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Introduction   
We research how subject matter experts can develop 
knowledge-based systems that incorporate their expertise. 
Our approach is to develop a learning and problem solving 
agent, called Disciple, that an expert can teach by 
explaining it how to solve specific problems, and by 
critiquing its attempts to solve new problems (Tecuci 
1998). The knowledge base of the agent is structured into 
an object ontology that contains a hierarchical description 
of the objects and features from an application domain, and 
a set of task reduction rules expressed with these objects. 
 The Disciple approach has already been applied to 
develop knowledge-based agents for complex military tasks 
such as course of action critiquing and center of gravity 
analysis (Tecuci et al. 2002). In this paper we present a 
new integrated approach to support a domain expert in 
refining the rules from an agent’s large knowledge base. 

Rule Learning and Refinement 
To illustrate the rule learning and refinement process 
consider how a domain expert may teach a Disciple agent 
how to help a student select a PhD advisor. The expert 
formulates an initial problem solving task, such as 
“Determine a PhD advisor for Tom Evan.” Then, using the task-
reduction paradigm, the expert successively reduces this 
task to simpler tasks, guided by questions and answers, as 
illustrated by the following task reduction step: 

Task: Determine whether John Smith can be a PhD advisor for Tom 

Evan in Artificial Intelligence. 

Question: Is John Smith likely to stay on the faculty of George 

Mason University for the duration of Tom Evan’s dissertation?  

Answer: Yes, because John Smith has a tenured position.  

Subtask: Determine whether John Smith would be a good PhD 

advisor for Tom Evan in Artificial Intelligence. 

From each such task reduction step, Disciple learns a 
general task reduction rule. The learned rules are used by 
Disciple in the task reduction process, and the critiques 
received from the expert guides their refinement. For 
instance, the rule learned from the above example is 
applied to “Determine whether Mark White can be a PhD advisor for 

Tom Evan in Artificial Intelligence.” However, the corresponding 
reduction is rejected by the expert because “Mark White is likely 
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to move to Stanford University.” Consequently, Disciple adds an 
except-when condition to the rule which takes the form 
shown in Figure 1. As illustrated in Figure 1, the rules 
learned by Disciple have an IF-THEN part that preserves 
the expert’s language from the example, a main 
applicability condition and, optionally, several except-when 
conditions (which should not be satisfied to apply the rule). 
The conditions are partially learned, containing plausible 
upper and lower bounds for the acceptable values of the 
rule’s variables. Rule’s representative examples are also 
kept to help in its further refinement (Tecuci et al. 2002). 

An Integrated Approach to Rule Refinement 
The rule learning and refinement process in Disciple is 
based on the observation that it is difficult for a subject 
matter expert to work directly with formal rules. It is much 
easier for the expert to analyze specific examples, to accept 
them as correct, or to reject them as incorrect, and to 
provide explanations of his decision. Therefore, when the 
agent solves some task, it shows the expert the entire 
reasoning tree. Because the tree is generally very large, we 
have developed methods that highlight those task reduction 
steps that need special attention. These are steps generated 

MAIN CONDITION
?O1  is     PUB (PhD_advisor)      PLB (PhD_advisor)

has_as_employer ?O4 
has_as_position ?O5 

?O2 is    PUB (person)                PLB (PhD_student)
?O3 is    PUB (research_area)    PLB (Artificial_Intelligence)
?O4 is    PUB (employer)            PLB (university)
?O5 is    PUB (position)              PLB (tenured_position)

EXCEPT WHEN CONDITION
?O1 is    PUB (person)               PLB (PhD_advisor)

is_likely_to_move_to ?O6
?O6 is    PUB (employer)           PLB (university)

IF: Determine whether ?O1 can be a PhD advisor for ?O2 in ?O3 

THEN: Determine whether ?O1 would be a good PhD advisor for 
?O2 in ?O3

Figure 1: Partially learned plausible version space rule

Question: Is ?O1 likely to stay on the faculty of ?O4 for the 
duration of ?O2 's dissertation? 
Answer: Yes, because ?O1 has a ?O5 

Positive Example: (?O1=John_Smith ?O2=Tom_Evan
?O3=Artificial_Intelligence ?O4=George_Mason_University
?O5=tenured_position)
Negative Example: (?O1=Mark_White ?O2=Tom_Evan
?O3=Artificial_Intelligence ?O4=George_Mason_University
?O5=tenured_position ?O6=Stanford_University)
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by using highly incomplete rules, or the plausible upper 
bound conditions of partially incomplete rules (see 
Discovering Partially Refined Rules below). 
 After the expert selects a task reduction step (example) 
to analyze, the agent interacts with him to critique the 
example and then updates the rule accordingly. Next the 
agent guides the expert to analyze the other task reduction 
steps of the current reasoning tree that were generated by 
the same rule. This leads to the further refinement of the 
rule, while keeping the expert focused on a manageable 
task (see Refinement of the Rule’s Conditions below).  
 Often the refinement of a rule requires the verification 
of the rule’s previous examples which may not be natural 
or even possible to do at that time. We have developed a 
Lazy Rule Refinement method to handle such cases (see 
section below). In the following we will summarize some 
of the methods included in our integrated approach. 

Discovering Partially Refined Rules. In expressing their 
knowledge, domain experts use common sense and omit 
details that are implicit in human communication. 
Therefore an agent will learn rules from partially explained 
examples. To alleviate this problem we have developed 
two complementary rule analysis methods that guide the 
expert to provide more complete explanations. One method 
performs a structural analysis of the rule, checking if the 
values of its output variables (i.e. the variables from the 
question, answer and THEN tasks, such as ?O5 in Figure 
1) can be obtained from the values of the variables of the 
IF task. The other method determines if there are too many 
instances of the rule and which are the under-constrained 
variables. Detailed experimental results for these methods 
are described in (Boicu et al. 2005). 

Refinement of the Rule’s Conditions. As shown in 
Figure 1, a rule has a complex structure. The rule is 
applied when its main condition is satisfied and none of its 
except-when conditions are satisfied. When the expert 
rejects a reduction generated by a rule and provides 
explanations of why the reduction is wrong, the agent must 
refine the conditions of the rule. One strategy is to 
specialize the main condition to no longer cover that 
reduction. Another strategy is to generalize one of the 
except-when conditions to cover that reduction. Yet 
another strategy is to create a new except-when condition. 
If the types of explanations elicited from the expert do not 
allow the agent to choose between competing strategies, 
the agent uses a lazy refinement method, postponing the 
decision until more cases are analyzed by the expert.  

Lazy Rule Refinement. After analyzing a task reduction 
step generated by the agent, the expert may decide to 
update it. If the expert adds an explanation to the task 
reduction step then the agent refines the corresponding rule 
with a generalization of that explanation. However, if the 
expert deletes an explanation, or changes one of the rule’s 
tasks, the question, or the answer, then it is not clear 
whether the rule should be updated, or a new rule should 
be learned from the modified example. All depends on 
whether the modification makes sense for the previous 
examples from which the rule was learned. However, 

many of these examples may not be accessible in the 
context of the current problem and situation. To deal with 
such a case, we have developed a lazy rule refinement 
method which is briefly described in the following. The 
agent creates a new version of the rule corresponding to 
the modified example, but it also keeps the old, unchanged 
version, linked to this new version. In order to avoid the 
generation of very similar solutions by different versions 
of a rule, the agent generates first the solutions 
corresponding to the newest version. Solutions 
corresponding to the older versions are considered only if 
they are different from those generated by the more recent 
versions of the rule. If in a future refinement session the 
expert confirms an example generated by a previous 
version of the rule, then this becomes an independent rule 
and is removed from the linked list. On the other hand, if 
the examples generated by the previous versions are 
rejected, they will be used to specialize the conditions of 
these rule versions. When the conditions of these previous 
rule versions become empty, the rules are deleted from the 
knowledge base. This lazy refinement method allows the 
modification of a learned rule, or the learning of a closely 
related rule, without requiring the expert to perform an 
analysis of the rule’s representative examples at the time of 
the modification. Instead, this analysis is postponed until 
the agent applies the rule in problem solving.  

Experimentation. Preliminary versions of the methods 
discussed in this paper have been implemented in the 
Disciple-RKF system, and have been successfully 
evaluated in several knowledge acquisition experiments 
performed at the US Army War College in the context of 
the center of gravity analysis domain (Tecuci et al. 2004). 
New experiments are planned for Spring 2005.  
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