

Rule Refinement by Domain Experts in Complex Knowledge Bases

Cristina Boicu, Gheorghe Tecuci, Mihai Boicu

Learning Agents Center, Department of Computer Science, MSN 4A5,
George Mason University, 4400 University Dr., Fairfax, VA 22030, Phone (703) 993-4669

{ccascava, tecuci, mboicu}@gmu.edu; http://lac.gmu.edu

Introduction
We research how subject matter experts can develop
knowledge-based systems that incorporate their expertise.
Our approach is to develop a learning and problem solving
agent, called Disciple, that an expert can teach by
explaining it how to solve specific problems, and by
critiquing its attempts to solve new problems (Tecuci
1998). The knowledge base of the agent is structured into
an object ontology that contains a hierarchical description
of the objects and features from an application domain, and
a set of task reduction rules expressed with these objects.
 The Disciple approach has already been applied to
develop knowledge-based agents for complex military tasks
such as course of action critiquing and center of gravity
analysis (Tecuci et al. 2002). In this paper we present a
new integrated approach to support a domain expert in
refining the rules from an agent’s large knowledge base.

Rule Learning and Refinement
To illustrate the rule learning and refinement process
consider how a domain expert may teach a Disciple agent
how to help a student select a PhD advisor. The expert
formulates an initial problem solving task, such as
“Determine a PhD advisor for Tom Evan.” Then, using the task-
reduction paradigm, the expert successively reduces this
task to simpler tasks, guided by questions and answers, as
illustrated by the following task reduction step:

Task: Determine whether John Smith can be a PhD advisor for Tom

Evan in Artificial Intelligence.

Question: Is John Smith likely to stay on the faculty of George

Mason University for the duration of Tom Evan’s dissertation?

Answer: Yes, because John Smith has a tenured position.

Subtask: Determine whether John Smith would be a good PhD

advisor for Tom Evan in Artificial Intelligence.

From each such task reduction step, Disciple learns a
general task reduction rule. The learned rules are used by
Disciple in the task reduction process, and the critiques
received from the expert guides their refinement. For
instance, the rule learned from the above example is
applied to “Determine whether Mark White can be a PhD advisor for

Tom Evan in Artificial Intelligence.” However, the corresponding
reduction is rejected by the expert because “Mark White is likely

Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

to move to Stanford University.” Consequently, Disciple adds an
except-when condition to the rule which takes the form
shown in Figure 1. As illustrated in Figure 1, the rules
learned by Disciple have an IF-THEN part that preserves
the expert’s language from the example, a main
applicability condition and, optionally, several except-when
conditions (which should not be satisfied to apply the rule).
The conditions are partially learned, containing plausible
upper and lower bounds for the acceptable values of the
rule’s variables. Rule’s representative examples are also
kept to help in its further refinement (Tecuci et al. 2002).

An Integrated Approach to Rule Refinement
The rule learning and refinement process in Disciple is
based on the observation that it is difficult for a subject
matter expert to work directly with formal rules. It is much
easier for the expert to analyze specific examples, to accept
them as correct, or to reject them as incorrect, and to
provide explanations of his decision. Therefore, when the
agent solves some task, it shows the expert the entire
reasoning tree. Because the tree is generally very large, we
have developed methods that highlight those task reduction
steps that need special attention. These are steps generated

MAIN CONDITION
?O1 is PUB (PhD_advisor) PLB (PhD_advisor)

has_as_employer ?O4
has_as_position ?O5

?O2 is PUB (person) PLB (PhD_student)
?O3 is PUB (research_area) PLB (Artificial_Intelligence)
?O4 is PUB (employer) PLB (university)
?O5 is PUB (position) PLB (tenured_position)

EXCEPT WHEN CONDITION
?O1 is PUB (person) PLB (PhD_advisor)

is_likely_to_move_to ?O6
?O6 is PUB (employer) PLB (university)

IF: Determine whether ?O1 can be a PhD advisor for ?O2 in ?O3

THEN: Determine whether ?O1 would be a good PhD advisor for
?O2 in ?O3

Figure 1: Partially learned plausible version space rule

Question: Is ?O1 likely to stay on the faculty of ?O4 for the
duration of ?O2 's dissertation?
Answer: Yes, because ?O1 has a ?O5

Positive Example: (?O1=John_Smith ?O2=Tom_Evan
?O3=Artificial_Intelligence ?O4=George_Mason_University
?O5=tenured_position)
Negative Example: (?O1=Mark_White ?O2=Tom_Evan
?O3=Artificial_Intelligence ?O4=George_Mason_University
?O5=tenured_position ?O6=Stanford_University)

In Proceedings of the Twentieth National Conference on Artificial Intelligence, AAAI-05, Pittsburgh, Pennsylvania, USA, July 9-13, 2005.

by using highly incomplete rules, or the plausible upper
bound conditions of partially incomplete rules (see
Discovering Partially Refined Rules below).
 After the expert selects a task reduction step (example)
to analyze, the agent interacts with him to critique the
example and then updates the rule accordingly. Next the
agent guides the expert to analyze the other task reduction
steps of the current reasoning tree that were generated by
the same rule. This leads to the further refinement of the
rule, while keeping the expert focused on a manageable
task (see Refinement of the Rule’s Conditions below).
 Often the refinement of a rule requires the verification
of the rule’s previous examples which may not be natural
or even possible to do at that time. We have developed a
Lazy Rule Refinement method to handle such cases (see
section below). In the following we will summarize some
of the methods included in our integrated approach.

Discovering Partially Refined Rules. In expressing their
knowledge, domain experts use common sense and omit
details that are implicit in human communication.
Therefore an agent will learn rules from partially explained
examples. To alleviate this problem we have developed
two complementary rule analysis methods that guide the
expert to provide more complete explanations. One method
performs a structural analysis of the rule, checking if the
values of its output variables (i.e. the variables from the
question, answer and THEN tasks, such as ?O5 in Figure
1) can be obtained from the values of the variables of the
IF task. The other method determines if there are too many
instances of the rule and which are the under-constrained
variables. Detailed experimental results for these methods
are described in (Boicu et al. 2005).

Refinement of the Rule’s Conditions. As shown in
Figure 1, a rule has a complex structure. The rule is
applied when its main condition is satisfied and none of its
except-when conditions are satisfied. When the expert
rejects a reduction generated by a rule and provides
explanations of why the reduction is wrong, the agent must
refine the conditions of the rule. One strategy is to
specialize the main condition to no longer cover that
reduction. Another strategy is to generalize one of the
except-when conditions to cover that reduction. Yet
another strategy is to create a new except-when condition.
If the types of explanations elicited from the expert do not
allow the agent to choose between competing strategies,
the agent uses a lazy refinement method, postponing the
decision until more cases are analyzed by the expert.

Lazy Rule Refinement. After analyzing a task reduction
step generated by the agent, the expert may decide to
update it. If the expert adds an explanation to the task
reduction step then the agent refines the corresponding rule
with a generalization of that explanation. However, if the
expert deletes an explanation, or changes one of the rule’s
tasks, the question, or the answer, then it is not clear
whether the rule should be updated, or a new rule should
be learned from the modified example. All depends on
whether the modification makes sense for the previous
examples from which the rule was learned. However,

many of these examples may not be accessible in the
context of the current problem and situation. To deal with
such a case, we have developed a lazy rule refinement
method which is briefly described in the following. The
agent creates a new version of the rule corresponding to
the modified example, but it also keeps the old, unchanged
version, linked to this new version. In order to avoid the
generation of very similar solutions by different versions
of a rule, the agent generates first the solutions
corresponding to the newest version. Solutions
corresponding to the older versions are considered only if
they are different from those generated by the more recent
versions of the rule. If in a future refinement session the
expert confirms an example generated by a previous
version of the rule, then this becomes an independent rule
and is removed from the linked list. On the other hand, if
the examples generated by the previous versions are
rejected, they will be used to specialize the conditions of
these rule versions. When the conditions of these previous
rule versions become empty, the rules are deleted from the
knowledge base. This lazy refinement method allows the
modification of a learned rule, or the learning of a closely
related rule, without requiring the expert to perform an
analysis of the rule’s representative examples at the time of
the modification. Instead, this analysis is postponed until
the agent applies the rule in problem solving.

Experimentation. Preliminary versions of the methods
discussed in this paper have been implemented in the
Disciple-RKF system, and have been successfully
evaluated in several knowledge acquisition experiments
performed at the US Army War College in the context of
the center of gravity analysis domain (Tecuci et al. 2004).
New experiments are planned for Spring 2005.

Acknowledgements. This research was sponsored by
several US Government agencies, including DARPA,
AFRL, AFOSR, and US Army War College.

References

Boicu, C.; Tecuci, G.; and Boicu, M. 2005. Improving
Agent Learning through Rule Analysis. To appear in
Proceedings of the 2005 International Conference on
Artificial Intelligence, IC-AI'2005, Los Alamitos,
California: IEEE Computer Society.

Tecuci, G. 1998. Building Intelligent Agents: An
Apprenticeship Multistrategy Learning Theory,
Methodology, Tool and Case Studies. London, England:
Academic Press.

Tecuci, G.; Boicu, M.; Marcu, D.; Stanescu, B.; Boicu, C.;
and Comello, J. 2002. Training and Using Disciple Agents:
A Case Study in the Military Center of Gravity Analysis
Domain. AI Magazine. 23(4): 51–68.

Tecuci, G.; Boicu, M.; Marcu, D.; Stanescu, B.; Boicu, C.;
and Barbulescu, M. 2004. Parallel Knowledge Base
Development by Subject Matter Experts. In Proc. of the
14th Int. Conference on Knowledge Engineering and
Knowledge Management (EKAW 2004). Springer-Verlag.

In Proceedings of the Twentieth National Conference on Artificial Intelligence, AAAI-05, Pittsburgh, Pennsylvania, USA, July 9-13, 2005.

