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Abstract. This paper presents an experiment of parallel knowledge base devel-
opment by subject matter experts, performed as part of the DARPA’s Rapid 
Knowledge Formation Program. It introduces the Disciple-RKF development 
environment used in this experiment and proposes design guidelines for sys-
tems that support authoring of problem solving knowledge by subject matter 
experts. Finally, it compares Disciple-RKF with the other development envi-
ronments from the same DARPA program, providing further support for the 
proposed guidelines. 

1   Introduction 

Traditionally, a knowledge-based system is built by a knowledge engineer (KE) who 
needs to acquire the knowledge from a subject matter expert (SME) and to encode it 
into the knowledge base. This is a very difficult process because the SMEs express 
their knowledge informally, using natural language, visual representations, and com-
mon sense, often omitting many essential details they regard as being obvious. In 
order to properly understand an SME’s problem solving knowledge and to represent 
it in a formal, precise, and “complete” knowledge base, the knowledge engineer needs 
to become himself/herself a kind of SME. Therefore this process is very difficult, 
error-prone, and time-consuming, being known as the knowledge acquisition bottle-
neck in system development.  

One solution to this problem, pursued by the DARPA’s Rapid Knowledge Forma-
tion program (2000-03), is the development of knowledge bases directly by SMEs, 
the central objective of this program being to enable distributed teams of SMEs to 
enter and modify knowledge directly and easily, without the need of prior knowledge 
engineering experience (http://cerberus.cyc.com/RKF/). 

This paper presents an experiment of parallel knowledge base development by 
SMEs, and proposes guidelines for the design of systems that support authoring of 
problem solving knowledge by SMEs. It briefly introduces the Disciple-RKF inte-
grated development environment used in this experiment, and discusses the main 



phases of the experiment. Finally, it compares Disciple-RKF with the other two sys-
tems developed in the DARPA’s RKF program, KRAKEN and SHAKEN [6], which 
provide further experimental support for the proposed design guidelines. 

2   Disciple-RKF knowledge base development environment 

The Disciple approach is the result of 20 years of research on developing a theory and 
associated methodologies and tools for knowledge base development [8, 4, 9, 2, 3]. 
Disciple-RKF, the implementation of the most recent version of the Disciple ap-
proach, is an agent shell with a knowledge base structured into an object ontology 
that describes the entities from an application domain, and a set of task reduction and 
solution composition rules expressed with these objects. The main functional compo-
nents of Disciple-RKF are:  

- A problem solving component based on task reduction. It includes a mixed-
initiative (step-by-step) problem solver that allows the user and the agent to col-
laborate in the problem solving process, and an autonomous problem solver. It 
also includes a modeling assistant that helps the user to express his/her contribu-
tions to the problem solving process. 

- A learning component for acquiring and refining the knowledge of the agent, 
allowing a wide range of operations, from ontology import and user definition of 
knowledge base elements (through the use of editors and browsers), to ontology 
learning and rule learning. 

- A knowledge base manager which controls the access and the updates to the 
knowledge base. Each module of Disciple-RKF accesses the knowledge base only 
through the functions of the knowledge base manager. 

- A window-based graphical user interface. 

The development of the knowledge base of a Disciple-RKF agent is based on import-
ing ontological knowledge from existing knowledge repositories, and on teaching the 
agent how to perform various tasks, in a way that resembles how an SME teaches a 
human apprentice. For instance, to teach the agent, the SME may formulate a specific 
problem and show the agent the reasoning steps to solve it, helping the agent to un-
derstand each of them. Each problem solving step represents an example from which 
the agent learns a general rule. As Disciple learns new rules from the SME, the inter-
action between the SME and Disciple evolves from a teacher-student interaction, 
toward an interaction where both collaborate in solving a problem. During this 
mixed-initiative problem solving phase, Disciple learns not only from the contribu-
tions of the SME, but also from its own successful or unsuccessful problem solving 
attempts, which lead to the refinement of the learned rules. This process is based on: 

- mixed-initiative problem solving, where the SME and the agent solve problems in 
cooperation and the agent learns from the contributions of the SME; 

- integrated teaching and learning, where the agent helps the SME to teach it (for 
instance, by asking relevant questions), and the SME helps the agent to learn (for 
instance, by providing examples, hints and explanations); and  



- multistrategy learning, where the agent integrates different strategies, such as 
learning from examples, from explanations, and by analogy, to learn general con-
cepts and rules. 

3   Parallel knowledge base development experiment 

A knowledge base development experiment with Disciple-RKF was conducted during 
the Military Applications of Artificial Intelligence (MAAI) course, taught at the US 
Army War College, in Spring 2003. This was a 10 week, 3 hours/week course, at-
tended by 13 colonels and lieutenant colonels from different military services. The 
students, who had no prior knowledge engineering experience, were introduced to the 
Disciple approach, and used Disciple-RKF to jointly develop an agent for the deter-
mination of the centers of gravity (COG) of the opposing forces from a conflict. The 
concept of center of gravity is fundamental to military strategy, denoting the primary 
source of moral or physical strength, power or resistance of a force [7]. The most 
important objective of a force is to protect its own center of gravity, while attacking 
the center of gravity of its enemy.  

Our approach to center of gravity determination, developed with the experts from 
the US Army War College, consists of two main phases: identification and testing. 
During the identification phase, center of gravity candidates from different elements 
of power of a force (such as government, military, people, economy) are identified. 
For instance, a strong leader is a center of gravity candidate with respect to the gov-
ernment of a force. Then, during the testing phase, each candidate is analyzed to de-
termine whether it has all the critical capabilities that are necessary to be the center of 
gravity. For example, a leader needs to be protected, stay informed, communicate 
(with the government, the military, and the people), be influential (with the govern-
ment, the military, and the people), be a driving force, have support (from the gov-
ernment, the military, and the people), and be irreplaceable. For each capability, one 
needs to determine the existence of the essential conditions, resources and means that 
are required by that capability to be fully operative, and which of these, if any, repre-
sent critical vulnerabilities. The testing of the critical capabilities is based on a general 
theory developed by Strange [7].  

Figure 1 provides an overview of the performed experiment. Before starting the 
experiment, the Disciple-RKF agent was trained to identify leaders as center of grav-
ity candidates. The knowledge base of this agent contained the definitions of 432 
concepts and features, 29 tasks and 18 task reduction rules. However, the agent had 
no knowledge of how to test the identified candidates. 

We then performed a joint domain analysis and ontology development with all the 
SMEs, by considering the example of testing whether Saddam Hussein, in the Iraq 
2003 scenario, has all the required critical capabilities to be the center of gravity for 
Iraq. We determined which are the critical requirements for these capabilities to be 
operational, and which are the corresponding critical vulnerabilities, if any. Based on 
this domain analysis, we extended the ontology of Disciple-RKF with the definition 
of 37 new concepts and features identified with the help of the SMEs. 



Fig. 1. Experiment of rapid knowledge base development by SMEs 
 

The 13 SMEs were grouped into five teams (of 2 or 3 SMEs each), and each team 
was given a copy of the extended Disciple-RKF agent. After that, each team trained 
its agent to test whether a leader has one or two critical capabilities, as indicated in 
Figure 1. For instance, Team 1 trained its agent how to test whether a leader has the 
critical capabilities of staying informed and being irreplaceable. The training was 
done based on three scenarios (Iraq 2003, Arab-Israeli 1973, and War on Terror 
2003), the SMEs teaching Disciple-RKF how to test each strategic leader from these 
scenarios. As a result of the training performed by the SMEs, the knowledge base of 
each Disciple-RKF agent was extended with new features, tasks, and rules, as indi-
cated in Figure 1. For instance, the knowledge base of the agent trained by Team 1 
was extended with 5 features, 10 tasks and 10 rules for testing whether a leader has 
the capabilities to stay informed and be irreplaceable. The average training time per 
team was 5 hours and 28 minutes, and the average rule learning rate per team was 
3.53 rules/hour. This included the time spent in all the agent training activities (i.e., 
scenario specification, modeling SME’s reasoning, task formalization, rule learning, 
problem solving, and rule refinement). 

During each class the SMEs were introduced to the Disciple theory and tools cor-
responding to a particular agent training activity (e.g. scenario specification). The 
SMEs were supervised by knowledge engineers who were asked not to offer help, 
unless it was requested, and were not allowed to do SME’s work. The SMEs were 
helped in the initial phases of learning to use a tool, after it was demonstrated by the 
course’s instructor. 

After the training of the 5 Disciple-RKF agents, their knowledge bases were 
merged by a knowledge engineer, who used the knowledge base merging tool of 
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Disciple-RKF. The knowledge engineer also performed a general testing of the inte-
grated knowledge base, in which we included 10 new features, 102 new tasks, and 99 
new rules (all acquired in less than 6 hours). During this process two semantically 
equivalent features were unified, 4 rules were deleted, and 12 other rules were refined 
by the knowledge engineer. The other 8 features and 83 rules learned from the SMEs 
were not changed. Most of the modifications were done to remove rule redundancies, 
or to specialize overly general rules.  

Next, each SME team tested the integrated agent on a new scenario (North Korea 
2003), and was asked to judge the correctness of each reasoning step performed by 
the agent, but only for the capabilities for which that SME team performed the train-
ing of the agent. The result was a very high 98.15% correctness. 

In addition to the above experiment, agent training experiments were also con-
ducted during the Spring 2001 and Spring 2002 sessions of the MAAI course, which 
were attended by 25 military experts [12]. However, the Spring 2003 experiment is 
the first one ever that also included the merging of the developed knowledge bases 
into a functional agent, demonstrating a capability for rapid and parallel development 
of a knowledge base by SMEs, with limited assistance from knowledge engineers. 
One should also mention that this was also the only experiment of parallel knowledge 
base development and integration, performed in the DARPA’s RKF program. 

The design of this experiment provides the following general guideline for the par-
allel development of a knowledge base by the SMEs. 

Guideline 1: Structure the knowledge base development process as follows: 
1) Partition the application domain into sub-domains that are as independent as 

possible, and assign each partition to an SME.  
2) Develop an object ontology for the entire domain (i.e., a hierarchical representa-

tion of the domain objects and their properties and relationships).  
3) Develop the knowledge base for the top-level reasoning of the agent, allowing the 

agent to reduce any input problem solving task to a set of subtasks from the de-
fined sub-domains.  

4) Provide each SME with a copy of the agent, to author problem solving knowledge 
for his/her sub-domain. This will result in several parallel extensions of the object 
ontology, and in several sets of rules.  

5) Integrate the knowledge bases of all the agents by merging all the extended on-
tologies into a shared ontology, and by keeping the developed rules in separate 
partitions. Any input problem solving task for the final agent is reduced to sub-
tasks from different sub-domains. Then each subtask is solved using the rules 
learned from a single SME (or SME team).  

6) Test the agent with the integrated knowledge base. 

Notice that the SMEs needed to agree on a common ontology, but not on how to 
solve a given subtask, significantly simplifying the knowledge base integration proc-
ess. The next sections discuss two of the most important phases of this process and 
their corresponding guidelines. 



4   Modeling the reasoning of an SME 

In order to teach an agent how to solve problems, the SME has first to be able to 
make explicit the way he or she reasons. Our experience shows that this is the single 
most difficult agent training activity for the SME. In the following we will briefly 
describe the Disciple approach to this challenging problem, and then present several 
design guidelines that help simplifying it. 

We have developed a very simple and intuitive modeling language in which the 
SME expresses the way he/she is solving a specific problem, using natural language, 
as if the SME would think aloud. The SME follows a task reduction paradigm, guided 
by questions and answers, successively reducing a complex problem solving task to 
simpler tasks, finding the solutions of the simplest tasks, and successively combining 
them into the solution of the initial task. The Disciple-RKF modeling language is 
illustrated in Figure 2 which includes a sequence of two reduction steps.  

 
Fig. 2. A sequence of two task reduction steps 

 
The question associated with the task from the top of Figure 2 considers some rele-
vant piece of information for solving that task. The answer identifies that piece of 
information and leads the SME to reduce this task to a simpler task (or, in other cases, 
to several simpler tasks). Alternative questions correspond to alternative approaches 
to solve the current problem solving task. Several answers to a question correspond to 
several potential solutions. The modeling language includes many helpful guidelines 
for the SME, such as [3]: 

Test whether US_Secret_Service_2003 has any significant vulnerability.

Test whether President_Bush has means_to_be_protected.

What is a means of President_Bush to 
be_protected from close physical threats?

Question:

Answer:
US_Secret_Service_2003

I need to 

Therefore I need to 

The US_Secret_Service_2003 which has no significant vulnerability is a 
means_to_be_protected for President_Bush.

Which is a significant vulnerability of the US_Secret_Service_2003?
Question:

Answer:
US_Secret_Service_2003 has no significant vulnerability because its 
loyalty_of_the_US_Secret_Service_2003 is based on conviction and
it cannot be influenced by Iraq_2003.

Therefore I conclude that 



Guideline 2: Ask small, incremental questions that are likely to have a single cate-
gory of answer (but not necessarily a single answer). This usually means ask who, or 
what, or where, or what kind of, or is this or that etc., not complex questions such as 
who and what, or what and where.  

Higher-level design guidelines, supported by our experiments, are briefly described 
below. 

Guideline 3: Train the SMEs to express their reasoning using the problem solving 
paradigm of the knowledge base development environment.  

In our experiment, the problem solving strategy of task reduction based on questions 
and answers was discussed and illustrated in action planning, course of action critiqu-
ing, and center of gravity identification. A general approach to center of gravity test-
ing was also discussed, as presented at the beginning of section 3.  

Guideline 4: Allow the SMEs to express their reasoning in natural language, but 
provide them with helpful and non-disruptive mechanisms for automatic identification 
of the knowledge base elements in their phrases.  

For instance, Disciple-RKF includes a Modeling Assistant with an effective word 
completion capability. When the SME types a few characters of a phrase, such as, 
“means to be protected” (see Figure 2), the assistant proposes all the par-
tially matching names from the knowledge base, ordered by their plausibility, to be 
used in the current context, including “means_to_be_protected.” The SME 
selects this name only because it is simpler than typing it. However, now the system 
also partially “understands” the English sentence entered by the SME, which will 
significantly facilitate the follow-on process of language to knowledge transforma-
tion. 

Guideline 5: Do not ask the SMEs to provide general problem solving rules. Ask 
them to express how to solve specific problems.  

The modeling language and the associated Modeling Assistant help the SME to ex-
press how to solve a specific problem, thus providing examples of problem solving 
steps from which Disciple-RKF learns general rules, as will be discussed in section 5. 

Guideline 6: Provide non-disruptive mechanisms for helping the SMEs to express 
their reasoning process.  

For instance, at each step in the modeling process, the Modeling Assistant shows the 
SME both all the allowable user actions, and the recommended ones (such as “Copy 
and modify the current Task to define a Subtask”). Also, when possible, the Modeling 
Assistant automatically performs the selected action. Moreover, using analogical 
reasoning with previously learned rules, this assistant may suggest a partially instanti-
ated pattern for the current question to be asked, or for the answer to the question.  

The usefulness of this guideline is supported by the comparative analysis of the 
modeling process performed during the Spring 2002 agent training experiment (when 
the SMEs were not supported by the Modeling Assistant), and the modeling process 
performed during the Spring 2003 experiment (when the SMEs were helped by the 
Modeling Assistant). In Spring 2003, the modeling process was considered more 



natural, was faster and more correct, due to the support provided by the Modeling 
Assistant [2]. 

The 13 SMEs who participated in the Spring 2003 experiment (see Figure 1) 
evaluated the difficulty in modeling their own reasoning process, using the task re-
duction paradigm. For instance, on a 5-point scale (strongly agree, agree, neutral, 
disagree, strongly disagree), 8 of them strongly agreed, 2 agreed, 3 were neutral, and 
none disagreed with the statement “The task reduction paradigm implemented in 
Disciple is a reasonable way of expressing in detail the logic involved in identifying 
and testing strategic COG candidates.” Moreover, 10 experts strongly agreed, 2 
agreed, 1 was neutral, and none disagreed with the statement “Subject matter experts 
that are not computer scientists can learn to express their reasoning process using 
the task reduction paradigm, with a reasonable amount of effort.”  

5   Rule learning 

After the SME expresses his/her reasoning as a sequence of task reduction steps, as 
illustrated in Figure 2, the SME needs to help the agent to learn a general task reduc-
tion rule from each task reduction step. Rule learning is a mixed-initiative process 
between the SME (who knows why the reduction is correct and can help the agent to 
understand this) and the Disciple-RKF agent (that is able to generalize the task reduc-
tion example and its explanation into a general rule, by using the object ontology as a 
generalization language). This process is based on a communication protocol which 
takes into account that: 

- it is easier for an SME to understand sentences in the formal language of the 
agent than it is to produce such formal sentences; and  

- it is easier for the agent to generate formal sentences than it is to understand 
sentences in the natural language used by the SME. 

Part of this process is illustrated in Figure 3. The left hand side of Figure 3 shows the 
task reduction example from the top part of Figure 2. This example is in natural lan-
guage, except for the phrases with underscores which have already been recognized 
as representing elements from the Disciple’s ontology, as discussed in the previous 
section. The right hand side of Figure 3 is the same task reduction example in a struc-
tured form. This structured form is generated by Disciple-RKF with the help of the 
SME. First Disciple-RKF proposes formalizations of the tasks from the example, by 
rephrasing the unstructured form of the task into a general task name (which does not 
contain any specific object), and one or several task features that identify the specific 
objects from the task. The SME can accept the formalization proposed by Disciple-
RKF or, in rare cases, can modify it so that the task name is more understandable.  

The natural language question and its answer from a task reduction step are in-
tended to represent the SME’s reason (or explanation) for performing that reduction. 
But they are in natural language and the SME has to help Disciple-RKF to “under-
stand” them. The agent will use analogical reasoning with previously learned rules, as 
well as general heuristics, to hypothesize the meaning of the question-answer pair. It 
will generate plausible explanation fragments (ordered by their plausibility), and the 



SME will select those that best express this meaning. The SME may also help the 
agent to propose the right explanation pieces by proving hints, such as pointing to a 
relevant object that should be part of the explanation. Each explanation fragment 
proposed by the agent is a relationship (or a relationship chain) involving instances, 
concepts and constants from the task reduction step and from the knowledge base. For 
instance, the right hand side of Figure 3 shows the explanation fragments selected by 
the SME, from those proposed by the agent.  

 

Fig. 3.  Mixed-initiative language to knowledge translation 
 
Once the explanations have been identified, the agent generates the task reduction 
rule shown in Figure 4. This rule has an informal structure, shown at the top of Figure 
4, and a formal structure, shown at the bottom of Figure 4. Compare the informal 
structure of the learned rule with the example from the left hand side of Figure 3. As 
one can see, this rule is generated by simply turning the constants from the example 
into variables. Therefore, the informal structure of the rule preserves the natural lan-
guage of the SME, and is used in agent-user communication. This rule should be 
interpreted as follows: If the task to be solved is T1, I am asking the question Q, and if 
the answer is A, then I can reduce T1 to T11.  

The formal structure of the learned rule, shown at the bottom of Figure 4, corre-
sponds to the formalized version of the example from the right hand side of Figure 3. 
This formal structure is used in the actual problem solving process, and is interpreted 
as follows: If the task to be solved is FT1, and the rule’s applicability condition is 
satisfied, then I can reduce FT1 to FT11. Notice that both FT1 and FT11 are formal task 
expressions. Moreover, instead of a single applicability condition, the rule in Figure 4 
has a plausible version space for the exact condition, because the rule is only partially 
learned. This rule, generated from a single example and its explanation, will be fur-
ther refined. The plausible lower bound of the version space is the least general gen-
eralization of the objects from the example and the explanation, based on the object 
ontology (including the definitions of the features). Similarly, the plausible upper 
bound is the most general generalization. For instance, “US_secret_service” 
was generalized to “protection_service” in the lower bound, and to “agent” 
in the upper bound. 

Unstructured Language Structured Language

Test whether US_Secret_Service_2003 has 
any significant vulnerability.

Test whether President_Bush has 
means_to_be_protected.

What is a means of President_Bush to 
be_protected from close physical threats?

Test whether a means to be protected has any significant vulnerability
The means to be protected is US_Secret_Service_2003

Test whether a controlling element has a means 
The controlling element is President_Bush
The means is US_Secrect_Service_2003

Explanation:

Question:

Answer:
US_Secret_Service_2003

be_protected requires  means_to_be_protected
US_Secret_Service_2003  provides  means_to_be_protected
President_Bush is_protected_by US_Secret_Service_2003



 
Fig. 4. A learned rule 

 



Once a rule is learned, it is used by Disciple-RKF in problem solving. For instance, 
the rule in Figure 4 was used to identify the means to be protected for the other lead-
ers from the training scenarios. The corresponding reductions that were accepted by 
the user were used as positive examples by the agent to further generalize the plausi-
ble lower bound condition of the rule. Those that were rejected were used as negative 
examples to specialize the rule’s plausible upper bound. If the agent and the SME 
identified an explanation of why a reduction was wrong, then a corresponding “ex-
cept-when” plausible version space condition was added to the rule. In the future, the 
rule will be applicable only if the except-when condition will not be satisfied. During 
this process, the agent may learn complex rules with quantificators and negation. 
More details on the learning methods used are given in [9, 2].  

The high accuracy of the learned rules in the performed experiment (see Figure 1) 
shows that the above approach to rule learning from SMEs is very successful, leading 
to the learning of good quality rules, in a very short time, and from a small number of 
examples. 

The performed experiments support the following guidelines for the design of sys-
tems that help SMEs to author problem solving knowledge. 

Guideline 7: Provide the SME with easy to use features for helping the agent to un-
derstand the natural language phrases of the SME.  

For instance, the SME helped Disciple-RKF to generate the correct meaning of the 
SME’s phrases by pointing to relevant objects, or by guiding the refinement of ab-
stract structures. 

Guideline 8: Implement mechanisms to automatically generalize the specific exam-
ples provided by the SMEs into general knowledge pieces.  

These mechanisms are illustrated by the rule learning process of Disciple-RKF. 

Guideline 9: Verify the general rules learned by asking the SME to judge the results 
of their applications in other cases, and use SME’s critiques to automatically refine 
them.  

Because it is much easier for an SME to judge concrete cases than general pieces of 
knowledge, in our approach, the SME does not even see the rules, but only their ap-
plication to specific situations. 

Guideline 10: Implement mechanisms to automatically check the learned knowledge 
pieces, and to correct them by asking clarification questions about specific examples.  

For instance, the agent may determine that a variable from the THEN part of a rule is 
not linked to any variable from the IF part of the rule. This is indicative of a rule 
which was learned based on an incomplete explanation, causing the agent to reinitiate 
the explanation generation process. Sometimes, the missing explanation is so obvious 
to the SME that it is simply ignored as, for instance, the following one: “US_2003 
has_as_government government_of_US_2003.” The agent will auto-
matically select such an explanation, if it provides a link to an unconstrained variable. 
Sometimes, even when all the rule’s variables are linked, the number of rule instances 
may still be very large. In such a case the agent will attempt to identify which vari-



ables are the least constrained, and will attempt to further constrain them, by propos-
ing additional explanation pieces. 

Guideline 11: The knowledge authoring approach should be incremental, allowing 
imperfections from the SME.  

For instance, the explanation pieces selected by the SME do not need to constitute a 
complete explanation of a task reduction step. In such a case the learned rule will 
generate wrong reductions which will reveal to the SME what factors were not con-
sidered, and what new explanation pieces should be added. Another common imper-
fection is for the SME to select too many explanation pieces. This leads to a rule 
which is less general than it should be, but it is correct nevertheless. The agent may 
then automatically combine and generalize similar rules. 

At the end of the Spring 2003 experiment, 7 SMEs strongly agreed, 4 agreed, 1 
was neutral and 1 disagreed with the statement “I think that a subject matter expert 
can use Disciple to build an agent, with limited assistance from a knowledge engi-
neer”. This is a powerful experimental support for the Disciple approach. 

6   Related research and conclusions 

In addition to Disciple-RKF, two other systems for acquiring expert problem solving 
knowledge were developed in the DARPA’s RKF program, KRAKEN and SHAKEN 
[6]. KRAKEN was developed by the Cycorp team, which also included researchers 
from Northwestern University, Stanford University, Information Science Institute, 
University of Edinburgh, Teknowledge, and SAIC. SHAKEN was developed by the 
SRI team, which also included researchers from University of Texas at Austin, Boe-
ing, Stanford University, MIT, Northwestern University, University of Massachu-
setts, University of Western Florida, Information Science Institute, PSR, and Pragati. 

In the DARPA’s RKF program, KRAKEN and SHAKEN were evaluated on the 
course of action (COA) critiquing challenge problem [6], while Disciple-RKF was 
evaluated on the center of gravity (COG) challenge problem. However, a previous 
version of Disciple, Disciple-COA, developed as part of the DARPA’s HPKB pro-
gram, was also evaluated on the course of action critiquing problem, as discussed in 
[10, 11]. As opposed to Disciple-COA and Disciple-RKF, which use rule chaining, 
the course of action critiquing of both KRAKEN and SHAKEN is more limited, be-
ing based on a single rule, where the antecedent represents some characteristics of the 
course of action, and the consequent is a critique of the course of action. Therefore, 
the kind of problem solving knowledge acquired by Disciple was more complex than 
that acquired by KRAKEN and SHAKEN. 

The approach taken by KRAKEN and SHAKEN to the authoring of problem solv-
ing knowledge from SMEs was radically different from that of Disciple-RKF. The 
philosophy behind both systems was to develop advanced tools that would allow the 
SMEs to directly author general problem solving rules. The main difference between 
the two systems was in the type of the rule editing tools used. KRAKEN used text-
oriented tools, its key strategy for facilitating SME-authoring being natural language 
presentation and a knowledge-driven acquisition dialog with natural language under-



standing, supported by the large Cyc knowledge base [5]. Notice here the relationship 
with Guideline 4 on the use of natural language.  

SHAKEN provided the SME with a graph (concept map) editor to represent the 
antecedents and the consequent of a rule pattern. This graph editor facilitated the 
SME’s use of the objects and relationships from the knowledge base of SHAKEN (as 
also suggested in the second part of Guideline 4). Such a graph was then automati-
cally translated into a formal rule, so that the SMEs did not need to be trained in for-
mal logic [1].  

It is interesting to notice that the conclusions of the experiments performed with 
KRAKEN and SHAKEN indirectly support the Disciple approach to acquiring prob-
lem solving knowledge, and several of the design guidelines stated in the previous 
sections. For instance, one of these conclusions is: “For purposes of rule elicitation, 
the focus on a particular scenario rendered the initial rule articulation much more 
manageable for the SME. It would have been more difficult to articulate rules from 
more universally acceptable general principles initially” [6]. This justifies Guideline 5 
which is also based on the idea that it is easier for an SME to reason with specific 
scenarios. 

However, “an unfortunate consequence of the scenario focus is that the SMEs oc-
casionally tended to overly restrict a rule by including unnecessary details from a 
particular scenario” making necessary for the rule to be further generalized [6].  

Moreover, sometimes the generalization performed by the SME was incorrect in 
the sense that it was not really a generalization of the studied scenario. The proposed 
solution to this problem is to have the rule “examined for generalization, either by a 
system tool, or in consultation with a knowledge engineer” [6]. Our experiments with 
Disciple have also revealed the SME’s tendency to provide more specific explana-
tions of the problem solving episodes considered, as stated in the explanations for 
Guideline 11. However, as opposed to SHAKEN and KRAKEN, the generalization of 
the examples is performed by the Disciple learning agent and not by the SME, and it 
is correct (with respect to the current ontology). Therefore Guideline 8 suggests that 
the generalizations should be performed by the agent.  

Because the SMEs cannot test the correctness of a rule by direct examination, these 
rules acquired by KRAKEN and SHAKEN were tested on the concrete scenarios that 
inspired them in the first place, allowing the SMEs to further improve the rules. This 
supports Guideline 9 and the approach taken in Disciple-RKF where the SMEs do not 
even see the rules learned by the system, but only the results of their application. 
Moreover, a Disciple rule learned from a scenario is guaranteed to correctly work for 
that scenario. 

A global conclusion of the developers of KRAKEN and SHAKEN is that “given 
representational subtleties, especially those associated with negation and quantifica-
tion, fully automated elicitation of any arbitrary complex rule remains somewhat 
elusive” [6]. In essence, these experiments confirmed that it is difficult for an SME to 
formulate general rules, and these rules are very likely to be incomplete and only 
partially correct (which justifies Guideline 5). 

On the contrary, Disciple-RKF agents successfully acquired a significant number 
of accurate problem solving rules from the SMEs because the Disciple approach re-
quires the SMEs to do what they know best (i.e. to solve specific problems), and not 



to perform knowledge engineering tasks, which proved to be very difficult for them, 
even with the very powerful knowledge engineering tools offered by KRAKEN and 
SHAKEN. 

Maybe the most significant factor in the comparison of Disciple-RKF and, in gen-
eral, of the Disciple approach to acquiring and integrating problem solving knowl-
edge from SMEs (on one hand), and the approaches illustrated by KRAKEN and 
SHAKEN (on the other hand), is that the Disciple team was the only team from the 
DARPA’s RKF program that has successfully conducted a parallel knowledge base 
development and integration experiment. 

The deployment and evaluation of Disciple-RKF have also revealed several limita-
tions of this approach and have provided numerous ideas for improvement. For in-
stance, while the subject matter expert has an increased role and independence in the 
agent development process, the knowledge engineer still has a critical role to play. 
The knowledge engineer has to assure the development of a fairly complete and cor-
rect object ontology. The knowledge engineer also has to develop a generic modeling 
of the expert’s problem solving process based on the task reduction paradigm. Even 
guided by this generic modeling, and using natural language, the subject matter expert 
has difficulties in expressing his reasoning process. Therefore more work is needed to 
develop methods for helping the expert in this task, along the path opened by the 
Modeling Advisor. 

The experimentations also revealed that the mixed-initiative reasoning methods of 
Disciple-RKF could be significantly empowered by developing the natural language 
processing capabilities of the system. 

Finally, because the expert who teaches Disciple-RKF has no formal training in 
knowledge engineering or computer science, the knowledge pieces learned by the 
agent and the knowledge base itself will not be optimally represented, and will re-
quire periodic revisions by the knowledge engineer. Examples of encountered prob-
lems with the knowledge base are: semantic inconsistencies within a rule, prolifera-
tion of semantically equivalent tasks, and the violation of certain knowledge engi-
neering principles. It is therefore necessary to develop mixed-initiative knowledge 
base reformulation and optimization methods to identify and correct such problems in 
the knowledge base. 
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