instance, Disciple-RKF includes a Modeling Assistant with an effective word
completion capability. When the SME types a few characters of a phrase, such as,
“means to be protected” (see Figure 2), the assistant proposes all the par-
tially matching names from the knowledge base, ordered by their plausibility, to be
used in the current context, including “means_to_be_protected.” The SME
selects this name only because it is simpler than typing it. However, now the system
also partially “understands” the English sentence entered by the SME, which will
significantly facilitate the follow-on process of language to knowledge transforma-
tion.

Guideline 5: Do not ask the SMEs to provide general problem solving rules. Ask
them to express how to solve specific problems.

The modeling language and the associated Modeling Assistant help the SME to ex-
press how to solve a specific problem, thus providing examples of problem solving
steps from which Disciple-RKF learns general rules, as will be discussed in section 5.

Guideline 6: Provide non-disruptive mechanisms for helping the SMEs to express
their reasoning process.

For instance, at each step in the modeling process, the Modeling Assistant shows the
SME both all the allowable user actions, and the recommended ones (such as “Copy
and modify the current Task to define a Subtask”). Also, when possible, the Modeling
Assistant automatically performs the selected action. Moreover, using analogical
reasoning with previously learned rules, this assistant may suggest a partially instanti-
ated pattern for the current question to be asked, or for the answer to the question.

The usefulness of this guideline is supported by the comparative analysis of the
modeling process performed during the Spring 2002 agent training experiment (when
the SMEs were not supported by the Modeling Assistant), and the modeling process
performed during the Spring 2003 experiment (when the SMEs were helped by the
Modeling Assistant). In Spring 2003, the modeling process was considered more

natural, was faster and more correct, due to the support provided by the Modeling
Assistant [2].

The 13 SMEs who participated in the Spring 2003 experiment (see Figure 1)
evaluated the difficulty in modeling their own reasoning process, using the task re-
duction paradigm. For instance, on a 5-point scale (strongly agree, agree, neutral,
disagree, strongly disagree), 8 of them strongly agreed, 2 agreed, 3 were neutral, and
none disagreed with the statement “The task reduction paradigm implemented in
Disciple is a reasonable way of expressing in detail the logic involved in identifying
and testing strategic COG candidates.” Moreover, 10 experts strongly agreed, 2
agreed, 1 was neutral, and none disagreed with the statement “Subject matter experts
that are not computer scientists can learn to express their reasoning process using
the task reduction paradigm, with a reasonable amount of effort.”

5 Rule learning

After the SME expresses his/her reasoning as a sequence of task reduction steps, as
illustrated in Figure 2, the SME needs to help the agent to learn a general task reduc-
tion rule from each task reduction step. Rule learning is a mixed-initiative process
between the SME (who knows why the reduction is correct and can help the agent to
understand this) and the Disciple-RKF agent (that is able to generalize the task reduc-
tion example and its explanation into a general rule, by using the object ontology as a
generalization language). This process is based on a communication protocol which
takes into account that:

- it is easier for an SME to understand sentences in the formal language of the
agent than it is to produce such formal sentences; and

- it is easier for the agent to generate formal sentences than it is to understand
sentences in the natural language used by the SME.

Part of this process is illustrated in Figure 3. The left hand side of Figure 3 shows the
task reduction example from the top part of Figure 2. This example is in natural lan-
guage, except for the phrases with underscores which have already been recognized
as representing elements from the Disciple’s ontology, as discussed in the previous
section. The right hand side of Figure 3 is the same task reduction example in a struc-
tured form. This structured form is generated by Disciple-RKF with the help of the
SME. First Disciple-RKF proposes formalizations of the tasks from the example, by
rephrasing the unstructured form of the task into a general task name (which does not
contain any specific object), and one or several task features that identify the specific
objects from the task. The SME can accept the formalization proposed by Disciple-
RKF or, in rare cases, can modify it so that the task name is more understandable.

The natural language question and its answer from a task reduction step are in-
tended to represent the SME’s reason (or explanation) for performing that reduction.
But they are in natural language and the SME has to help Disciple-RKF to “under-
stand” them. The agent will use analogical reasoning with previously learned rules, as
well as general heuristics, to hypothesize the meaning of the question-answer pair. It
will generate plausible explanation fragments (ordered by their plausibility), and the

SME will select those that best express this meaning. The SME may also help the
agent to propose the right explanation pieces by proving hints, such as pointing to a
relevant object that should be part of the explanation. Each explanation fragment
proposed by the agent is a relationship (or a relationship chain) involving instances,
concepts and constants from the task reduction step and from the knowledge base. For
instance, the right hand side of Figure 3 shows the explanation fragments selected by
the SME, from those proposed by the agent.

Fig. 3. Mixed-initiative language to knowledge translation

Once the explanations have been identified, the agent generates the task reduction
rule shown in Figure 4. This rule has an informal structure, shown at the top of Figure
4, and a formal structure, shown at the bottom of Figure 4. Compare the informal
structure of the learned rule with the example from the left hand side of Figure 3. As
one can see, this rule is generated by simply turning the constants from the example
into variables. Therefore, the informal structure of the rule preserves the natural lan-
guage of the SME, and is used in agent-user communication. This rule should be
interpreted as follows: If the task to be solved is T1, I am asking the question Q, and if
the answer is A, then I can reduce T1 to T11.

The formal structure of the learned rule, shown at the bottom of Figure 4, corre-
sponds to the formalized version of the example from the right hand side of Figure 3.
This formal structure is used in the actual problem solving process, and is interpreted
as follows: If the task to be solved is FT1, and the rule’s applicability condition is
satisfied, then I can reduce FT1 to FT11. Notice that both FT1 and FT11 are formal task
expressions. Moreover, instead of a single applicability condition, the rule in Figure 4
has a plausible version space for the exact condition, because the rule is only partially
learned. This rule, generated from a single example and its explanation, will be fur-
ther refined. The plausible lower bound of the version space is the least general gen-
eralization of the objects from the example and the explanation, based on the object
ontology (including the definitions of the features). Similarly, the plausible upper
bound is the most general generalization. For instance, “US_secret_service”
was generalized to “protection_service” in the lower bound, and to “agent”
in the upper bound.

Unstructured Language Structured Language

Test whether US_Secret_Service_2003 has
any significant vulnerability.

Test whether President_Bush has
means_to_be_protected.

What is a means of President_Bush to
be_protected from close physical threats?

Test whether a means to be protected has any significant vulnerability
The means to be protected is US_Secret_Service_2003

Test whether a controlling element has a means
The controlling element is President_Bush
The means is US_Secrect_Service_2003

Explanation:

Question:

Answer:
US_Secret_Service_2003

be_protected requires means_to_be_protected
US_Secret_Service_2003 provides means_to_be_protected
President_Bush is_protected_by US_Secret_Service_2003

Fig. 4. A learned rule

Once a rule is learned, it is used by Disciple-RKF in problem solving. For instance,
the rule in Figure 4 was used to identify the means to be protected for the other lead-
ers from the training scenarios. The corresponding reductions that were accepted by
the user were used as positive examples by the agent to further generalize the plausi-
ble lower bound condition of the rule. Those that were rejected were used as negative
examples to specialize the rule’s plausible upper bound. If the agent and the SME
identified an explanation of why a reduction was wrong, then a corresponding “ex-
cept-when” plausible version space condition was added to the rule. In the future, the
rule will be applicable only if the except-when condition will not be satisfied. During
this process, the agent may learn complex rules with quantificators and negation.
More details on the learning methods used are given in [9, 2].

The high accuracy of the learned rules in the performed experiment (see Figure 1)
shows that the above approach to rule learning from SMEs is very successful, leading
to the learning of good quality rules, in a very short time, and from a small number of
examples.

The performed experiments support the following guidelines for the design of sys-
tems that help SMEs to author problem solving knowledge.

Guideline 7: Provide the SME with easy to use features for helping the agent to un-
derstand the natural language phrases of the SME.

For instance, the SME helped Disciple-RKF to generate the correct meaning of the
SME’s phrases by pointing to relevant objects, or by guiding the refinement of ab-
stract structures.

Guideline 8: Implement mechanisms to automatically generalize the specific exam-
ples provided by the SMEs into general knowledge pieces.

These mechanisms are illustrated by the rule learning process of Disciple-RKF.

Guideline 9: Verify the general rules learned by asking the SME to judge the results
of their applications in other cases, and use SME’s critiques to automatically refine
them.

Because it is much easier for an SME to judge concrete cases than general pieces of
knowledge, in our approach, the SME does not even see the rules, but only their ap-
plication to specific situations.

Guideline 10: Implement mechanisms to automatically check the learned knowledge
pieces, and to correct them by asking clarification questions about specific examples.

For instance, the agent may determine that a variable from the THEN part of a rule is
not linked to any variable from the IF part of the rule. This is indicative of a rule
which was learned based on an incomplete explanation, causing the agent to reinitiate
the explanation generation process. Sometimes, the missing explanation is so obvious
to the SME that it is simply ignored as, for instance, the following one: “US_2003
has_as_government government_of_US_2003.” The agent will auto-
matically select such an explanation, if it provides a link to an unconstrained variable.
Sometimes, even when all the rule’s variables are linked, the number of rule instances
may still be very large. In such a case the agent will attempt to identify which vari-

ables are the least constrained, and will attempt to further constrain them, by propos-
ing additional explanation pieces.

Guideline 11: The knowledge authoring approach should be incremental, allowing
imperfections from the SME.

For instance, the explanation pieces selected by the SME do not need to constitute a
complete explanation of a task reduction step. In such a case the learned rule will
generate wrong reductions which will reveal to the SME what factors were not con-
sidered, and what new explanation pieces should be added. Another common imper-
fection is for the SME to select too many explanation pieces. This leads to a rule
which is less general than it should be, but it is correct nevertheless. The agent may
then automatically combine and generalize similar rules.

At the end of the Spring 2003 experiment, 7 SMEs strongly agreed, 4 agreed, 1
was neutral and 1 disagreed with the statement “I think that a subject matter expert
can use Disciple to build an agent, with limited assistance from a knowledge engi-
neer”. This is a powerful experimental support for the Disciple approach.

6 Related research and conclusions

In addition to Disciple-RKF, two other systems for acquiring expert problem solving
knowledge were developed in the DARPA’s RKF program, KRAKEN and SHAKEN
[6]. KRAKEN was developed by the Cycorp team, which also included researchers
from Northwestern University, Stanford University, Information Science Institute,
University of Edinburgh, Teknowledge, and SAIC. SHAKEN was developed by the
SRI team, which also included researchers from University of Texas at Austin, Boe-
ing, Stanford University, MIT, Northwestern University, University of Massachu-
setts, University of Western Florida, Information Science Institute, PSR, and Pragati.

In the DARPA’s RKF program, KRAKEN and SHAKEN were evaluated on the
course of action (COA) critiquing challenge problem [6], while Disciple-RKF was
evaluated on the center of gravity (COG) challenge problem. However, a previous
version of Disciple, Disciple-COA, developed as part of the DARPA’s HPKB pro-
gram, was also evaluated on the course of action critiquing problem, as discussed in
[10, 11]. As opposed to Disciple-COA and Disciple-RKF, which use rule chaining,
the course of action critiquing of both KRAKEN and SHAKEN is more limited, be-
ing based on a single rule, where the antecedent represents some characteristics of the
course of action, and the consequent is a critique of the course of action. Therefore,
the kind of problem solving knowledge acquired by Disciple was more complex than
that acquired by KRAKEN and SHAKEN.

The approach taken by KRAKEN and SHAKEN to the authoring of problem solv-
ing knowledge from SMEs was radically different from that of Disciple-RKF. The
philosophy behind both systems was to develop advanced tools that would allow the
SMEs to directly author general problem solving rules. The main difference between
the two systems was in the type of the rule editing tools used. KRAKEN used text-
oriented tools, its key strategy for facilitating SME-authoring being natural language
presentation and a knowledge-driven acquisition dialog with natural language under-

standing, supported by the large Cyc knowledge base [5]. Notice here the relationship
with Guideline 4 on the use of natural language.

SHAKEN provided the SME with a graph (concept map) editor to represent the
antecedents and the consequent of a rule pattern. This graph editor facilitated the
SME’s use of the objects and relationships from the knowledge base of SHAKEN (as
also suggested in the second part of Guideline 4). Such a graph was then automati-
cally translated into a formal rule, so that the SMEs did not need to be trained in for-
mal logic [1].

It is interesting to notice that the conclusions of the experiments performed with
KRAKEN and SHAKEN indirectly support the Disciple approach to acquiring prob-
lem solving knowledge, and several of the design guidelines stated in the previous
sections. For instance, one of these conclusions is: “For purposes of rule elicitation,
the focus on a particular scenario rendered the initial rule articulation much more
manageable for the SME. It would have been more difficult to articulate rules from
more universally acceptable general principles initially” [6]. This justifies Guideline 5
which is also based on the idea that it is easier for an SME to reason with specific
scenarios.

However, “an unfortunate consequence of the scenario focus is that the SMEs oc-
casionally tended to overly restrict a rule by including unnecessary details from a
particular scenario” making necessary for the rule to be further generalized [6].

Moreover, sometimes the generalization performed by the SME was incorrect in
the sense that it was not really a generalization of the studied scenario. The proposed
solution to this problem is to have the rule “examined for generalization, either by a
system tool, or in consultation with a knowledge engineer” [6]. Our experiments with
Disciple have also revealed the SME’s tendency to provide more specific explana-
tions of the problem solving episodes considered, as stated in the explanations for
Guideline 11. However, as opposed to SHAKEN and KRAKEN, the generalization of
the examples is performed by the Disciple learning agent and not by the SME, and it
is correct (with respect to the current ontology). Therefore Guideline 8 suggests that
the generalizations should be performed by the agent.

Because the SMEs cannot test the correctness of a rule by direct examination, these
rules acquired by KRAKEN and SHAKEN were tested on the concrete scenarios that
inspired them in the first place, allowing the SMEs to further improve the rules. This
supports Guideline 9 and the approach taken in Disciple-RKF where the SMEs do not
even see the rules learned by the system, but only the results of their application.
Moreover, a Disciple rule learned from a scenario is guaranteed to correctly work for
that scenario.

A global conclusion of the developers of KRAKEN and SHAKEN is that “given
representational subtleties, especially those associated with negation and quantifica-
tion, fully automated elicitation of any arbitrary complex rule remains somewhat
elusive” [6]. In essence, these experiments confirmed that it is difficult for an SME to
formulate general rules, and these rules are very likely to be incomplete and only
partially correct (which justifies Guideline 5).

On the contrary, Disciple-RKF agents successfully acquired a significant number
of accurate problem solving rules from the SMEs because the Disciple approach re-
quires the SMEs to do what they know best (i.e. to solve specific problems), and not

to perform knowledge engineering tasks, which proved to be very difficult for them,
even with the very powerful knowledge engineering tools offered by KRAKEN and
SHAKEN.

Maybe the most significant factor in the comparison of Disciple-RKF and, in gen-
eral, of the Disciple approach to acquiring and integrating problem solving knowl-
edge from SMEs (on one hand), and the approaches illustrated by KRAKEN and
SHAKEN (on the other hand), is that the Disciple team was the only team from the
DARPA’s RKF program that has successfully conducted a parallel knowledge base
development and integration experiment.

The deployment and evaluation of Disciple-RKF have also revealed several limita-
tions of this approach and have provided numerous ideas for improvement. For in-
stance, while the subject matter expert has an increased role and independence in the
agent development process, the knowledge engineer still has a critical role to play.
The knowledge engineer has to assure the development of a fairly complete and cor-
rect object ontology. The knowledge engineer also has to develop a generic modeling
of the expert’s problem solving process based on the task reduction paradigm. Even
guided by this generic modeling, and using natural language, the subject matter expert
has difficulties in expressing his reasoning process. Therefore more work is needed to
develop methods for helping the expert in this task, along the path opened by the
Modeling Advisor.

The experimentations also revealed that the mixed-initiative reasoning methods of
Disciple-RKF could be significantly empowered by developing the natural language
processing capabilities of the system.

Finally, because the expert who teaches Disciple-RKF has no formal training in
knowledge engineering or computer science, the knowledge pieces learned by the
agent and the knowledge base itself will not be optimally represented, and will re-
quire periodic revisions by the knowledge engineer. Examples of encountered prob-
lems with the knowledge base are: semantic inconsistencies within a rule, prolifera-
tion of semantically equivalent tasks, and the violation of certain knowledge engi-
neering principles. It is therefore necessary to develop mixed-initiative knowledge
base reformulation and optimization methods to identify and correct such problems in
the knowledge base.

Acknowledgments

This research was sponsored by DARPA, AFRL, AFMC, USAF, under agreement
number F30602-00-2-0546, by the AFOSR under grant no. F49620-00-1-0072, and
by the US Army War College. Several persons supported this effort, including Jerome
Comello, William Cleckner, Murray Burke, William Rzepka, Douglass Campbell,
David Brooks, and Christopher Fowler. We are also grateful to the anonymous re-
viewers for their insightful comments.

References

1. Barker, K., Blythe, J., Borchardt, G., Chaudhri, V.K., Clark, P.E., Cohen, P, Fitzgerald, J.,
Forbus, K., Gil, Y., Katz, B., Kim, J., King, G., Mishra, S., Morrison C., Murray, K., Ot-
stott, C., Porter, B., Schrag, R.C., Uribe, T., Usher, J., Yeh, P.Z.: A Knowledge Acquisition
Tool for Course of Action Analysis. In: Proc. of the 15th Innovative Applications of Artifi-
cial Intelligence Conference. AAAI Press, Menlo Park, California, USA (2003) 43-50

2. Boicu, M.: Modeling and Learning with Incomplete Knowledge, PhD dissertation. George
Mason University, Fairfax, Virginia, USA (2002)

3. Bowman, M.: A Methodology for Modeling Expert Knowledge that Supports Teaching
Based Development of Agents, PhD dissertation. George Mason University, Fairfax, Vir-
ginia, USA (2002)

4. Dybala, T.: Shared Expertise Model for Building Interactive Learning Agents, Ph.D. Dis-
sertation, Department of Computer Science, George Mason University, Fairfax, Virginia
(1996)

5. Lenat, D.B.: CYC: A Large-scale Investment in Knowledge Infrastructure. Communica-
tions of the ACM, 38(11), (1995) 33-38

6. Pool, M., Murray, K., Fitzgerald, J., Mehrotra, M., Schrag, R., Blythe J., Kim, J., Chalup-
sky, H., Miraglia, P., Russ, T., Schneider, D.: Evaluating Expert-Authored Rules for Mili-
tary Reasoning. In: Proc. of the 2nd Int. Conf. on Know-ledge Capture. ACM Press, Flor-
ida, USA (2003) 69-104

7. Strange, J.: Centers of Gravity & Critical Vulnerabilities: Building on the Clausewitzian
Foundation So That We Can All Speak the Same Language. Quantico, Virginia, USA, Ma-
rine Corps University (1996)

8. Tecuci, G.: DISCIPLE: A Theory, Methodology and System for Learning Expert Knowl-
edge, Thèse de Docteur en Science, University of Paris-South (1988)

9. Tecuci, G.: Building Intelligent Agents: An Apprenticeship Multistrategy Learning Theory,
Methodology, Tool and Case Studies. Academic Press, London (1998)

10. Tecuci G., Boicu M., Bowman M., Marcu D., Shyr P., and Cascaval C.: An Experiment in
Agent Teaching by Subject Matter Experts. International Journal of Human-Computer
Studies, 53 (2000) 583-610

11. Tecuci G., Boicu M., Bowman M., and Marcu D., with a commentary by Burke M.: An
Innovative Application from the DARPA Knowledge Bases Programs: Rapid Development
of a High Performance Knowledge Base for Course of Action Critiquing. AI Magazine, 22,
2. AAAI Press, Menlo Park, California (2001) 43-61

12. Tecuci G., Boicu, M., Marcu, D., Stanescu, B., Boicu, C., and Comello, J.: Training and
Using Disciple Agents: A Case Study in the Military Center of Gravity Analysis Domain.
AI Magazine 23(4) (2002) 51–68

